Teleneurology and mobile technologies: the future of neurological care

Key Points

  • Neurological disorders are the leading cause of global disability; however, much of the world lacks access to proper neurological care.

  • Teleneurology, the use of technology to provide remote neurological care and education, has immense potential to increase access to care for people around the world.

  • Telestroke has realized this potential, and teleneurology applications for chronic conditions are beginning to emerge.

  • Mobile technologies, especially smartphones and wearable sensors, can provide objective, frequent assessments of neurological conditions, but applications of these technologies are in their infancy.

  • In low-income settings, teleneurology can increase local capabilities through education, diagnostic assistance and consultation.

  • In high-income settings, neurological care will expand and migrate from hospitals and clinics to homes and mobile devices, incorporate systems of asynchronous communications and integrate clinicians with diverse skill sets.

Abstract

Neurological disorders are the leading cause of global disability. However, for most people around the world, current neurological care is poor. In low-income countries, most individuals lack access to proper neurological care, and in high-income countries, distance and disability limit access. With the global proliferation of smartphones, teleneurology — the use of technology to provide neurological care and education remotely — has the potential to improve and increase access to care for billions of people. Telestroke has already fulfilled this promise, but teleneurology applications for chronic conditions are still in their infancy. Similarly, few studies have explored the capabilities of mobile technologies such as smartphones and wearable sensors, which can guide care by providing objective, frequent, real-world assessments of patients. In low-income settings, teleneurology can increase the capacity of local care systems through professional development, diagnostic support and consultative services. In high-income settings, teleneurology is likely to promote the expansion and migration of neurological care away from institutions, incorporate systems of asynchronous communication (such as e-mail), integrate clinicians with diverse skill sets and reach new populations. Inertia, outdated policies and social barriers — especially the digital divide — will slow this progress at considerable cost. However, a future increasingly will be possible in which neurological care can be accessed by anyone, anywhere. Here, we examine the emerging evidence regarding the benefits of teleneurology for chronic conditions, its role and risks in low-income countries and the promise of mobile technologies to measure disease status and deliver care. We conclude by discussing the future trends, barriers and timing for the adoption of teleneurology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Proliferation of teleneurology studies.
Figure 2: Migration of telehealth.
Figure 3: Number of mobile broadband subscriptions, globally.
Figure 4: Rise in number of telemedicine visits.

References

  1. 1

    World Health Organization & World Federation of Neurology. Atlas: Country Resources for Neurological Disorders 2004 (WHO, 2004).

  2. 2

    Ganapathy, K. Distribution of neurologists and neurosurgeons in India and its relevance to the adoption of telemedicine. Neurol. India 63, 142–154 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Benamer, H. T. & Shakir, R. A. The neurology map of the Arab world. J. Neurol. Sci. 285, 10–12 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Bower, J. H. & Zenebe, G. Neurologic services in the nations of Africa. Neurology 64, 412–415 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Willis, A. W., Schootman, M., Evanoff, B. A., Perlmutter, J. S. & Racette, B. A. Neurologist care in Parkinson disease: a utilization, outcomes, and survival study. Neurology 77, 851–857 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Bloem, B. R. & Stocchi, F. Move for change part I: a European survey evaluating the impact of the EPDA Charter for People with Parkinson's disease. Eur. J. Neurol. 19, 402–410 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Gerlach, O. H., Winogrodzka, A. & Weber, W. E. Clinical problems in the hospitalized Parkinson's disease patient: systematic review. Mov. Disord. 26, 197–208 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Thind, A. et al. What are wait times to see a specialist? An analysis of 26,942 referrals in southwestern Ontario. Healthc. Policy 8, 80–91 (2012).

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Mehrotra, A. The convenience revolution for treatment of low-acuity conditions. JAMA 310, 35–36 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Ray, K. N., Chari, A. V., Engberg, J., Bertolet, M. & Mehrotra, A. Disparities in time spent seeking medical care in the United States. JAMA Intern. Med. 175, 1983–1986 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Rashid, W., Munro, N., Allen, S. & Hugason-Briem, J. Recommendations for improving neurological care. NHS South East Clinical Networks http://www.secn.nhs.uk/files/6014/4171/2203/Reccomendations_for_improving_neurology_care_in_the_south_east_-_August_2015.pdf (2015).

    Google Scholar 

  12. 12

    Institute of Medicine. The Role of Telehealth in an Evolving Health Care Environment: Workshop Summary (The National Academies Press, 2012).

  13. 13

    Perednia, D. A. & Allen, A. Telemedicine technology and clinical applications. JAMA 273, 483–488 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Uscher-Pines, L. & Mehrotra, A. Analysis of Teladoc use seems to indicate expanded access to care for patients without prior connection to a provider. Health Aff. 33, 258–264 (2014).

    Article  Google Scholar 

  15. 15

    Patterson, V., Humphreys, J. & Chua, R. Teleneurology by e-mail. J. Telemed Telecare 9 (Suppl. 2), 42–43 (2003).

    Article  Google Scholar 

  16. 16

    Sola-Valls, N., Blanco, Y., Sepulveda, M., Martinez-Hernandez, E. & Saiz, A. Telemedicine for monitoring MS activity and progression. Curr. Treat. Opt. Neurol. 17, 47 (2015).

    Article  Google Scholar 

  17. 17

    Pare, G., Jaana, M. & Sicotte, C. Systematic review of home telemonitoring for chronic diseases: the evidence base. J. Am. Med. Inform Assoc. 14, 269–277 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Schwamm, L. H. Telehealth: seven strategies to successfully implement disruptive technology and transform health care. Health Aff. 33, 200–206 (2014).

    Article  Google Scholar 

  19. 19

    Wechsler, L. R. et al. Teleneurology applications: report of the Telemedicine Work Group of the American Academy of Neurology. Neurology 80, 670–676 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Patterson, V. et al. Store-and-forward teleneurology in developing countries. J. Telemed Telecare 7 (Suppl. 1), 52–53 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Levine, S. R. and Gorman, M. “Telestroke”: the application of telemedicine for stroke. Stroke 30, 464–469 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Hess, D. C. & Audebert, H. J. The history and future of telestroke. Nat. Rev. Neurol. 9, 340–350 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Akbik, F. et al. Telestroke-the promise and the challenge. Part one: growth and current practice. J. Neurointerv. Surg. 9, 357–360 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Rubin, M. N., Wellik, K. E., Channer, D. D. & Demaerschalk, B. M. A systematic review of telestroke. Postgrad. Med. 125, 45–50 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Silva, G. S., Farrell, S., Shandra, E., Viswanathan, A. & Schwamm, L. H. The status of telestroke in the United States: a survey of currently active stroke telemedicine programs. Stroke 43, 2078–2085 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Wechsler, L. R. et al. Telemedicine quality and outcomes in stroke: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 48, e3–e25 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Schwamm, L. H. et al. Recommendations for the implementation of telehealth in cardiovascular and stroke care: a policy statement from the American Heart Association. Circulation 135, e24–e44 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Demaerschalk, B. M. et al. Stroke telemedicine. Mayo Clin. Proc. 84, 53–64 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Yuan, Z. et al. Intravenous thrombolysis guided by a telemedicine consultation system for acute ischaemic stroke patients in China: the protocol of a multicentre historically controlled study. BMJ Open 5, e006704 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Rubin, M. N., Wellik, K. E., Channer, D. D. & Demaerschalk, B. M. Systematic review of telestroke for post-stroke care and rehabilitation. Curr. Atheroscler Rep. 15, 343 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Zhao, G., Huang, H. & Yang, F. The progress of telestroke in China. Stroke Vasc. Neurol. 2, 168–171 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Chumbler, N. R. et al. Effects of telerehabilitation on physical function and disability for stroke patients: a randomized, controlled trial. Stroke 43, 2168–2174 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Fassbender, K. et al. Mobile stroke units for prehospital thrombolysis, triage, and beyond: benefits and challenges. Lancet Neurol. 16, 227–237 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Institute of Medicine. Crossing the Quality Chasm: A New Health System for the 21st Century. (The National Academies Press, 2001).

  35. 35

    Audebert, H. J. et al. Telemedicine for safe and extended use of thrombolysis in stroke: the Telemedic Pilot Project for Integrative Stroke Care (TEMPiS) in Bavaria. Stroke 36, 287–291 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Demaerschalk, B. M., Raman, R., Ernstrom, K. & Meyer, B. C. Efficacy of telemedicine for stroke: pooled analysis of the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) and STRokE DOC Arizona telestroke trials. Telemed J. E Health 18, 230–237 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Vatankhah, B., Schenkel, J., Furst, A., Haberl, R. L. & Audebert, H. J. Telemedically provided stroke expertise beyond normal working hours. Cerebrovasc. Dis. 25, 332–337 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    LaMonte, M. P. et al. Shortening time to stroke treatment using ambulance telemedicine: TeleBAT. J. Stroke Cerebrovasc. Dis. 13, 148–154 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Switzer, J. A. et al. A web-based telestroke system facilitates rapid treatment of acute ischemic stroke patients in rural emergency departments. J. Emerg. Med. 36, 12–18 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Wiborg, A., Widder, B. & Telemedicine in Stroke in Swabia, P. Teleneurology to improve stroke care in rural areas: The Telemedicine in Stroke in Swabia (TESS) Project. Stroke 34, 2951–2956 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Bladin, C. F. et al. Victorian Stroke Telemedicine Project: implementation of a new model of translational stroke care for Australia. Intern. Med. J. 45, 951–956 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Sharma, S. et al. Telestroke in resource-poor developing country model. Neurol. India 64, 934–940 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Messe, S. R. et al. Why are acute ischemic stroke patients not receiving IV tPA? Results from a national registry. Neurology 87, 1565–1574 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 16, 877–897 (2017).

  45. 45

    Krishnamurthi, R. V. et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet Global Health 1, e259–e281 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Werner, R. M. & Polsky, D. Comparing the supply of pediatric subspecialists and child neurologists. J. Pediatr. 146, 20–25 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Cheng, E. M. et al. Association of specialist involvement and quality of care for Parkinson's disease. Mov. Disord. 22, 515–522 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Potter, B. K., Khangura, S. D., Tingley, K., Chakraborty, P. & Little, J. Translating rare-disease therapies into improved care for patients and families: what are the right outcomes, designs, and engagement approaches in health-systems research? Genet. Med. 18, 117–123 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Quansah, E., Sarpong, E. & Karikari, T. K. Disregard of neurological impairments associated with neglected tropical diseases in Africa. eNeurologicalSci 3, 11–14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Bhunia, G. S., Kesari, S., Chatterjee, N., Kumar, V. & Das, P. Telehealth: a perspective approach for visceral leishmaniasis (kala-azar) control in India. Pathog. Global Health 106, 150–158 (2012).

    Article  Google Scholar 

  51. 51

    Venkataraman, V., Donohue, S. J., Biglan, K. M., Wicks, P. & Dorsey, E. R. Virtual visits for Parkinson disease: a case series. Neurol. Clin. Pract. 4, 146–152 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Wechsler, L. R. Advantages and limitations of teleneurology. JAMA Neurol. 72, 349–354 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Hubble, J. P., Pahwa, R., Michalek, D. K., Thomas, C. & Koller, W. C. Interactive video conferencing: a means of providing interim care to Parkinson's disease patients. Mov. Disord. 8, 380–382 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Müller, K. I., Alstadhaug, K. B. & Bekkelund, S. I. A randomized trial of telemedicine efficacy and safety for nonacute headaches. Neurology 89, 153–162 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Comans, T., Mihala, G., Sakzewski, L., Boyd, R. N. & Scuffham, P. The cost-effectiveness of a web-based multimodal therapy for unilateral cerebral palsy: the Mitii randomized controlled trial. Dev. Med. Child Neurol. 59, 756–761 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Beck, C. A. et al. National randomized controlled trial of virtual house calls for Parkinson disease. Neurology 89, 1152–1161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Mackelprang, J. L., Hoffman, J. M., Garbaccio, C. & Bombardier, C. H. Outcomes and lessons learned from a randomized controlled trial to reduce health care utilization during the first year after spinal cord injury rehabilitation: telephone counseling versus usual care. Arch. Phys. Med. Rehabil. 97, 1793–1796.e1 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Finlayson, M., Preissner, K., Cho, C. & Plow, M. Randomized trial of a teleconference-delivered fatigue management program for people with multiple sclerosis. Mult Scler 17, 1130–1140 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Dallolio, L. et al. Functional and clinical outcomes of telemedicine in patients with spinal cord injury. Arch. Phys. Med. Rehabil. 89, 2332–2341 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Egner, A., Phillips, V. L., Vora, R. & Wiggers, E. Depression, fatigue, and health-related quality of life among people with advanced multiple sclerosis: results from an exploratory telerehabilitation study. NeuroRehabilitation 18, 125–133 (2003).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Phillips, V. L., Vesmarovich, S., Hauber, R., Wiggers, E. & Egner, A. Telehealth: reaching out to newly injured spinal cord patients. Public Health Rep. 116 (Suppl. 1), 94–102 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Chua, R., Craig, J., Wootton, R. & Patterson, V. Randomised controlled trial of telemedicine for new neurological outpatient referrals. J. Neurol. Neurosurg. Psychiatry 71, 63–66 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Mair, F. & Whitten, P. Systematic review of studies of patient satisfaction with telemedicine. BMJ 320, 1517–1520 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Craig, J., Russell, C., Patterson, V. & Wootton, R. User satisfaction with realtime teleneurology. J. Telemed Telecare 5, 237–241 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Arora, S. et al. Outcomes of treatment for hepatitis C virus infection by primary care providers. N. Engl. J. Med. 364, 2199–2207 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Catic, A. G. et al. ECHO-AGE: an innovative model of geriatric care for long-term care residents with dementia and behavioral issues. J. Am. Med. Dir. Assoc. 15, 938–942 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67

    Gordon, S. E. et al. Impact of a videoconference educational intervention on physical restraint and antipsychotic use in nursing homes: results from the ECHO-AGE pilot study. J. Am. Med. Dir. Assoc. 17, 553–556 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Arora, S. et al. Partnering urban academic medical centers and rural primary care clinicians to provide complex chronic disease care. Health Aff. 30, 1176–1184 (2011).

    Article  Google Scholar 

  69. 69

    Arora, S. et al. Demonopolizing medical knowledge. Acad. Med. 89, 30–32 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    [No authors listed.] Project ECHO: a revolution in medical education and care delivery. The University of New Mexico School of Medicine https://echo.unm.edu/(2017).

  71. 71

    Dorsey, E. R. & Topol, E. J. State of telehealth. N. Engl. J. Med. 375, 154–161 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Leff, B. & Burton, J. R. The future history of home care and physician house calls in the United States. J. Gerontol. A Biol. Sci. Med. Sci. 56, M603–M608 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Ornstein, K. A. et al. Epidemiology of the homebound population in the United States. JAMA Intern. Med. 175, 1180–1186 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Shafqat, S., Kvedar, J. C., Guanci, M. M., Chang, Y. & Schwamm, L. H. Role for telemedicine in acute stroke. Feasibility and reliability of remote administration of the NIH stroke scale. Stroke 30, 2141–2145 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Bull, M. T. et al. A pilot study of virtual visits in Huntington disease. J. Huntingtons Dis. 3, 189–195 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. 76

    Ragbeer, S. N. et al. Remote assessment of cognitive function in juvenile neuronal ceroid lipofuscinosis (Batten disease): a pilot study of feasibility and reliability. J. Child Neurol. 31, 481–487 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Dorsey, E. R. et al. Increasing access to specialty care: a pilot, randomized controlled trial of telemedicine for Parkinson's disease. Mov Disord. 25, 1652–1659 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    Cubo, E. et al. Comparison of office-based versus home Web-based clinical assessments for Parkinson's disease. Mov Disord. 27, 308–311 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Hogden, A., Foley, G., Henderson, R. D., James, N. & Aoun, S. M. Amyotrophic lateral sclerosis: improving care with a multidisciplinary approach. J. Multidiscip. Healthc. 10, 205–215 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Dorsey, E. R. et al. Randomized controlled clinical trial of “virtual house calls” for Parkinson disease. JAMA Neurol. 70, 565–570 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Moses, H. 3rd et al. The anatomy of medical research: US and international comparisons. JAMA 313, 174–189 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82

    Virginia Noormahomed, E. et al. The Medical Education Partnership Initiative (MEPI), a collaborative paradigm for institutional and human resources capacity building between high- and low- and middle-income countries: the Mozambique experience. Global Health Action 10, 1272879 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Potash, S. in July / August 2017 Global Health Matters Newsletter (Fogarty International Center, Washington, DC, 2017).

    Google Scholar 

  84. 84

    McKenzie, E. D. et al. Validation of a smartphone-based EEG among people with epilepsy: a prospective study. Sci. Rep. 7, 45567 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Misra, U. K., Kalita, J., Mishra, S. K. & Yadav, R. K. Telemedicine for distance education in neurology: preliminary experience in India. J. Telemed Telecare 10, 363–365 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86

    Misra, U. K., Kalita, J., Mishra, S. K. & Yadav, R. K. Telemedicine in neurology: underutilized potential. Neurol. India 53, 27–31 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Graham, L. E. et al. Telemedicine — the way ahead for medicine in the developing world. Trop. Doct 33, 36–38 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Saadi, A. & Mateen, F. J. International issues: teleneurology in humanitarian crises: lessons from the Medecins Sans Frontieres experience. Neurology 89, e16–e19 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Lemesle, M., Kubis, N., Sauleau, P., N' Guyen The Tich, S. & Touzery-de Villepin, A. Tele-transmission of EEG recordings. Neurophysiol. Clin. 45, 121–130 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90

    Stephani, V., Opoku, D. & Quentin, W. A systematic review of randomized controlled trials of mHealth interventions against non-communicable diseases in developing countries. BMC Public Health 16, 572 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Dorsey, E. R., Venuto, C., Venkataraman, V., Harris, D. A. & Kieburtz, K. Novel methods and technologies for 21st-century clinical trials: a review. JAMA Neurol. 72, 582–588 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Cressey, D. Alzheimer's test may undermine drug trials. Nature https://doi.org/10.1038/nature.2012.12079 (2012).

  93. 93

    Dorsey, E. R., Papapetropoulos, S., Xiong, M. & Kieburtz, K. The first frontier: digital biomarkers for neurodegenerative disorders. Digital Biomarkers 1, 6–13 (2017).

    Google Scholar 

  94. 94

    Jain, S. H., Powers, B. W., Hawkins, J. B. & Brownstein, J. S. The digital phenotype. Nat. Biotechnol. 33, 462–463 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Vianello, A., Chittaro, L., Burigat, S. & Budai, R. MotorBrain: a mobile app for the assessment of users' motor performance in neurology. Comput. Methods Programs Biomed. 143, 35–47 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Lee, W., Evans, A. & Williams, D. R. Subjective perception of sleep benefit in Parkinson's disease: valid or irrelevant? Parkinsonism Relat. Disord. 42, 90–94 (2017).

    Google Scholar 

  97. 97

    Rhea, C. K. et al. Development of a portable tool for screening neuromotor sequelae from repetitive low-level blast exposure. Mil. Med. 182, 147–154 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98

    Bot, B. M. et al. The mPower study, Parkinson disease mobile data collected using ResearchKit. Sci. Data 3, 160011 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Lee, C. Y. et al. A validation study of a smartphone-based finger tapping application for quantitative assessment of bradykinesia in Parkinson's disease. PLoS ONE 11, e0158852 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Lee, W., Evans, A. & Williams, D. R. Validation of a smartphone application measuring motor function in Parkinson's disease. J. Parkinsons Dis. 6, 371–382 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. 101

    Mano, T. et al. The novel quantitative measures of gait and posture in Parkinson's disease: cross-sectional analysis [Japanese]. Rinsho Shinkeigaku 55, 259–262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102

    Barrantes, S. et al. Differential diagnosis between Parkinson's disease and essential tremor using the smartphone's accelerometer. PLoS ONE 12, e0183843 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Ko, P. R. et al. Consumer sleep technologies: a review of the landscape. J. Clin. Sleep Med. 11, 1455–1461 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104

    Cohen, A. B., Nahed, B. V. & Sheth, K. N. Mobile medical applications in neurology. Neurol. Clin. Practice 3, 52–60 (2013).

    Google Scholar 

  105. 105

    Liddle, J. et al. Measuring the lifespace of people with Parkinson's disease using smartphones: proof of principle. JMIR Mhealth Uhealth 2, e13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. 106

    Chan, Y. Y. et al. The Asthma Mobile Health Study, a large-scale clinical observational study using ResearchKit. Nat. Biotechnol. 35, 354–362 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. 107

    Bonora, G. et al. Investigation of anticipatory postural adjustments during one-leg stance using inertial sensors: evidence from subjects with Parkinsonism. Front. Neurol. 8, 361 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. 108

    Kegelmeyer, D. A. et al. Quantitative biomechanical assessment of trunk control in Huntington's disease reveals more impairment in static than dynamic tasks. J. Neurol. Sci. 376, 29–34 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. 109

    El-Gohary, M., Peterson, D., Gera, G., Horak, F. B. & Huisinga, J. M. Validity of the instrumented push and release test to quantify postural responses in persons with multiple sclerosis. Arch. Phys. Med. Rehabil. 98, 1325–1331 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. 110

    Adams, J. L. et al. Multiple wearable sensors in Parkinson and Huntington disease individuals: a pilot study in clinic and at home. Digital Biomarkers 1, 52–63 (2017).

    Article  Google Scholar 

  111. 111

    Pau, M. et al. Clinical assessment of gait in individuals with multiple sclerosis using wearable inertial sensors: comparison with patient-based measure. Mult. Scler. Relat. Disord. 10, 187–191 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112

    Pérez-López, C. et al. Dopaminergic-induced dyskinesia assessment based on a single belt-worn accelerometer. Artif. Intell. Med. 67, 47–56 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. 113

    Pasluosta, C. F., Barth, J., Gassner, H., Klucken, J. & Eskofier, B. M. Pull Test estimation in Parkinson's disease patients using wearable sensor technology. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 3109–3112 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. 114

    Suppa, A. et al. l-DOPA and freezing of gait in parkinson's disease: objective assessment through a wearable wireless system. Front. Neurol. 8, 406 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Jeon, H. et al. Automatic classification of tremor severity in Parkinson's disease using a wearable device. Sensors 17, 2067 (2017).

    Article  Google Scholar 

  116. 116

    Schlachetzki, J. C. M. et al. Wearable sensors objectively measure gait parameters in Parkinson's disease. PLoS ONE 12, e0183989 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Silva de Lima, A. L. et al. Feasibility of large-scale deployment of multiple wearable sensors in Parkinson's disease. PLoS ONE 12, e0189161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Block, V. J. et al. Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. J. Neurol. 264, 316–326 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119

    Swan, M. The quantified self: fundamental disruption in big data science and biological discovery. Big Data 1, 85–99 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120

    Singer, E. The measured life. MIT Technology Review https://www.technologyreview.com/s/424390/the-measured-life/ (2011).

    Google Scholar 

  121. 121

    Crossley, G. H. et al. The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: the value of wireless remote monitoring with automatic clinician alerts. J. Am. Coll. Cardiol. 57, 1181–1189 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  122. 122

    Mabo, P. et al. A randomized trial of long-term remote monitoring of pacemaker recipients (the COMPAS trial). Eur. Heart J. 33, 1105–1111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  123. 123

    Wootton, R. Twenty years of telemedicine in chronic disease management—an evidence synthesis. J. Telemed Telecare 18, 211–220 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124

    Thomas, G. P. & Jobst, B. C. Critical review of the responsive neurostimulator system for epilepsy. Med. Devices 8, 405–411 (2015).

    Google Scholar 

  125. 125

    [No authors listed.] Johns Hopkins EpiWatch: app and research study. John Hopkins Medicine http://www.hopkinsmedicine.org/epiwatch (2017).

  126. 126

    Picard, R. W. et al. Wrist sensor reveals sympathetic hyperactivity and hypoventilation before probable SUDEP. Neurology 89, 633–635 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. 127

    Brown, E. M. The Ontario Telemedicine Network: a case report. Telemed. J. E Health 19, 373–376 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  128. 128

    Wilkinson, J. R. et al. High patient satisfaction with telehealth in Parkinson disease: A randomized controlled study. Neurol. Clin. Pract. 6, 241–251 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. 129

    mHealthNews. VA poised to ramp up telehealth in 2015. MobiHealthNews http://www.mobihealthnews.com/news/va-poised-ramp-telehealth-2015 (2014).

  130. 130

    Davis, L. E., Coleman, J., Harnar, J. & King, M. K. Teleneurology: successful delivery of chronic neurologic care to 354 patients living remotely in a rural state. Telemed. J. E Health 20, 473–477 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. 131

    Allan, R. A. Brief history of telemedicine. Electronic Design http://www.electronicdesign.com/components/brief-history-telemedicine (2006).

    Google Scholar 

  132. 132

    Bashshur, R. & Shannon, G. W. History of telemedicine: evolution, context, and transformation. Healthc. Inform. Res. 16, 65–66 (2010).

    Article  Google Scholar 

  133. 133

    Tso, J. V., Farinpour, R., Chui, H. C. & Liu, C. Y. A. Multidisciplinary model of dementia care in an underserved retirement community, made possible by telemedicine. Front. Neurol. 7, 225 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. 134

    Dorsey, E. R. et al. National randomized controlled trial of virtual house calls for people with Parkinson's disease: interest and barriers. Telemed. J. E Health 22, 590–598 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. 135

    Rainie, L. Digital Divides 2015. Pew Reseacrh Center Internet & Technology http://www.pewinternet.org/2015/09/22/digital-divides-2015/ (2015).

    Google Scholar 

  136. 136

    Walter, S. et al. Diagnosis and treatment of patients with stroke in a mobile stroke unit versus in hospital: a randomised controlled trial. Lancet Neurol. 11, 397–404 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  137. 137

    Ebinger, M. et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: a randomized clinical trial. JAMA 311, 1622–1631 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. 138

    Bowry, R. et al. Benefits of stroke treatment using a mobile stroke unit compared with standard management: the BEST-MSU study run-in phase. Stroke 46, 3370–3374 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. 139

    Kahn, J. G., Yang, J. S. & Kahn, J. S. 'Mobile' health needs and opportunities in developing countries. Health Aff. 29, 252–258 (2010).

    Article  Google Scholar 

  140. 140

    Patterson, V. & Wootton, R. A web-based telemedicine system for low-resource settings 13 years on: insights from referrers and specialists. Global Health Action 6, 21465 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  141. 141

    [No authors listed.] Health expenditure per capita, PPP (constant 2011 international $), China. The World Bank https://data.worldbank.org/indicator/SH.XPD.PCAP.PP.KD?locations=CN (2014).

  142. 142

    [No authors listed.] Health expenditure per capita, PPP (constant 2011 international $), India. The World Bank https://data.worldbank.org/indicator/SH.XPD.PCAP.PP.KD?locations=IN (2014).

  143. 143

    Kaplan, W. A. Can the ubiquitous power of mobile phones be used to improve health outcomes in developing countries? Global Health 2, 9 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  144. 144

    Woods, B. By 2020, 90% of the world's population aged over 6 will have a mobile phone: Report. TNW https://thenextweb.com/insider/2014/11/18/2020-90-worlds-population-aged-6-will-mobile-phone-report/#.tnw_mPJpZK9J (2014).

    Google Scholar 

  145. 145

    Oche, M. & Adamu, H. Determinants of patient waiting time in the general outpatient department of a tertiary health institution in north Western Nigeria. Ann. Med. Health Sci. Res. 3, 588–592 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. 146

    Prentice, J. C. & Pizer, S. D. Delayed access to health care and mortality. Health Services Res. 42, 644–662 (2007).

    Article  Google Scholar 

  147. 147

    Ashwood, J. S., Mehrotra, A., Cowling, D. & Uscher-Pines, L. Direct-to-consumer telehealth may increase access to care but does not decrease spending. Health Aff. 36, 485–491 (2017).

    Article  Google Scholar 

  148. 148

    Daschle, T. & Dorsey, E. R. The return of the house call. Ann. Intern. Med. 162, 587–588 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. 149

    Pearl, R. Kaiser Permanente Northern California: current experiences with internet, mobile, and video technologies. Health Aff. 33, 251–257 (2014).

    Article  Google Scholar 

  150. 150

    Constantinescu, G. et al. Treating disordered speech and voice in Parkinson's disease online: a randomized controlled non-inferiority trial. Int. J. Lang. Commun. Disord. 46, 1–16 (2011).

    PubMed  PubMed Central  Google Scholar 

  151. 151

    Cosentino, C. Huntington's Disease Society of America launches first-of-its-kind free telehealth counseling for HD families. HDSA http://hdsa.org/news/huntingtons-disease-society-of-america-launches-first-of-its-kind-free-telehealth-counseling-for-hd-families/ (2017).

    Google Scholar 

  152. 152

    Street, R. L., Gold, W. R. & Manning, T. Health Promotion and Interactive Technology: Theoretical Applications and Future Directions (Lawrence Erlbaum Associates, 1997).

    Google Scholar 

  153. 153

    Topol, E. J. The Creative Destruction of Medicine: How the Digital Revolution Will Create Better Health Care 1st edn (Basic Books, 2013).

    Google Scholar 

  154. 154

    Topol, E. J. The Patient Will See You Now: The Future of Medicine is in Your Hands. (Basic Books, 2015).

    Google Scholar 

  155. 155

    Frost, J. H. & Massagli, M. P. Social uses of personal health information within PatientsLikeMe, an online patient community: what can happen when patients have access to one another's data. J. Med. Internet Res. 10, e15 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  156. 156

    Bloem, B. R. & Munneke, M. Revolutionising management of chronic disease: the ParkinsonNet approach. BMJ 348, g1838 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. 157

    Bloem, B. R. ParkinsonNet: a low-cost healthcare innovation with a systems' approach from the Netherlands. Health Aff. 36, 1987–1996 (2017).

    Article  Google Scholar 

  158. 158

    Kurzweil, R. The Singularity is Near: When Humans Transcend Biology (Viking, 2005).

    Google Scholar 

  159. 159

    Russo, J. E., McCool, R. R. & Davies, L. VA telemedicine: an analysis of cost and time savings. Telemed J. E Health 22, 209–215 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. 160

    Deland, M. L. et al. How NYP used its innovation stack to launch a telehealth program. NEJM Catalyst http://catalyst.nejm.org/nyp-innovation-stack-telehealth-program/ (2017).

    Google Scholar 

  161. 161

    Larsen, E. & Noseworthy, J. Why Mayo Clinic's CEO wants to serve 200 million patients — and how he plans to do it [Interview]. Advisory Board https://www.advisory.com/daily-briefing/2014/07/23/lessons-from-the-c-suite-mayo-clinic (2014)

    Google Scholar 

  162. 162

    Christensen, C. M., Horn, M. B. & Johnson, C. W. Disrupting Class: How Disruptive Innovation Will Change the Way the World Learns. (McGraw-Hill, 2008).

    Google Scholar 

  163. 163

    Loria, G. The doctor's office of 2024 — 4 predictions for the future. Software Advice https://www.softwareadvice.com/resources/the-doctors-office-of-2024/(2017).

    Google Scholar 

  164. 164

    Tractica. Remote Video Consultations in Clinical and Non-Clinical Environments: Global Market Analysis and Forecasts (Tractica, 2015).

  165. 165

    Mearian, L. Almost one in six doctor visits will be virtual this year. ComputerWorld https://www.computerworld.com/article/2490959/healthcare-it-almost-one-in-six-doctor-visits-will-be-virtual-this-year.html (2014).

    Google Scholar 

  166. 166

    Dorsey, E. R. & Torsey, E. Here's what your future doctor visits could look like. Fortune http://fortune.com/2017/05/02/brainstorm-health-2017/ (2017).

    Google Scholar 

  167. 167

    Adner, R. & Kapoor, R. Right tech, wrong time. Harvard Business Review https://hbr.org/2016/11/right-tech-wrong-time (2016).

    Google Scholar 

  168. 168

    Poushter, J. Internet access growing worldwide but remains higher in advanced economies. Pew Research Center http://www.pewglobal.org/2016/02/22/internet-access-growing-worldwide-but-remains-higher-in-advanced-economies/ (2016).

    Google Scholar 

  169. 169

    Miniwatts Marketing Group. Internet Users in Africa, June 2017. Internet World Stats: Usage and Population Statistics http://www.internetworldstats.com/stats1.htm (2017).

  170. 170

    Shiferaw, F. & Zolfo, M. The role of information communication technology (ICT) towards universal health coverage: the first steps of a telemedicine project in Ethiopia. Global Health Action 5, 15638 (2012).

    Article  Google Scholar 

  171. 171

    Jackson, T. BRCK could bring a reliable internet connection to some of the most remote parts of Africa. TheNextWeb https://thenextweb.com/gadgets/2014/07/16/brck-africa-funding/ (2014).

    Google Scholar 

  172. 172

    Poushter, J. Smartphone ownership rates skyrocket in many emerging economies, but the digital divide remains. Pew Research Center http://www.pewglobal.org/2016/02/22/smartphone-ownership-rates-skyrocket-in-many-emerging-economies-but-digital-divide-remains/ (2016).

    Google Scholar 

  173. 173

    Jeremiah, D. Telemedicine finally makes inroads into the Asia-Pacific market, finds Frost & Sullivan. Frost & Sullivan https://ww2.frost.com/news/press-releases/telemedicine-finally-makes-inroads-asia-pacific-market-finds-frost-sullivan/ (2015).

    Google Scholar 

  174. 174

    Raposo, V. L. Telemedicine: The legal framework (or the lack of it) in Europe. GMS Health Technol. Assess. 12, Doc03 (2016).

    PubMed  PubMed Central  Google Scholar 

  175. 175

    Thomas, L. & Capistrant, G. State Telemedicine Gaps Analysis: Coverage & Reimbursement (American Telemedicine Association, 2016).

    Google Scholar 

  176. 176

    [No authors listed.] Next generation ACO model telehealth waiver frequently asked questions. CMS https://innovation.cms.gov/Files/x/nextgenaco-telehealthwaiver.pdf (2018).

  177. 177

    Wicklund, E. Telehealth-friendly CHRONIC care act passes first senate hurdle. mHealth Intelligence https://mhealthintelligence.com/news/telehealth-friendly-chronic-care-act-passes-first-senate-hurdle (2017).

    Google Scholar 

  178. 178

    Asch, D. A. The hidden economics of telemedicine. Ann. Intern. Med. 163, 801–802 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. 179

    Stingley, S. & Schultz, H. Helmsley trust support for telehealth improves access to care in rural and frontier areas. Health Aff. 33, 336–341 (2014).

    Article  Google Scholar 

  180. 180

    Chaudhry, H. J., Robin, L. A., Fish, E. M., Polk, D. H. & Gifford, J. D. Improving access and mobility — the Interstate Medical Licensure Compact. N. Engl. J. Med. 372, 1581–1583 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  181. 181

    Norris, P. Digital Divide: civic Engagement, Information Poverty, and the Internet Worldwide. (Cambridge Univ. Press, 2001).

    Google Scholar 

  182. 182

    Fox, S. & Purcell, K. Chronic Disease and the Internet. (Pew Internet & American Life Project Washington, DC, 2010).

    Google Scholar 

  183. 183

    Sanou, B. ICT Facts and Figures 2017 (International Telecommunication Union, Geneva, 2017).

    Google Scholar 

  184. 184

    Schneider, M. G. et al. Minority enrollment in Parkinson's disease clinical trials. Parkinsonism Relat. Disord. 15, 258–262 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  185. 185

    Lyerly, M. J. et al. The effects of telemedicine on racial and ethnic disparities in access to acute stroke care. J. Telemed. Telecare 22, 114–120 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. 186

    Dorsey, E. R. et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68, 384–386 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  187. 187

    Meyding-Lamade, U. et al. Setting up a Neuroscience Stroke and Rehabilitation Centre in Brunei Darussalam by a transcontinental on-site and telemedical cooperation. Int. J. Stroke 12, 132–136 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  188. 188

    Rubin, M. N., Wellik, K. E., Channer, D. D. & Demaerschalk, B. M. Systematic review of teleneurology: neurohospitalist neurology. Neurohospitalist 3, 120–124 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  189. 189

    Mateen, F. J. Neurocritical care in developing countries. Neurocrit. Care 15, 593–598 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  190. 190

    Boersma, I., Miyasaki, J., Kutner, J. & Kluger, B. Palliative care and neurology: time for a paradigm shift. Neurology 83, 561–567 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  191. 191

    Jaglal, S. B. et al. Development of a Chronic Care Model for Neurological Conditions (CCM-NC). BMC Health Serv. Res. 14, 409 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  192. 192

    Stuck, A. E., Egger, M., Hammer, A., Minder, C. E. & Beck, J. C. Home visits to prevent nursing home admission and functional decline in elderly people: systematic review and meta-regression analysis. JAMA 287, 1022–1028 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  193. 193

    Heuveldop, N. et al. Ericsson Mobility Report (Ericsson, 2017).

    Google Scholar 

  194. 194

    O'Gorman, L. D., Hogenbirk, J. C. & Warry, W. Clinical telemedicine utilization in Ontario over the Ontario Telemedicine Network. Telemed J. E Health 22, 473–479 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. 195

    National Center for Health Statistics. National Ambulatory Medical Care Survey (U. S. Department of Health and Human Services, 2013).

  196. 196

    Vyas, C. & Wheelock, C. Remote Video Consultations in Clinical and Non-Clinical Environments: Global Market Analysis and Forecasts (Tractitca, 2015).

    Google Scholar 

Download references

Acknowledgements

E.R.D. was supported through a Patient-Centered Outcomes Research Institute Program Award (DI-1605-35338) and from grants from the US National Institute of Neurological Disorders and Stroke (P20NS092529-02) and the Burroughs Wellcome Fund (1016426). G.L.B. was supported by the University of Rochester's Rykenboer Professorship and by the US National Institute of Neurological Disorders and Stroke (R01NS094037). L.H.S. was supported by the Massachusetts General Hospital Center for TeleHealth, the Patient-Centered Outcomes Research Institute (CDRN-1306-04608) and the US National Institute of Neurological Disorders and Stroke (UO1 NS077179 and U10 NS086729).

Author information

Affiliations

Authors

Contributions

All authors researched data for the Review, made substantial contributions to the discussion of the content of the article and reviewed and edited the manuscript before submission. E.R.D., G.L.B. and L.H.S. wrote the article.

Corresponding author

Correspondence to E. Ray Dorsey.

Ethics declarations

Competing interests

E.R.D. is a member of the medical advisory board and owns stock options in Grand Rounds, an online second-opinion service, is a consultant to MC10, a wearable sensor company, and has research grants related to telehealth from AbbVie, the Burroughs Wellcome Fund, the Greater Rochester Health Foundation, the US NIH, the Patient-Centered Outcomes Research Institute and the Safra Foundation. L.H.S. is a consultant to and owns stock options in LifeImage, a teleradiology company, and is the teleneurology consultant to several network research grants from the US NIH and the Patient-Centered Outcomes Research Institute. G.L.B., A.M.G., and M.R.H. have no competing interests to declare.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dorsey, E., Glidden, A., Holloway, M. et al. Teleneurology and mobile technologies: the future of neurological care. Nat Rev Neurol 14, 285–297 (2018). https://doi.org/10.1038/nrneurol.2018.31

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing