Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ribozyme-catalyzed tRNA aminoacylation

Abstract

The RNA world hypothesis implies that coded protein synthesis evolved from a set of ribozyme catalyzed acyl-transfer reactions, including those of aminoacyl-tRNA synthetase ribozymes. We report here that a bifunctional ribozyme generated by directed in vitro evolution can specifically recognize an activated glutaminyl ester and aminoacylate a targeted tRNA, via a covalent aminoacyl-ribozyme intermediate. The ribozyme consists of two distinct catalytic domains; one domain recognizes the glutamine substrate and self-aminoacylates its own 5'-hydroxyl group, and the other recognizes the tRNA and transfers the aminoacyl group to the 3'-end. The interaction of these domains results in a unique pseudoknotted structure, and the ribozyme requires a change in conformation to perform the sequential aminoacylation reactions. Our result supports the idea that aminoacyl-tRNA synthetase ribozymes could have played a key role in the evolution of the genetic code and RNA-directed translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary structure of acyl-transferase ribozyme (ATRib) and schematic representation of a ATRib-catalyzed aminoacylation of acceptor RNA.
Figure 2: Aminoacylation of tRNA catalyzed by ATRib.
Figure 3: In vitro evolution of aaRS-like ribozymes.
Figure 4: Sequence alignment of active clones in pool 12 DNA and amino acid specificity of clone AD02.
Figure 5: Structure and function of the ribozyme.

Similar content being viewed by others

References

  1. Schimmel, P., Giegé, R., Moras, D. & Yokoyama, S. Proc. Natl. Acad. Sci. USA 90, 8763– 8768 (1993).

    Article  CAS  Google Scholar 

  2. Yarus, M. Science 240, 1751–1758 ( 1988).

    Article  CAS  Google Scholar 

  3. Hager, A.J., Pollard, J.D. & Szostak, J.W. Chem. Biol. 3, 717– 725 (1996).

    Article  CAS  Google Scholar 

  4. Piccirilli, J.A., McConnell, T.S., Zaug, A.J., Noller, H.F. & Cech, T.R. Science 256, 1420–1424 (1992).

    Article  CAS  Google Scholar 

  5. Noller, H.F., Hoffarth, V. & Zimniak, L. Science 256, 1416– 1419 (1992).

    Article  CAS  Google Scholar 

  6. Schimmel, P. Biochemistry 28, 2747–2759 (1989).

    Article  CAS  Google Scholar 

  7. Giegé, R., Sissler, M. & Florentz, C. Nucleic Acids Res. 26, 5017– 5035 (1998).

    Article  Google Scholar 

  8. McClain, W.H. J. Mol. Biol. 234, 257–280 (1993).

    Article  CAS  Google Scholar 

  9. Nureki, O.,et al. 280, 578–582 ( 1998).

  10. Famulok, M. J. Am. Chem. Soc. 116, 1698–1706 (1994).

    Article  CAS  Google Scholar 

  11. Majerfeld, I. & Yarus, M. Nature Struct. Biol. 1 , 287–292 (1994).

    Article  CAS  Google Scholar 

  12. Yang, Y., Kochoyan, M., Burgstaller, P., Westhof, E. & Famulok, M. Science 272, 1343–1347 (1996).

    Article  CAS  Google Scholar 

  13. Illangasekare, M., Sanchez, G., Nickles, T. & Yarus, M. Science 267, 643–647 (1995).

    Article  CAS  Google Scholar 

  14. Illangasekare, M., Kovalchuke, O. & Yarus, M. J. Mol. Biol. 274, 519– 529 (1997).

    Article  CAS  Google Scholar 

  15. Jenne, A. & Famulok, M. Chem. Biol. 5, 23–34 (1998).

    Article  CAS  Google Scholar 

  16. Lohse, P.A. & Szostak, J.W. Nature 381, 442–444 (1996).

    Article  CAS  Google Scholar 

  17. Wiegand, T.W., Janssen, R.C. & Eaton, B.E. Chem. Biol. 4, 675– 683 (1997).

    Article  CAS  Google Scholar 

  18. Zhang, B. & Cech, T.R. Nature 390, 96–100 (1997).

    Article  CAS  Google Scholar 

  19. Suga, H., Lohse, P.A. & Szostak, J.W. J. Am. Chem. Soc. 120, 1151 –1156 (1998).

    Article  CAS  Google Scholar 

  20. Suga, H., Cowan, J.A. & Szostak, J.W. Biochemistry 37, 10118– 10125 (1998).

    Article  CAS  Google Scholar 

  21. Mathews, D.H., Sabina, J., Zuker, M. & Turner, D.H. J. Mol. Biol. 288, 911–940 ( 1999).

    Article  CAS  Google Scholar 

  22. Burke, J.M.,et al. Cell 45, 167–176 (1986).

    Article  CAS  Google Scholar 

  23. Golden, B.L. & Cech, T.R. Biochemistry 35, 3754–3763 (1996).

    Article  CAS  Google Scholar 

  24. Chanfreau, G. & Jacquier, A. EMBO J. 15, 3466–3476 (1996).

    Article  CAS  Google Scholar 

  25. Costa, M., Deme, E., Jacquier, A. & Michel, F. J. Mol. Biol. 267, 520–536 (1997).

    Article  CAS  Google Scholar 

  26. Chu, V.T., Liu, Q., Podar, M., Perlman, P.S. & Pyle, A.M. RNA 4, 1186– 1202 (1998).

    Article  CAS  Google Scholar 

  27. Lodmell, J.S. & Dahlberg, A.E. Science 277, 1262–1267 (1997).

    Article  CAS  Google Scholar 

  28. Agrawal, R.K. & Frank, J. Curr. Opin. Struct. Biol. 9, 215–221 (1999).

    Article  CAS  Google Scholar 

  29. Konarska, M.M. & Sharp, P.A. Cell 49, 763–774 (1987).

    Article  CAS  Google Scholar 

  30. Fortner, D.M., Troy, R.G. & Brow, D.A. Genes Dev. 8, 221– 233 (1994).

    Article  CAS  Google Scholar 

  31. Kambach, C., Walke, S. & Nagai, K. Curr. Opin. Struct. Biol. 9, 222 –230 (1999).

    Article  CAS  Google Scholar 

  32. Noren, C.J., Anthony-Cahill, S.J., Griffith, M.C. & Schultz, P.G. Science 244, 182–188 ( 1989).

    Article  CAS  Google Scholar 

  33. Arslan, T., Mamaev, S.V., Mamaev, N.V. & Hecht, S.M. J. Am. Chem. Soc. 119, 10877–10887 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the NMR facility in the Department of Chemistry, the CAMBI nucleic acid facility, and the Phosphorimager facility in the Department of Biological Sciences. We thank M. Hollingsworth and P. Gollnick for critical reading the manuscript. Y.B. is supported by a Research Scientist Abroad Fellowship sponsored by the Japanese Ministry of Education. This work was supported by the State University of New York at Buffalo Start-up Fund and a PRF-ACS grant (H.S.) and partly by an NIH grant (J.W.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Suga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, N., Bessho, Y., Wei, K. et al. Ribozyme-catalyzed tRNA aminoacylation. Nat Struct Mol Biol 7, 28–33 (2000). https://doi.org/10.1038/71225

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing