Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dissection of a (βα)8-barrel enzyme into two folded halves

Abstract

The (βα)8-barrel, which is the most frequently encountered protein fold, is generally considered to consist of a single structural domain. However, the X-ray structure of the imidazoleglycerol phosphate synthase (HisF) from Thermotoga maritima has identified it as a (βα)8-barrel made up of two superimposable subdomains (HisF-N and HisF-C). HisF-N consists of the four N-terminal (βα) units and HisF-C of the four C-terminal (βα) units. It has been postulated, therefore, that HisF evolved by tandem duplication and fusion from an ancestral half-barrel. To test this hypothesis, HisF-N and HisF-C were produced in Escherichia coli, purified and characterized. Separately, HisF-N and HisF-C are folded proteins, but are catalytically inactive. Upon co-expression in vivo or joint refolding in vitro, HisF-N and HisF-C assemble to the stoichiometric and catalytically fully active HisF-NC complex. These findings support the hypothesis that the (βα)8-barrel of HisF evolved from an ancestral half-barrel and have implications for the folding mechanism of the members of this large protein family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The N-terminal and C-terminal halves of HisF have very similar structures.
Figure 2: CD spectra of HisF-Nw, HisF-C and HisF-NC are indicative of native secondary and tertiary structures.
Figure 3: HisF-C is more resistant to proteolysis than HisF-N, and complex formation slows down the degradation of both fragments.
Figure 4: Models of the quaternary structures of the predominant association states of HisF, and of HisF-N, HisF-C and HisF-NC.

Similar content being viewed by others

References

  1. Pujadas, G. & Palau, J. Biologia Bratislava 54, 231–254 (1999).

    CAS  Google Scholar 

  2. Thoma, R., Hennig, M., Sterner, R. & Kirschner, K. Structure Fold. Des. 8, 265–276 ( 2000).

    Article  CAS  Google Scholar 

  3. Higgins, W., Fairwell, T. & Miles, E.W. Biochemistry 18, 4827– 4835 (1979).

    Article  CAS  Google Scholar 

  4. Eder, J. & Kirschner, K. Biochemistry 31, 3617–3625 (1992).

    Article  CAS  Google Scholar 

  5. Bertolaet, B.L. & Knowles, J.R. Biochemistry 34, 5736–5743 ( 1995).

    Article  CAS  Google Scholar 

  6. Klem, T.J. & Davisson, V.J. Biochemistry 32, 5177–5186 (1993).

    Article  CAS  Google Scholar 

  7. Lang, D.A., Thoma, R., Henn-Sax, M., Sterner, R. & Wilmanns, M. Science 289, 1546 –1550 (2000).

    Article  CAS  Google Scholar 

  8. Thoma, R., Schwander, M., Liebl, W., Kirschner, K. & Sterner, R. A. Extremophiles 2, 379–389 (1998).

    Article  CAS  Google Scholar 

  9. Studier, F.W. & Moffatt, B.A. J. Mol. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  10. Johnson, W.C. Jr. Proteins 7, 205– 214 (1990).

    Article  CAS  Google Scholar 

  11. Greenfield, N.J. Anal. Biochem. 235, 1–10 (1996).

    Article  CAS  Google Scholar 

  12. Schmid, F.X. In Protein structure: a practical approach, 2nd Edition (ed. Creighton, T.E.), 259–295 (IRL Press, Oxford; 1997).

    Google Scholar 

  13. Hubbard, S.J. Biochim. Biophys. Acta 1382, 191–206 (1998).

    Article  CAS  Google Scholar 

  14. Beismann-Driemeyer, S. Ph.D. thesis, Universität Köln, Germany ( 2000).

  15. Thoma, R. et al. FEBS Lett. 454, 1–6 (1999).

    Article  CAS  Google Scholar 

  16. Knowles, J.R. Nature 350, 121–124 ( 1991).

    Article  CAS  Google Scholar 

  17. Jaenicke, R. Prog. Biophys. Mol. Biol. 71, 155– 241 (1999).

    Article  CAS  Google Scholar 

  18. Terwilliger, T.C. Adv. Protein. Chem. 46, 177–215 (1995).

    Article  CAS  Google Scholar 

  19. Erickson, H.P. J. Mol. Biol. 206, 465–474 (1989).

    Article  CAS  Google Scholar 

  20. Nagi, A.D. & Regan, L. Fold. Des. 2, 67–75 (1997).

    Article  CAS  Google Scholar 

  21. Marcotte, E.M. et al. Science 285, 751–753 (1999).

    Article  CAS  Google Scholar 

  22. Heinz, D.W., Essen, L.-O. & Williams, R.L. J. Mol. Biol. 275, 635– 650 (1998).

    Article  CAS  Google Scholar 

  23. Waddle, J.J., Johnston, T.C. & Baldwin, T.O. Biochemistry 26, 4917– 4921 (1987).

    Article  CAS  Google Scholar 

  24. Zitzewitz, J.A., Gualfetti, P.J., Perkons, I.A., Wasta, S.A. & Matthews, C.R. Protein Sci. 8,1200–1209 ( 1999).

    Article  CAS  Google Scholar 

  25. Wilmanns, M., Hyde, C.C., Davies, D.R., Kirschner, K. & Jansonius, J.N. Biochemistry 30, 9161–9169 (1991).

    Article  CAS  Google Scholar 

  26. Sarkar, G. & Sommer, S.S. BioTechniques 8, 404–407 (1990).

    CAS  PubMed  Google Scholar 

  27. Laemmli, U.K. Nature 227, 680–685 ( 1970).

    Article  CAS  Google Scholar 

  28. Bradford, M.M. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  29. Pace, C.N., Vajdos, F., Fee, L., Grimsley, G. & Gray T. Protein Sci. 4, 2411 –2423 (1995).

    Article  CAS  Google Scholar 

  30. Schägger, H. & von Jagow, G. Anal. Biochem. 166, 368–379 ( 1987).

    Article  Google Scholar 

  31. Hommel, U., Eberhard, M. & Kirschner, K. Biochemistry 34, 5429– 5439 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.-J. Fritz, K. Kirschner, D. Lang, R. Thoma and M. Wilmanns for support and helpful discussions. This work was sponsored by grants from the Deutsche Forschungsgemeinschaft and a Heisenberg-fellowship to R.S. This paper is dedicated to Professor Marianne Baudler on the occasion of her 80th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Sterner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höcker, B., Beismann-Driemeyer, S., Hettwer, S. et al. Dissection of a (βα)8-barrel enzyme into two folded halves. Nat Struct Mol Biol 8, 32–36 (2001). https://doi.org/10.1038/83021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing