The investigation of acute optic neuritis: a review and proposed protocol

Article metrics

Key Points

  • Optic neuritis is frequently but not always associated with multiple sclerosis (MS), and patients who present with optic neuritis will want to know about their risk of developing MS

  • Early recognition of optic neuritis not caused by MS is important to prevent severe visual loss, and to avoid inappropriate use of MS-targeted treatments

  • No international consensus exists on the nosology of optic neuritis: the aetiology remains idiopathic in many cases, and attempts at classification fall short, in part because we lack a uniform investigation protocol

  • This Review on established and emerging diagnostic tools proposes a consensus on the investigation of patients with suspected optic neuritis in both standard care and research

  • The aims are to aid recognition of patients at risk of severe visual loss, to contribute to future attempts at classification of optic neuritis, and to provide end points for clinical studies

Abstract

Optic neuritis is an inflammatory optic neuropathy that affects many patients with multiple sclerosis (MS) at some point during their disease course. Differentiation of acute episodes of MS-associated optic neuritis from other autoimmune and inflammatory optic neuropathies is vital for treatment choice and further patient management, but is not always straightforward. Over the past decade, a number of new imaging, laboratory and electrophysiological techniques have entered the clinical arena. To date, however, no consensus guidelines have been devised to specify how and when these techniques can be most rationally applied for the diagnostic work-up of patients with acute optic neuritis. In this article, we review the literature and attempt to formulate a consensus for the investigation of patients with acute optic neuritis, both in standard care and in research with relevance to clinical treatment trials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ophthalmological and MRI investigations in a 35-year-old woman with blurred vision in the right eye.
Figure 2: Minimal retinal OCT protocol—part I: peripapillary ring scan.
Figure 3: Minimal retinal OCT protocol—part II: macular volume scan.
Figure 4: MMO in a 44-year-old man with Harding disease (multiple sclerosis plus Leber hereditary optic neuropathy).

Change history

  • 18 July 2014

    In the version of the article originally posted online, Romain Marignier's surname was misspelt. The error has been corrected in the online PDF and HTML versions of the article.

References

  1. 1

    Hickman, S., Dalton, C., Miller, D. & Plant, G. Management of acute optic neuritis. Lancet 360, 1953–1962 (2002).

  2. 2

    Fraser, C. L., Davagnanam, I., Radon, M. & Plant, G. T. The time course and phenotype of Uhthoff phenomenon following optic neuritis. Mult. Scler. 18, 1042–1044 (2012).

  3. 3

    Frohman, T. C. et al. Uhthoff's phenomena in MS—clinical features and pathophysiology. Nat. Rev. Neurol. 9, 535–540 (2013).

  4. 4

    Hess, K., Gresty, M. & Leech, J. Clinical and theoretical aspects of head movement dependent oscillopsia (HMDO). A review. J. Neurol. 219, 151–157 (1978).

  5. 5

    Serra, A., Derwenskus, J., Downey, D. L. & Leigh, R. J. Role of eye movement examination and subjective visual vertical in clinical evaluation of multiple sclerosis. J. Neurol. 250, 569–575 (2003).

  6. 6

    Sharpe, J. A., Goldberg, H. J., Lo, A. W. & Herishanu, Y. O. Visual–vestibular interaction in multiple sclerosis. Neurology 31, 427–433 (1981).

  7. 7

    Petzold, A. & Plant, G. T. Chronic relapsing inflammatory optic neuropathy: a systematic review of 122 cases reported. J. Neurol. 261, 17–26 (2014).

  8. 8

    Wingerchuk, D. M., Lennon, V. A., Pittock, S. J., Lucchinetti, C. F. & Weinshenker, B. G. Revised diagnostic criteria for neuromyelitis optica. Neurology 66, 1485–1489 (2006).

  9. 9

    Gabilondo, I. et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann. Neurol. 75, 98–107 (2014).

  10. 10

    Jenkins, T. et al. Dissecting structure–function interactions in acute optic neuritis to investigate neuroplasticity. Hum. Brain Mapp. 31, 276–286 (2010).

  11. 11

    Masland, R. H. The neuronal organization of the retina. Neuron 76, 266–280 (2012).

  12. 12

    Jonas, J. B., Schmidt, A. M., Müller-Bergh, J. A., Schlötzer-Schrehardt, U. M. & Naumann, G. O. Human optic nerve fiber count and optic disc size. Invest. Ophthalmol. Vis. Sci. 33, 2012–2018 (1992).

  13. 13

    Hubel, D. & Wiesel, T. David Hubel and Torsten Wiesel. Neuron 75, 182–184 (2012).

  14. 14

    Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).

  15. 15

    Petzold, A. et al. Neuromyelitis optica-IgG (aquaporin-4) autoantibodies in immune mediated optic neuritis. J. Neurol. Neurosurg. Psychiatry 81, 109–111 (2010).

  16. 16

    Polman, C. et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann. Neurol. 58, 840–846 (2005).

  17. 17

    Lepore, F. E. The origin of pain in optic neuritis. Determinants of pain in 101 eyes with optic neuritis. Arch. Neurol. 48, 748–749 (1991).

  18. 18

    Petzold, A. & Pitz, E. The historical origin of the Pulfrich Effect: a serendipitous astronomic observation at the border of the Milky Way. Neuro-Ophthalmology 33, 39–46 (2009).

  19. 19

    McGowan, G., Ahmed, T. Y., Heron, G. & Diaper, C. The Pulfrich phenomenon; clumsiness and collisions which can be ameliorated. Pract. Neurol. 11, 173–176 (2011).

  20. 20

    Kawasaki, A., Moore, P. & Kardon, R. H. Long-term fluctuation of relative afferent pupillary defect in subjects with normal visual function. Am. J. Ophthalmol. 122, 875–882 (1996).

  21. 21

    Leigh, R. J. & Serra, A. Taking the temperature of MS with INO. Neurology 70, 1063–1064 (2008).

  22. 22

    Balcer, L. J. et al. Contrast letter acuity as a visual component for the Multiple Sclerosis Functional Composite. Neurology 61, 1367–1373 (2003).

  23. 23

    Rodriguez-Carmona, M., O'Neill-Biba, M. & Barbur, J. L. Assessing the severity of color vision loss with implications for aviation and other occupational environments. Aviat. Space Environ. Med. 83, 19–29 (2012).

  24. 24

    Anzai, A., Ohzawa, I. & Freeman, R. D. Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect. Nat. Neurosci. 4, 513–518 (2001).

  25. 25

    Frohman, E. M. et al. Relationship of optic nerve and brain conventional and non-conventional MRI measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx: a pilot study. J. Neurol. Sci. 282, 96–105 (2009).

  26. 26

    Menke, M. N., Dabov, S., Knecht, P. & Sturm, V. Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am. J. Ophthalmol. 147, 467–472 (2009).

  27. 27

    Kisimbi, J. et al. Macular spectral domain optical coherence tomography findings in Tanzanian endemic optic neuropathy. Brain 136, 3418–3426 (2013).

  28. 28

    Abegg, M. et al. Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 121, 142–149 (2014).

  29. 29

    Mahroo, O. A. et al. Re: Abegg. et al.: Microcystic macular edema: retrograde maculopathy caused by optic neuropathy (Ophthalmology 2014;121:142–9). Ophthalmology http://dx.doi.org/10.1016/j.ophtha.2014.01.035.

  30. 30

    Petzold, A. et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 9, 921–932 (2010).

  31. 31

    Balk, L. J. et al. A dam for retrograde axonal degeneration in multiple sclerosis? J. Neurol. Neurosurg. Psychiatry 85, 782–789 (2014).

  32. 32

    Pfueller, C. F. et al. Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis. PLoS ONE 6, e18019 (2011).

  33. 33

    Petzold, A. Neurodegeneration and multiple sclerosis. In Neurodegenerative Diseases: Clinical Aspects, Molecular Genetics and Biomarkers (eds Galimberti, D. & Scarpini, E.) 227–245 (Springer, 2014).

  34. 34

    Costello, F. et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann. Neurol. 59, 963–969 (2006).

  35. 35

    Toosy, A. T., Mason, D. F. & Miller, D. H. Optic neuritis. Lancet Neurol. 13, 83–99 (2014).

  36. 36

    Brandt, A. U. et al. Patterns of retinal damage facilitate differential diagnosis between Susac syndrome and MS. PLoS ONE 7, e38741 (2012).

  37. 37

    Nagia, L. & Eggenberger, E. Differentiating retinal from optic nerve syndromes. Curr. Opin. Ophthalmol. 24, 528–533 (2013).

  38. 38

    Bichuetti, D. B. et al. The retinal nerve fiber layer of patients with neuromyelitis optica and chronic relapsing optic neuritis is more severely damaged than patients with multiple sclerosis. J. Neuroophthalmol. 33, 220–224 (2013).

  39. 39

    Bouyon, M. et al. Longitudinal follow-up of vision in a neuromyelitis optica cohort. Mult. Scler. 19, 1320–1322 (2013).

  40. 40

    Fernandes, D. B. et al. Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography. Ophthalmology 120, 387–394 (2013).

  41. 41

    Kaufhold, F. et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS ONE 8, e71145 (2013).

  42. 42

    Nakamura, M. et al. Early high-dose intravenous methylprednisolone is effective in preserving retinal nerve fiber layer thickness in patients with neuromyelitis optica. Graefes Arch. Clin. Exp. Ophthalmol. 248, 1777–1785 (2010).

  43. 43

    von Glehn, F. et al. Structural brain abnormalities are related to retinal nerve fiber layer thinning and disease duration in neuromyelitis optica spectrum disorders. Mult. Scler. http://dx.doi.org/10.1177/1352458513519838.

  44. 44

    Gelfand, J. M., Nolan, R., Schwartz, D. M., Graves, J. & Green, A. J. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 135, 1786–1793 (2012).

  45. 45

    Schneider, E. et al. Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS ONE 8, e66151 (2013).

  46. 46

    Balk, L. J., Killestein, J., Polman, C. H., Uitdehaag, B. M. & Petzold, A. Microcystic macular oedema confirmed, but not specific for multiple sclerosis. Brain 135, e226 (2012).

  47. 47

    Burggraaff, M. C., Trieu, J., de Vries-Knoppert, W. A., Balk, L. & Petzold, A. The clinical spectrum of microcystic macular oedema. Invest. Ophthalmol. Vis. Sci. 55, 952–961 (2014).

  48. 48

    Gelfand, J. M., Cree, B. A., Nolan, R., Arnow, S. & Green, A. J. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol 70, 629–633 (2013).

  49. 49

    Sotirchos, E. S. et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 80, 1406–1414 (2013).

  50. 50

    Vishwanath, S. et al. Post-fever retinitis: a single center experience from south India. Int. Ophthalmol. http://dx.doi.org/10.1007/s10792-013-9891–7.

  51. 51

    Tewarie, P. et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS ONE 7, e34823 (2012).

  52. 52

    Schippling, S. et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult. Scler. http://dx.doi.org/10.1177/1352458514538110.

  53. 53

    Stabler, S. P. Clinical practice. Vitamin B12 deficiency. N. Engl. J. Med. 368, 149–160 (2013).

  54. 54

    Jarius, S., Paul, F., Ruprecht, K. & Wildemann, B. Low vitamin B12 levels and gastric parietal cell antibodies in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorders. J. Neurol. 259, 2743–2745 (2012).

  55. 55

    Agmon-Levin, N. et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann. Rheum. Dis. 73, 17–23 (2014).

  56. 56

    Jarius, S. et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J. Neuroinflammation 9, 14 (2012).

  57. 57

    Myers, T. D. et al. Use of corticosteroid sparing systemic immunosuppression for treatment of corticosteroid dependent optic neuritis not associated with demyelinating disease. Br. J. Ophthalmol. 88, 673–680 (2004).

  58. 58

    Biotti, D., Boucher, S., Ong, E., Tilikete, C. & Vighetto, A. Optic neuritis as a possible phenotype of anti-GQ1b/GT1a antibody syndrome. J. Neurol. 260, 2890–2891 (2013).

  59. 59

    Fujihara, K. & Leite, M. Seronegative NMO: a sensitive AQP4 antibody test clarifies clinical features and next challenges. Neurology 80, 2176–2177 (2013).

  60. 60

    Jarius, S. & Wildemann, B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol. 23, 661–683 (2013).

  61. 61

    Waters, P. J. et al. Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays. Neurology 78, 665–671 (2012).

  62. 62

    Jarius, S. et al. Frequency and prognostic impact of antibodies to aquaporin-4 in patients with optic neuritis. J. Neurol. Sci. 298, 158–162 (2010).

  63. 63

    Matiello, M. et al. NMO-IgG predicts the outcome of recurrent optic neuritis. Neurology 70, 2197–2200 (2008).

  64. 64

    Kitley, J. et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study. JAMA Neurol. 71, 276–283 (2014).

  65. 65

    Sato, D. K. et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology 82, 474–481 (2014).

  66. 66

    Stangel, M. et al. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat. Rev. Neurol. 9, 267–276 (2013).

  67. 67

    Petzold, A. Intrathecal oligoclonal IgG synthesis in multiple sclerosis. J. Neuroimmunol. 262, 1–10 (2013).

  68. 68

    Jarius, S. et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J. Neurol. Sci. 306, 82–90 (2011).

  69. 69

    Nakamura, M. et al. Clinical and laboratory features of neuromyelitis optica with oligoclonal IgG bands. Mult. Scler. 13, 332–335 (2007).

  70. 70

    Misu, T. et al. Marked increase in cerebrospinal fluid glial fibrillar acidic protein in neuromyelitis optica: an astrocytic damage marker. J. Neurol. Neurosurg. Psychiatry 80, 575–577 (2009).

  71. 71

    Petzold, A., Marignier, R., Verbeek, M. M. & Confavreux, C. Glial but not axonal protein biomarkers as a new supportive diagnostic criteria for Devic neuromyelitis optica? Preliminary results on 188 patients with different neurological diseases. J. Neurol. Neurosurg. Psychiatry 82, 467–469 (2011).

  72. 72

    Takano, R. et al. Astrocytic damage is far more severe than demyelination in NMO: a clinical CSF biomarker study. Neurology 75, 208–216 (2010).

  73. 73

    Uzawa, A. et al. Cerebrospinal fluid interleukin-6 and glial fibrillary acidic protein levels are increased during initial neuromyelitis optica attacks. Clin. Chim. Acta 421, 181–183 (2013).

  74. 74

    Dörr, J., Döring, A. & Paul, F. Can we prevent or treat multiple sclerosis by individualised vitamin D supply? EPMA J. 4, 4 (2013).

  75. 75

    von Geldern, G. & Mowry, E. M. The influence of nutritional factors on the prognosis of multiple sclerosis. Nat. Rev. Neurol. 8, 678–689 (2012).

  76. 76

    Petzold, A., Rejdak, K. & Plant, G. Axonal degeneration and inflammation in acute optic neuritis. J. Neurol. Neurosurg. Psychiatry 75, 1178–1180 (2004).

  77. 77

    Petzold, A. & Plant, G. T. The diagnostic and prognostic value of neurofilament heavy chain levels in immune-mediated optic neuropathies. Mult. Scler. Int. 2012, 217802 (2012).

  78. 78

    Talla, V. et al. Noninvasive assessments of optic nerve neurodegeneration in transgenic mice with isolated optic neuritis. Invest. Ophthalmol. Vis. Sci. 54, 4440–4450 (2013).

  79. 79

    Petzold, A., Bowser, R., Calabresi, P., Zetterberg, H. & Uitdehaag, B. M. Biomarker time out. Mult. Scler. http://dx.doi.org/10.1177/1352458514524999.

  80. 80

    Barkhof, F., Calabresi, P. A., Miller, D. H. & Reingold, S. C. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat. Rev. Neurol. 5, 256–266 (2009).

  81. 81

    Kolappan, M. et al. Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. J. Neurol. 256, 305–319 (2009).

  82. 82

    Miller, D. H. et al. Magnetic resonance imaging of the optic nerve in optic neuritis. Neurology 38, 175–179 (1988).

  83. 83

    Hickman, S. J. et al. Visual recovery following acute optic neuritis—a clinical, electrophysiological and magnetic resonance imaging study. J. Neurol. 251, 996–1005 (2004).

  84. 84

    Kupersmith, M. J., Alban, T., Zeiffer, B. & Lefton, D. Contrast-enhanced MRI in acute optic neuritis: relationship to visual performance. Brain 125, 812–822 (2002).

  85. 85

    Khanna, S. et al. Magnetic resonance imaging of optic neuritis in patients with neuromyelitis optica versus multiple sclerosis. J. Neuroophthalmol. 32, 216–220 (2012).

  86. 86

    Storoni, M., Davagnanam, I., Radon, M., Siddiqui, A. & Plant, G. T. Distinguishing optic neuritis in neuromyelitis optica spectrum disease from multiple sclerosis: a novel magnetic resonance imaging scoring system. J. Neuroophthalmol. 33, 123–127 (2013).

  87. 87

    Wattjes, M. P. & Barkhof, F. High field MRI in the diagnosis of multiple sclerosis: high field–high yield? Neuroradiology 51, 279–292 (2009).

  88. 88

    Wattjes, M. P. et al. Does high field MRI allow an earlier diagnosis of multiple sclerosis? J. Neurol. 255, 1159–1163 (2008).

  89. 89

    Karim, S., Clark, R. A., Poukens, V. & Demer, J. L. Demonstration of systematic variation in human intraorbital optic nerve size by quantitative magnetic resonance imaging and histology. Invest. Ophthalmol. Vis. Sci. 45, 1047–1051 (2004).

  90. 90

    Trip, S. A. et al. Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: evidence that axonal loss is a substrate of MRI-detected atrophy. Neuroimage 31, 286–293 (2006).

  91. 91

    Trip, S. A. et al. Optic nerve magnetization transfer imaging and measures of axonal loss and demyelination in optic neuritis. Mult. Scler. 13, 875–879 (2007).

  92. 92

    Trip, S. A. et al. Optic nerve diffusion tensor imaging in optic neuritis. Neuroimage 30, 498–505 (2006).

  93. 93

    Glisson, C. C. & Galetta, S. L. Nonconventional optic nerve imaging in multiple sclerosis. Neuroimaging Clin. N. Am. 19, 71–79 (2009).

  94. 94

    Yiannakas, M. C. et al. MRI acquisition and analysis protocol for in vivo intraorbital optic nerve segmentation at 3 T. Invest. Ophthalmol. Vis. Sci. 54, 4235–4240 (2013).

  95. 95

    Holder, G. E., Gale, R. P., Acheson, J. F. & Robson, A. G. Electrodiagnostic assessment in optic nerve disease. Curr. Opin. Neurol. 22, 3–10 (2009).

  96. 96

    Holder, G. E. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog. Retin. Eye Res. 20, 531–561 (2001).

  97. 97

    Visual electrodiagnostics: a guide to procedures. ISCEV Standards, Recommendations and Guidelines [online]. (2013).

  98. 98

    Odom, J. V. et al. ISCEV standard for clinical visual evoked potentials (2009 update). Doc. Ophthalmol. 120, 111–119 (2010).

  99. 99

    Nightingale, S., Mitchell, K. W. & Howe, J. W. Visual evoked cortical potentials and pattern electroretinograms in Parkinson's disease and control subjects. J. Neurol. Neurosurg. Psychiatry 49, 1280–1287 (1986).

  100. 100

    Boylu, E. et al. Visual evoked potential abnormalities in migraine patients. Electromyogr. Clin. Neurophysiol. 50, 303–308 (2010).

  101. 101

    Fraser, C. L. & Holder, G. E. Electroretinogram findings in unilateral optic neuritis. Doc. Ophthalmol. 123, 173–178 (2011).

  102. 102

    Fraser, C. et al. Multifocal visual evoked potential latency analysis: predicting progression to multiple sclerosis. Arch. Neurol. 63, 847–850 (2006).

  103. 103

    Holder, G. E. The incidence of abnormal pattern electroretinography in optic nerve demyelination. Electroencephalogr. Clin. Neurophysiol. 78, 18–26 (1991).

  104. 104

    Rodriguez-Mena, D. et al. Electropysiologic evaluation of the visual pathway in patients with multiple sclerosis. J. Clin. Neurophysiol. 30, 376–381 (2013).

  105. 105

    Frohman, T. C. et al. Optic nerve head component responses of the multifocal electroretinogram in MS. Neurology 81, 545–551 (2013).

  106. 106

    Gerling, J., Meyer, J. & Kommerell, G. Visual field defects in optic neuritis and anterior ischemic optic neuropathy: distinctive features. Graefes Arch. Clin. Exp. Ophthalmol. 236, 188–192 (1998).

  107. 107

    Keltner, J. L. et al. Visual field profile of optic neuritis: a final follow-up report from the optic neuritis treatment trial from baseline through 15 years. Arch. Ophthalmol. 128, 330–337 (2010).

  108. 108

    Petzold, A., Islam, N., Hu, H.-H. & Plant, G. T. Embolic and nonembolic transient monocular visual field loss: a clinicopathologic review. Surv. Ophthalmol. 58, 42–62 (2013).

  109. 109

    Purvin, V., Kawasaki, A. & Jacobson, D. M. Optic perineuritis: clinical and radiographic features. Arch. Ophthalmol. 119, 1299–1306 (2001).

  110. 110

    Petzold, A. & Plant, G. Failure to detect bitemporal field defects due to chiasmal compression on a screening perimetry protocol. Neuro-Ophthalmology 24, 357–361 (2001).

  111. 111

    Schiefer, U. et al. Comparison of the new perimetric GATE strategy with conventional full-threshold and SITA standard strategies. Invest. Ophthalmol. Vis. Sci. 50, 488–494 (2009).

  112. 112

    Harding, G. F., Wild, J. M., Robertson, K. A., Rietbrock, S. & Martinez, C. Separating the retinal electrophysiologic effects of vigabatrin: treatment versus field loss. Neurology 55, 347–352 (2000).

  113. 113

    Scott, J. A. & Egan, R. A. Prevalence of organic neuro-ophthalmologic disease in patients with functional visual loss. Am. J. Ophthalmol. 135, 670–675 (2003).

  114. 114

    Trick, G. L., Trick, L. R., Morris, P. & Wolf, M. Visual field loss in senile dementia of the Alzheimer's type. Neurology 45, 68–74 (1995).

  115. 115

    Kutzko, K. E., Brito, C. F. & Wall, M. Effect of instructions on conventional automated perimetry. Invest. Ophthalmol. Vis. Sci. 41, 2006–2013 (2000).

  116. 116

    [No authors listed] Automated perimetry. American Academy of Ophthalmology. Ophthalmology 103, 1144–1151 (1996).

  117. 117

    Kerrigan-Baumrind, L. A., Quigley, H. A., Pease, M. E., Kerrigan, D. F. & Mitchell, R. S. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest. Ophthalmol. Vis. Sci. 41, 741–748 (2000).

  118. 118

    Mikelberg, F. S., Yidegiligne, H. M. & Schulzer, M. Optic nerve axon count and axon diameter in patients with ocular hypertension and normal visual fields. Ophthalmology 102, 342–348 (1995).

  119. 119

    Quigley, H., Dunkelberger, G. & Green, W. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am. J. Ophthalmol. 107, 453–464 (1989).

  120. 120

    Bhardwaj, N., Perez, J. & Peden, M. Optic neuropathy from cobalt toxicity in a patient who ingested cattle magnets. Neuro-Ophthalmology 35, 24–26 (2011).

  121. 121

    Wakefield, D., Di Girolamo, N., Thurau, S., Wildner, G. & McCluskey, P. Scleritis: immunopathogenesis and molecular basis for therapy. Prog. Retin. Eye Res. 35, 44–62 (2013).

  122. 122

    Coppens, S., Petzold, A., de Graaf, P. & Vries-Knoppert, W. Recurrent optic perineuritis after intranasal cocaine abuse. Neuro-Ophthalmology 38, 91–95 (2014).

Download references

Acknowledgements

The MS Center VUMC is partially funded by a programme grant from the Dutch MS Research Foundation. K.F. is a recipient of Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Technology and the Ministry of Health, Labour and Welfare of Japan. F.P. is supported by the German Research Council (DFG Exc 257) and the German Ministry for Education and Research Competence Network Multiple Sclerosis. S.S. is supported by the Clinical Research Priority Program of the University of Zürich and the Betty and David Koetser Foundation for Brain Research. G.T.P. is supported by the University College London Comprehensive Biomedical Research Centre and the Moorfields Biomedical Research Centre.

Author information

A.P. had the idea for this protocol, reviewed the literature, provided figures, wrote the first draft and finalized the manuscript. F.C., K.F., F.P., S.S. and C.S. revised the manuscript. M.P.W. performed an independent literature review and wrote the MRI section. C.L.F. performed an independent literature review and wrote the VEP/ERG section. B.W. and G.T.P. contributed to the conception and design of the protocol. All authors revised the final version of the manuscript.

Correspondence to Axel Petzold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Investigation protocol for patients presenting with suspected optic neuritis (PDF 781 kb)

Supplementary Table 1

Conversion of visual acuities (PDF 44 kb)

Microcystic macular oedema (MOV 762 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petzold, A., Wattjes, M., Costello, F. et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol 10, 447–458 (2014) doi:10.1038/nrneurol.2014.108

Download citation

Further reading