Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Disorders of consciousness after acquired brain injury: the state of the science

Subjects

Key Points

  • Disorders of consciousness (DOC) arise from direct perturbations of neural systems that regulate arousal and awareness, and indirectly from disruptions in the connections between these systems

  • Distinct clinical syndromes have been identified, but behavioural features often fluctuate and cross diagnostic borders within individual patients, probably reflecting aberrant dynamic changes in corticothalamic neuronal activity

  • Novel applications of functional neuroimaging and electrophysiological techniques have been employed to detect covert signs of conscious awareness, improve outcome prediction, and establish brain–computer interfaces to augment communication ability

  • Recent empirical evidence suggests that treatment interventions aimed at neuromodulation can accelerate recovery and enhance outcome during both the acute and chronic phases

  • A paradigm shift should change the pervasive nihilism that continues to complicate patient management, family adjustment, medicolegal issues and healthcare policy in relation to DOC

Abstract

The concept of consciousness continues to defy definition and elude the grasp of philosophical and scientific efforts to formulate a testable construct that maps to human experience. Severe acquired brain injury results in the dissolution of consciousness, providing a natural model from which key insights about consciousness may be drawn. In the clinical setting, neurologists and neurorehabilitation specialists are called on to discern the level of consciousness in patients who are unable to communicate through word or gesture, and to project outcomes and recommend approaches to treatment. Standards of care are not available to guide clinical decision-making for this population, often leading to inconsistent, inaccurate and inappropriate care. In this Review, we describe the state of the science with regard to clinical management of patients with prolonged disorders of consciousness. We review consciousness-altering pathophysiological mechanisms, specific clinical syndromes, and novel diagnostic and prognostic applications of advanced neuroimaging and electrophysiological procedures. We conclude with a provocative discussion of bioethical and medicolegal issues that are unique to this population and have a profound impact on care, as well as raising questions of broad societal interest.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The mesocircuit model.
Figure 2: DMN connectivity correlates with level of consciousness.

References

  1. 1

    Laureys, S. & Schiff, N. D. Coma and consciousness: paradigms (re)framed by neuroimaging. Neuroimage 61, 478–491 (2012).

    Article  PubMed  Google Scholar 

  2. 2

    Giacino, J. T. et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N. Engl. J. Med. 366, 819–826 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Fins, J. J. Constructing an ethical stereotaxy for severe brain injury: balancing risks, benefits and access. Nat. Rev. Neurosci. 4, 323–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Schiff, N. D., Giacino, J. T. & Fins, J. J. Deep brain stimulation, neuroethics, and the minimally conscious state: moving beyond proof of principle. Arch. Neurol. 66, 697–702 (2009).

    Article  PubMed  Google Scholar 

  5. 5

    James, W. The physical basis of emotion. Psychol. Rev. 1, 516–529 (1894).

    Article  Google Scholar 

  6. 6

    Schiff, N. D. & Plum, F. The role of arousal and “gating” systems in the neurology of impaired consciousness. J. Clin. Neurophysiol. 17, 438–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Giacino, J. T. & Kalmar, K. The vegetative and minimally conscious states: a comparision of clinical features and functional outcome. J. Head Trauma Rehabil. 12, 36–51 (1997).

    Article  Google Scholar 

  8. 8

    Nakase-Richardson, R. et al. Longitudinal outcome of patients with disordered consciousness in the NIDRR TBI Model Systems Programs. J. Neurotrauma 29, 59–65 (2012).

    Article  PubMed  Google Scholar 

  9. 9

    Plum F. & Posner, J. The Diagnosis of Stupor and Coma, 3rd edn (F. A. Davis, 1982).

    Google Scholar 

  10. 10

    [No authors listed] Medical aspects of the persistent vegetative state (1). The Multi-Society Task Force on PVS. N. Engl. J. Med. 330, 1499–1508 (1994).

  11. 11

    Choi, S. C. et al. Temporal profile of outcomes in severe head injury. J. Neurosurg. 81, 169–173 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Dubroja, I., Valent, S., Miklic, P. & Kesak, D. Outcome of post-traumatic unawareness persisting for more than a month. J. Neurol. Neurosurg. Psychiatry 58, 465–466 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Giacino, J. T. & Kalmar, K. Diagnostic and prognostic guidelines for the vegetative and minimally conscious states. Neuropsychol. Rehabil. 15, 166–174 (2005).

    Article  PubMed  Google Scholar 

  14. 14

    Giacino, J. T. et al. The minimally conscious state: definition and diagnostic criteria. Neurology 58, 349–353 (2002).

    Article  PubMed  Google Scholar 

  15. 15

    Jennett, B., Adams, J. H., Murray, L. S. & Graham, D. I. Neuropathology in vegetative and severely disabled patients after head injury. Neurology 56, 486–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Cairns, H., Oldfield, R. C., Pennybacker, J. B. & Whitteridge, D. Akinetic mutism with an epidermoid cyst of the 3rd ventricle. Brain 64, 273–290 (1941).

    Article  Google Scholar 

  17. 17

    Nagaratnam, N., Nagaratnam, K., Ng, K. & Diu, P. Akinetic mutism following stroke. J. Clin. Neurosci. 11, 25–30 (2004).

    Article  PubMed  Google Scholar 

  18. 18

    Fisher, C. M. Honored guest presentation: abulia minor vs. agitated behavior. Clin. Neurosurg. 31, 9–31 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Giacino, J. T. et al. Behavioral assessment in patients with disorders of consciousness: gold standard or fool's gold? In Coma Science: Clinical and Ethical Implications (eds Laureys, S. et al.) 33–48 (Elsevier, 2009).

    Chapter  Google Scholar 

  20. 20

    Giacino, J. T. Disorders of consciousness: differential diagnosis and neuropathologic features. Semin. Neurol. 17, 105–111 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Rodriguez Moreno, D., Schiff, N. D., Giacino, J., Kalmar, K. & Hirsch, J. A network approach to assessing cognition in disorders of consciousness. Neurology 75, 1871–1878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Laureys, S. et al. The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? Prog. Brain Res. 150, 495–511 (2005).

    Article  PubMed  Google Scholar 

  23. 23

    Formisano, R., Pistoia, F. & Sarà, M. Disorders of consciousness: a taxonomy to be changed? Brain Inj. 25, 638–639 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Smart, C. M. et al. A case of locked-in syndrome complicated by central deafness: Nat. Clin. Pract. Neurol. 4, 448–453 (2008).

    Article  PubMed  Google Scholar 

  25. 25

    Sherer, M., Nakase-Thompson, R., Yablon, S. A. & Gontkovsky, S. T. Multidimensional assessment of acute confusion after traumatic brain injury. Arch. Phys. Med. Rehabil. 86, 896–904 (2005).

    Article  PubMed  Google Scholar 

  26. 26

    Sherer, M., Yablon, S. A., Nakase-Richardson, R. & Nick, T. G. Effect of severity of post-traumatic confusion and its constituent symptoms on outcome after traumatic brain injury. Arch. Phys. Med. Rehabil. 89, 42–47 (2008).

    Article  PubMed  Google Scholar 

  27. 27

    Parvizi, J. & Damasio, A. Consciousness and the brainstem. Cognition 79, 135–160 (2001).

    Article  CAS  Google Scholar 

  28. 28

    Saper, C. B., Scammell, T. E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Llinas, R. R. & Steriade, M. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 95, 3297–3308 (2006).

    Article  PubMed  Google Scholar 

  30. 30

    Tononi, G. Integrated information theory of consciousness: an updated account. Arch. Ital. Biol. 150, 293–329 (2012).

    CAS  PubMed  Google Scholar 

  31. 31

    Dehaene, S. & Changeux, J. P. Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Gusnard, D. A. & Raichle, M. E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Steriade, M. To burst, or rather, not to burst. Nat. Neurosci. 4, 671 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Grillner, S., Hellgren, J., Ménard, A., Saitoh, K. & Wikström, M. A. Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci. 28, 364–370 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Brown, E. N., Lydic, R. & Schiff, N. D. General anesthesia, sleep, and coma. N. Engl. J. Med. 363, 2638–2650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Casali, A. G. et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5, 198ra105 (2013).

    Article  PubMed  Google Scholar 

  37. 37

    Rosanova, M. et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain 135, 1308–1320 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J. & Steriade, M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex 10, 1185–1199 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Maxwell, W. L., MacKinnon, M. A., Smith, D. H., McIntosh, T. K. & Graham, D. I. Thalamic nuclei after human blunt head injury. J. Neuropathol. Exp. Neurol. 65, 478–488 (2006).

    Article  PubMed  Google Scholar 

  41. 41

    Schiff, N. D. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci. 33, 1–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Williams, S. T. et al. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury. Elife 2, pii: e01157 (2013).

    Google Scholar 

  43. 43

    Conte, M. M. et al. Longitudinal changes in the EEG spectrum during recovery after severe brain injury [abstract 659.8]. Presented at Neuroscience 2010.

  44. 44

    Baker, J. L. et al. Behavioral modulation with central thalamic deep brain stimulation in non-human primates [abstract 597.14]. Presented at Neuroscience 2012.

  45. 45

    Fridman, E. A., Beattie, B. J., Broft, A., Laureys, S. & Schiff, N. D. Reversal of central thalamic and globus pallidus resting metabolic profiles: a marker of impaired anterior forebrain mesocircuit function [abstract 442.15]. Presented at Neuroscience 2013.

  46. 46

    Schiff, N. D. et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448, 600–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Giacino, J. T. et al. Development of practice guidelines for assessment and management of the vegetative and minimally conscious states. J. Head Trauma Rehabil. 12, 79–89 (1997).

    Article  Google Scholar 

  48. 48

    Schnakers, C. et al. Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol. 9, 35 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Majerus, S., Gill-Thwaites, H., Andrews, K. & Laureys, S. Behavioral evaluation of consciousness in severe brain damage. Prog. Brain Res. 150, 397–413 (2005).

    Article  PubMed  Google Scholar 

  50. 50

    Seel, R. et al. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch. Phys. Med. Rehabil. 91, 1–19 (2010).

    Article  Google Scholar 

  51. 51

    Turgeon, A. F. et al. Mortality associated with withdrawal of life-sustaining therapy for patients with severe traumatic brain injury: a Canadian multicentre cohort study. CMAJ 183, 1581–1588 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Giacino, J. T. & Smart, C. M. Recent advances in behavioral assessment of individuals with disorders of consciousness. Curr. Opin. Neurol. 20, 614–619 (2007).

    Article  PubMed  Google Scholar 

  53. 53

    Giacino, J. T., Hirsch, J., Schiff, N. & Laureys, S. Functional neuroimaging applications for assessment and rehabilitation planning in patients with disorders of consciousness. Arch. Phys. Med. Rehabil. 87 (Suppl. 2), S67–S76 (2006).

    Article  PubMed  Google Scholar 

  54. 54

    Goldfine, A. M., Victor, J. D., Conte, M. M., Bardin, J. C. & Schiff, N. D. Determination of awareness in patients with severe brain injury using EEG power spectral analysis. Clin. Neurophysiol. 122, 2157–2168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Soddu, A. et al. Reaching across the abyss: recent advances in functional magnetic resonance imaging and their potential relevance to disorders of consciousness. Prog. Brain Res. 177, 261–274 (2009).

    Article  PubMed  Google Scholar 

  56. 56

    Giacino, J. T., Kalmar, K. & Whyte, J. The JFK Coma Recovery Scale—Revised: measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 85, 2020–2029 (2004).

    Article  PubMed  Google Scholar 

  57. 57

    Giacino, J. T. & Whyte, J. The vegetative and minimally conscious states: current knowledge and remaining questions. J. Head Trauma Rehabil. 20, 30–50 (2005).

    Article  PubMed  Google Scholar 

  58. 58

    Giacino, J. T. & Trott, C. T. Rehabilitative management of patients with disorders of consciousness: grand rounds. J. Head Trauma Rehabil. 19, 254–265 (2004).

    Article  PubMed  Google Scholar 

  59. 59

    Whyte, J. & DiPasquale, M. C. Assessment of vision and visual attention in minimally responsive brain injured patients. Arch. Phys. Med. Rehabil. 76, 804–810 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Whyte, J., DiPasquale, M. C. & Vaccaro, M. Assessment of command-following in minimally conscious brain injured patients. Arch. Phys. Med. Rehabil. 80, 653–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    DiPasquale, M. C. & Whyte, J. The use of quantitative data in treatment planning for minimally conscious patients. J. Head Trauma Rehabil. 11, 9–17 (1996).

    Article  Google Scholar 

  62. 62

    Bodart, O. & Laureys, S. in Oxford Textbook of Neurointensive Critical Care (eds Smith, M. et al., in press).

  63. 63

    Kampfl, A. et al. Prediction of recovery from post-traumatic vegetative state with cerebral magnetic-resonance imaging. Lancet 351, 1763–1767 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Galanaud, D. et al. Assessment of white matter injury and outcome in severe brain trauma: a prospective multicenter cohort. Anesthesiology 117, 1300–1310 (2012).

    Article  PubMed  Google Scholar 

  65. 65

    Luyt, C. E. et al. Diffusion tensor imaging to predict long-term outcome after cardiac arrest: a bicentric pilot study. Anesthesiology 117, 1311–1321 (2012).

    Article  PubMed  Google Scholar 

  66. 66

    Voss, H. U. et al. Possible axonal regrowth in late recovery from the minimally conscious state. J. Clin. Invest. 116, 2005–2011 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Laureys, S. et al. Impaired effective cortical connectivity in vegetative state. Neuroimage 9, 377–382 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Laureys, S., Lemaire, C., Maquet, P., Phillips, C. & Franck, G. Cerebral metabolism during vegetative state and after recovery to consciousness. J. Neurol. Neurosurg. Psychiatry 67, 121 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Phillips, C. L. et al. “Relevance vector machine” consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients. Neuroimage 56, 797–808 (2011).

    Article  PubMed  Google Scholar 

  70. 70

    Corrigan, J. D., Smith-Knapp, K. & Granger, C. V. Validity of the functional independence measure for persons with traumatic brain injury. Arch. Phys. Med. Rehabil. 78, 828–834 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Vanhaudenhuyse, A. et al. Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci. 23, 570–578 (2011).

    Article  PubMed  Google Scholar 

  72. 72

    Bruno, M. A., Vanhaudenhuyse, A., Thibaut, A., Moonen, G. & Laureys, S. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J. Neurol. 258, 1373–1384 (2011).

    Article  PubMed  Google Scholar 

  73. 73

    Gosseries, O. et al. Disorders of consciousness: what's in a name? NeuroRehabilitation 28, 3–14 (2011).

    PubMed  Google Scholar 

  74. 74

    Bruno, M. A. et al. Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J. Neurol. 259, 1087–1098 (2012).

    Article  PubMed  Google Scholar 

  75. 75

    Laureys, S. et al. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. Neuroimage 17, 732–741 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Laureys, S. et al. Auditory processing in the vegetative state. Brain 123, 1589–1601 (2000).

    Article  PubMed  Google Scholar 

  77. 77

    Boly, M. et al. Auditory processing in severely brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch. Neurol. 61, 233–238 (2004).

    Article  PubMed  Google Scholar 

  78. 78

    Laureys, S. et al. Cerebral processing in the minimally conscious state. Neurology 63, 916–918 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Boly, M. et al. Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol. 7, 1013–1020 (2008).

    Article  PubMed  Google Scholar 

  80. 80

    Di, H., Boly, M., Weng, X., Ledoux, D. & Laureys, S. Neuroimaging activation studies in the vegetative state: predictors of recovery? Clin. Med. 8, 502–507 (2008).

    Article  Google Scholar 

  81. 81

    Edlow, B. L., Giacino, J. T. & Wu, O. Functional MRI and outcome in traumatic coma. Curr. Neurol. Neurosci. Rep. 13, 375 (2013).

    Article  PubMed  Google Scholar 

  82. 82

    Huang, Z. et al. The self and its resting state in consciousness: an investigation of the vegetative state. Hum. Brain Mapp. http://dx.doi.org/10.1002/hbm.22308.

  83. 83

    Laureys, S. Death, unconsciousness and the brain. Nat. Rev. Neurosci. 6, 899–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Boly, M. et al. When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage 36, 979–992 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Monti, M. M. et al. Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 362, 579–589 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Owen, A. M. et al. Detecting awareness in the vegetative state. Science 313, 1402 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Bekinschtein, T. A., Manes, F. F., Villarreal, M., Owen, A. M. & Della-Maggiore, V. Functional imaging reveals movement preparatory activity in the vegetative state. Front. Hum. Neurosci. 5, 5 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Bardin, J. C. et al. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain 134, 769–782 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Monti, M. M., Pickard, J. D. & Owen, A. M. Visual cognition in disorders of consciousness: from V1 to top-down attention. Hum. Brain Mapp. 34, 1245–1253 (2013).

    Article  PubMed  Google Scholar 

  90. 90

    Majerus, S., Bruno, M. A., Schnakers, C., Giacino, J. T. & Laureys, S. The problem of aphasia in the assessment of consciousness in brain-damaged patients. Prog. Brain Res. 177, 49–61 (2009).

    Article  PubMed  Google Scholar 

  91. 91

    Heine, L. et al. Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front. Psychol. 3, 295 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Guldenmund, P., Vanhaudenhuyse, A., Boly, M., Laureys, S. & Soddu, A. A default mode of brain function in altered states of consciousness. Arch. Ital. Biol. 150, 107–121 (2012).

    CAS  PubMed  Google Scholar 

  93. 93

    Demertzi, A., Soddu, A. & Laureys, S. Consciousness supporting networks. Curr. Opin. Neurobiol. 23, 239–244 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Boly, M. et al. Consciousness and cerebral baseline activity fluctuations. Hum. Brain Mapp. 29, 868–874 (2008).

    Article  PubMed  Google Scholar 

  95. 95

    Demertzi, A. et al. Looking for the self in pathological unconsciousness. Front. Hum. Neurosci. 7, 538 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Boly, M. et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum. Brain Mapp. 30, 2393–2400 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Vanhaudenhuyse, A. et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133, 161–171 (2010).

    Article  PubMed  Google Scholar 

  98. 98

    Cauda, F. et al. Disrupted intrinsic functional connectivity in the vegetative state. J. Neurol. Neurosurg. Psychiatry 80, 429–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Soddu, A. et al. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness. Hum. Brain Mapp. 33, 778–796 (2012).

    Article  PubMed  Google Scholar 

  100. 100

    Ovadia-Caro, S. et al. Reduction in inter-hemispheric connectivity in disorders of consciousness. PLoS ONE 7, e37238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Liu, A. A., Voss, H. U., Dyke, J. P., Heier, L. A. & Schiff, N. D. Arterial spin labeling and altered cerebral blood flow patterns in the minimally conscious state. Neurology 77, 1518–1523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Ricci, R. et al. Localised proton MR spectroscopy of brain metabolism changes in vegetative patients. Neuroradiology 39, 313–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Uzan, M. et al. Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 74, 33–38 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Tollard, E. et al. Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Crit. Care Med. 37, 1448–1455 (2009).

    Article  PubMed  Google Scholar 

  105. 105

    Carpentier, A. et al. Early morphologic and spectroscopic magnetic resonance in severe traumatic brain injuries can detect “invisible brain stem damage” and predict “vegetative states”. J. Neurotrauma 23, 674–685 (2006).

    Article  PubMed  Google Scholar 

  106. 106

    Lehembre, R. et al. Electrophysiological investigations of brain function in coma, vegetative and minimally conscious patients. Arch. Ital. Biol. 150, 122–139 (2012).

    CAS  PubMed  Google Scholar 

  107. 107

    Vanhaudenhuyse, A., Laureys, S. & Perrin, F. Cognitive event-related potentials in comatose and post-comatose states. Neurocrit. Care 8, 262–270 (2008).

    Article  PubMed  Google Scholar 

  108. 108

    Bruno, M. A., Gosseries, O., Ledoux, D., Hustinx, R. & Laureys, S. Assessment of consciousness with electrophysiological and neurological imaging techniques. Curr. Opin. Crit. Care 17, 146–151 (2011).

    Article  PubMed  Google Scholar 

  109. 109

    Sandroni, C. et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: Patients treated with therapeutic hypothermia. Resuscitation 84, 1324–1338 (2013).

    Article  PubMed  Google Scholar 

  110. 110

    Kobylarz, E. J. & Schiff, N. D. Neurophysiological correlates of persistent vegetative and minimally conscious states. Neuropsychol. Rehabil. 15, 323–332 (2005).

    Article  PubMed  Google Scholar 

  111. 111

    Lehembre, R. et al. Resting-state EEG study of comatose patients: a connectivity and frequency analysis to find differences between vegetative and minimally conscious states. Funct. Neurol. 27, 41–47 (2012).

    PubMed  PubMed Central  Google Scholar 

  112. 112

    Gosseries, O. et al. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Funct. Neurol. 26, 25–30 (2011).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Schnakers, C. et al. Diagnostic and prognostic use of bispectral index in coma, vegetative state and related disorders. Brain Inj. 22, 926–931 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Schnakers, C., Majerus, S. & Laureys, S. Bispectral analysis of electroencephalogram signals during recovery from coma: preliminary findings. Neuropsychol. Rehabil. 15, 381–388 (2005).

    Article  PubMed  Google Scholar 

  115. 115

    Cologan, V. et al. Sleep in disorders of consciousness. Sleep Med. Rev. 14, 97–105 (2010).

    Article  PubMed  Google Scholar 

  116. 116

    Cologan, V. et al. Sleep in the unresponsive wakefulness syndrome and minimally conscious state. J. Neurotrauma 30, 339–346 (2013).

    Article  PubMed  Google Scholar 

  117. 117

    Landsness, E. et al. Electrophysiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state. Brain 134, 2222–2232 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Estraneo, A. et al. Predictors of recovery of responsiveness in prolonged anoxic vegetative state. Neurology 80, 464–470 (2013).

    Article  PubMed  Google Scholar 

  119. 119

    Wijdicks, E. F., Hijdra, A., Young, G. B., Bassetti, C. L. & Wiebe, S. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 67, 203–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Tzovara, A. et al. Progression of auditory discrimination based on neural decoding predicts awakening from coma. Brain 136, 81–89 (2013).

    Article  PubMed  Google Scholar 

  121. 121

    Qin, P. et al. Mismatch negativity to the patient's own name in chronic disorders of consciousness. Neurosci. Lett. 448, 24–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Perrin, F. et al. Brain response to one's own name in vegetative state, minimally conscious state, and locked-in syndrome. Arch. Neurol. 63, 562–569 (2006).

    Article  PubMed  Google Scholar 

  123. 123

    Bekinschtein, T. A. et al. Neural signature of the conscious processing of auditory regularities. Proc. Natl Acad. Sci. USA 106, 1672–1677 (2009).

    Article  PubMed  Google Scholar 

  124. 124

    King, J. R. et al. Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness. Neuroimage 83C, 726–738 (2013).

    Article  Google Scholar 

  125. 125

    Boly, M. et al. Preserved feedforward but impaired top-down processes in the vegetative state. Science 332, 858–862 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. 126

    Schnakers, C. et al. Voluntary brain processing in disorders of consciousness. Neurology 71, 1614–1620 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. 127

    Schnakers, C. et al. Detecting consciousness in a total locked-in syndrome: an active event-related paradigm. Neurocase 15, 271–277 (2009).

    Article  PubMed  Google Scholar 

  128. 128

    Kotchoubey, B., Lang, S., Winter, S. & Birbaumer, N. Cognitive processing in completely paralyzed patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 10, 551–558 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Coronado, V. G., McGuire, L. M., Faul M., Sugerman, D. E. & Pearson, W. S. Traumatic brain injury epidemiology and public health issues. In Brain Injury Medicine: Principles and Practice 2nd edn (eds Zasler, N. D. et al.) 84–100 (Demos Medical, 2012).

    Google Scholar 

  130. 130

    Cruse, D. et al. Bedside detection of awareness in the vegetative state: a cohort study. Lancet 378, 2088–2094 (2011).

    Article  PubMed  Google Scholar 

  131. 131

    Goldfine, A. M. et al. Reanalysis of “Bedside detection of awareness in the vegetative state: a cohort study”. Lancet 381, 289–291 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. 132

    Chatelle, C. et al. Brain–computer interfacing in disorders of consciousness. Brain Inj. 26, 1510–1522 (2012).

    Article  PubMed  Google Scholar 

  133. 133

    Lule, D. et al. Probing command following in patients with disorders of consciousness using a brain–computer interface. Clin. Neurophysiol. 124, 101–106 (2013).

    Article  PubMed  Google Scholar 

  134. 134

    Bekinschtein, T. A., Coleman, M. R., Niklison, J. 3rd, Pickard, J. D. & Manes, F. F. Can electromyography objectively detect voluntary movement in disorders of consciousness? J. Neurol. Neurosurg. Psychiatry 79, 826–828 (2007).

    Article  PubMed  Google Scholar 

  135. 135

    Stoll, J. et al. Pupil responses allow communication in locked-in syndrome patients. Curr. Biol. 23, R647–R648 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. 136

    Wilhelm, B., Jordan, M. & Birbaumer, N. Communication in locked-in syndrome: effects of imagery on salivary pH. Neurology 67, 534–535 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Lapitskaya, N. et al. Abnormal corticospinal excitability in patients with disorders of consciousness. Brain Stimul. 6, 590–597 (2013).

    Article  PubMed  Google Scholar 

  138. 138

    Boly, M. et al. Brain connectivity in disorders of consciousness. Brain Connect. 2, 1–10 (2012).

    Article  PubMed  Google Scholar 

  139. 139

    Nakase-Richardson, R. et al. Do rehospitalization rates differ among injury severity levels in the NIDRR Traumatic Brain Injury Model Systems program? Arch. Phys. Med. Rehabil. 94, 1884–1890 (2013).

    Article  PubMed  Google Scholar 

  140. 140

    Whyte, J. et al. Medical complications during inpatient rehabilitation among patients with traumatic disorders of consciousness. Arch. Phys. Med. Rehabil. 94, 1877–1883 (2013).

    Article  PubMed  Google Scholar 

  141. 141

    Giacino, J. T. & Zasler, N. D. Outcome after severe traumatic brain injury: coma, the vegetative state, and the minimally responsive state. J. Head Trauma Rehabil. 10, 40–56 (1995).

    Article  Google Scholar 

  142. 142

    Andrews, K. International Working Party on the Management of the Vegetative State: summary report. Brain Inj. 10, 797–806 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Giacino, J. in Rehabilitation for Traumatic Brain Injury (eds High, W. et al.) 305–337 (Oxford University Press, 2005).

    Google Scholar 

  144. 144

    Leong, B. The vegetative and minimally conscious states in children: spasticity, muscle contracture and issues for physiotherapy treatment. Brain Inj. 16, 217–230 (2002).

    Article  PubMed  Google Scholar 

  145. 145

    Boly, M. et al. Cerebral processing of auditory and noxious stimuli in severely brain injured patients: differences between VS and MCS. Neuropsychol. Rehabil. 15, 283–289 (2005).

    Article  PubMed  Google Scholar 

  146. 146

    Schnakers, C. & Zasler, N. D. Pain assessment and management in disorders of consciousness. Curr. Opin. Neurol. 20, 620–626 (2007).

    Article  PubMed  Google Scholar 

  147. 147

    Schnakers, C., Faymonville, M.-E. & Laureys, S. Ethical implications: pain, coma, and related disorders. Encyclopedia of Consciousness 1, 243–250 (2009).

    Article  Google Scholar 

  148. 148

    Faugeras, F. et al. Probing consciousness with event-related potentials in the vegetative state. Neurology 77, 264–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Whyte, J. Treatments to enhance recovery from the vegetative and minimally conscious states: ethical issues surrounding efficacy studies. Am. J. Phys. Med. Rehabil. 86, 86–92 (2007).

    Article  PubMed  Google Scholar 

  150. 150

    Hagan, C., Malkmus, D. & Durham, P. in Rehabilitation of the Head-Injured Adult: Comprehensive Physical Management (Professional Staff Association of Rancho Los Amigos Hospital Inc., 1979).

    Google Scholar 

  151. 151

    Mackay, L. E., Bernstein, B. A., Chapman, P. E., Morgan, A. S. & Milazzo, L. S. Early intervention in severe head injury: long-term benefits of a formalized program. Arch. Phys. Med. Rehabil. 73, 635–641 (1992).

    CAS  PubMed  Google Scholar 

  152. 152

    Rappaport, M., Hall, K. M., Hopkins, K., Belleza, T. & Cope, D. N. Disability rating scale for severe head trauma: coma to community. Arch. Phys. Med. Rehabil. 63, 118–123 (1982).

    CAS  PubMed  Google Scholar 

  153. 153

    Clauss, R. & Nel, W. Drug induced arousal from the permanent vegetative state. NeuroRehabilitation 21, 23–28 (2006).

    PubMed  Google Scholar 

  154. 154

    Shames, J. L. & Ring, H. Transient reversal of anoxic brain injury-related minimally conscious state after zolpidem administration: a case report. Arch. Phys. Med. Rehabil. 89, 386–388 (2008).

    Article  PubMed  Google Scholar 

  155. 155

    Brefel-Courbon, C. et al. Clinical and imaging evidence of zolpidem effect in hypoxic encephalopathy. Ann. Neurol. 62, 102–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. 156

    Cohen, S. I. & Duong, T. T. Increased arousal in a patient with anoxic brain injury after administration of zolpidem. Am. J. Phys. Med. Rehabil. 87, 229–231 (2008).

    Article  PubMed  Google Scholar 

  157. 157

    Whyte, J. & Myers, R. Incidence of clinically significant responses to zolpidem among patients with disorders of consciousness: a preliminary placebo controlled trial. Am. J. Phys. Med. Rehabil. 88, 410–418 (2009).

    Article  PubMed  Google Scholar 

  158. 158

    Singh, R. et al. Zolpidem in a minimally conscious state. Brain Inj. 22, 103–106 (2008).

    Article  PubMed  Google Scholar 

  159. 159

    Sara, M., Pistoia, F., Mura, E., Onorati, P. & Govoni, S. Intrathecal baclofen in patients with persistent vegetative state: 2 hypotheses. Arch.Phys. Med. Rehabil. 90, 1245–1249 (2009).

    Article  PubMed  Google Scholar 

  160. 160

    Taira, T. Intrathecal administration of GABA agonists in the vegetative state. Prog. Brain Res. 177, 317–328 (2009).

    Article  PubMed  Google Scholar 

  161. 161

    Thonnard, M. et al. Effect of zolpidem in chronic disorders of consciousness: a prospective open-label study. Funct. Neurol. (in press).

  162. 162

    Giacino, J., Fins, J. J., Machado, A. & Schiff, N. D. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. Neuromodulation 15, 339–349 (2012).

    Article  PubMed  Google Scholar 

  163. 163

    Lombardi, F., Taricco, M., De Tanti, A., Telaro, E. & Liberati, A. Sensory stimulation for brain injured individuals in coma or vegetative state. Cochrane Database of Systematic Reviews, Issue 2. Art. No.:CD001427. http://dx.doi.org/10.1002/14651858.CD001427.

  164. 164

    Pistoia, F., Sacco, S., Carolei, A. & Sara, M. Corticomotor facilitation in vegetative state: results of a pilot study. Arch. Phys. Med. Rehabil. 94, 1599–1606 (2013).

    Article  PubMed  Google Scholar 

  165. 165

    Rockswold, G. L., Ford, S. E., Anderson, D. C., Bergman, T. A. & Sherman, R. E. Results of a prospective randomized trial for treatment of severely brain-injured patients with hyperbaric oxygen. J. Neurosurg. 76, 929–934 (1992).

    Article  CAS  PubMed  Google Scholar 

  166. 166

    Warden, D. L. et al. Guidelines for the pharmacologic treatment of neurobehavioral sequelae of traumatic brain injury. J. Neurotrauma 23, 1468–1501 (2006).

    Article  PubMed  Google Scholar 

  167. 167

    Fins, J. J. Disorders of consciousness and disordered care: families, caregivers, and narratives of necessity. Arch. Phys. Med. Rehabil. 94, 1934–1939 (2013).

    Article  PubMed  Google Scholar 

  168. 168

    Matter of Karen Quinlan, 70 N.J. 10, 355 A.2d 677 (1976).

  169. 169

    Fins, J. J. Affirming the right to care, preserving the right to die: disorders of consciousness and neuroethics after Schiavo. Palliat. Support. Care 4, 169–178 (2006).

    Article  PubMed  Google Scholar 

  170. 170

    Fins, J. J., Schiff, N. D. & Foley, K. M. Late recovery from the minimally conscious state ethical and policy implications. Neurology 68, 304–307 (2007).

    Article  PubMed  Google Scholar 

  171. 171

    Fins, J. J. & Hersh, J. in Patients as Policy Actors (eds Hoffman, B. et al.) 21–42 (Rutgers University Press, 2011).

    Google Scholar 

  172. 172

    Fins, J. J. Ethics of clinical decision making and communication with surrogates. In Plum and Posner's Diagnosis of Stupor and Coma, 4th edn 376–386 (Oxford University Press, 2007).

    Google Scholar 

  173. 173

    Wijdicks, E. F. & Rabinstein, A. A. The family conference: end-of-life guidelines at work for comatose patients. Neurology 68, 1092–1094 (2007).

    Article  PubMed  Google Scholar 

  174. 174

    Fins, J. & Pohl, B. in Oxford Textbook of Palliative Medicine (eds Hanks, G. et al.) (Oxford University Press, in press).

  175. 175

    Fins, J. J. Severe brain injury and organ solicitation: a call for temperance. Virtual Mentor 14, 221–226 (2012).

    PubMed  Google Scholar 

  176. 176

    Fins, J. J., Master, M. G., Gerber, L. M. & Giacino, J. T. The minimally conscious state: a diagnosis in search of an epidemiology. Arch. Neurol. 64, 1400–1405 (2007).

    Article  PubMed  Google Scholar 

  177. 177

    Schiff, N. D. & Fins, J. J. Hope for “comatose” patients. Cerebrum 5, 7–24 (2003).

    Google Scholar 

  178. 178

    Lammi, M. H., Smith, V. H., Tate, R. L. & Taylor, C. M. The minimally conscious state and recovery potential: a follow-up study 2 to 5 years after traumatic brain injury. Arch. Phys. Med. Rehabil. 86, 746–754 (2005).

    Article  PubMed  Google Scholar 

  179. 179

    Whyte, J. & Nakase-Richardson, R. Disorders of consciousness: outcomes, comorbidities and care needs. Arch. Phys. Med. Rehabil. 94, 1851–1854 (2013).

    Article  PubMed  Google Scholar 

  180. 180

    InterQual Evidence-based Clinical Content. McKesson [online], (2013).

  181. 181

    Canedo, A., Grix, M. C. & Nicoletti, J. An analysis of assessment instruments for the minimally responsive patient (MRP): clinical observations. Brain Inj. 16, 453–461 (2002).

    Article  PubMed  Google Scholar 

  182. 182

    Berube, J. et al. The Mohonk Report: a report to Congress. Disorders of consciousness: assessment, treatment, and research needs. Northeast Center for Rehabilitation and Brain Injury [online], (2006).

    Google Scholar 

  183. 183

    Fins, J. J. Wait, wait...don't tell me: tuning in the injured brain. Arch. Neurol. 69, 158–160 (2012).

    Article  PubMed  Google Scholar 

  184. 184

    Fins, J. J. The ethics of measuring and modulating consciousness: the imperative of minding time. Prog. Brain Res. 177, 371–382 (2009).

    Article  PubMed  Google Scholar 

  185. 185

    McNamee, S., Howe, L., Nakase-Richardson, R. & Peterson, M. Treatment of disorders of consciousness in the Veterans Health Administration polytrauma centers. J. Head Trauma Rehabil. 27, 244–252 (2012).

    Article  PubMed  Google Scholar 

  186. 186

    Fins, J. J. A proposed ethical framework for interventional cognitive neuroscience: a consideration of deep brain stimulation in impaired consciousness. Neurol. Res. 22, 273–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  187. 187

    Miller, F. G. & Fins, J. J. Protecting vulnerable research subjects without unduly constraining neuropsychiatric research. Arch. Gen. Psychiatry 56, 701–702 (1999).

    Article  CAS  PubMed  Google Scholar 

  188. 188

    Fins, J. & Miller, F. Enrolling decisionally incapacitated subjects in neuropsychiatric research. CNS Spectr. 5, 32–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. 189

    Fins, J. J. Justice, clinical research and the minimally conscious state. Presidential Commission for the Study of Bioethical Issues [online], (2011).

    Google Scholar 

  190. 190

    O'Sullivan, J. L. Role of the attorney for the alleged incapacitated person. Stetson L. Rev. 31, 687–734 (2001).

    Google Scholar 

  191. 191

    Conference of State Court Administrators. The Demographic Imperative: Guardianships and Conservatorships. (COSCA White Paper, adopted 2010).

  192. 192

    Anderson, T. P. & Fearey, M. S. Legal guardianship in traumatic brain injury rehabilitation: ethical implications. J. Head Trauma Rehabil. 4, 57–64 (1989).

    Article  Google Scholar 

  193. 193

    Teaster, P. B., Schmidt, W. C. Jr, Lawrence, S. A., Mendiondo, M. S. & American Bar Association. Public Guardianship: In the Best Interest of Incapacitated People? (Praeger, 2010).

    Google Scholar 

  194. 194

    Fins, J. J. Minds apart: severe brain injury, citizenship, and civil rights. Law and Neuroscience: Current Legal Issues 13, 367–384 (2010).

    Google Scholar 

  195. 195

    Owen, A. M., Schiff, N. D. & Laureys, S. A new era of coma and consciousness science. Prog. Brain Res. 177, 399–411 (2009).

    Article  PubMed  Google Scholar 

  196. 196

    Di Perri, C. et al. Limbic hyperconnectivity in the vegetative state. Neurology 81, 1417–1424 (2013).

    Article  PubMed  Google Scholar 

  197. 197

    Fins, J. J. et al. Neuroimaging and disorders of consciousness: envisioning an ethical research agenda. Am. J. Bioeth. 8, 3–12 (2008).

    Article  PubMed  Google Scholar 

  198. 198

    Voss, H. U., Heier, L. A. & Schiff, N. D. Multimodal imaging of recovery of functional networks associated with reversal of paradoxical herniation after cranioplasty. Clin. Imaging 35, 253–258 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  199. 199

    Bruno, M. A. et al. Multimodal neuroimaging in patients with disorders of consciousness showing “functional hemispherectomy”. Prog. Brain Res. 193, 323–333 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. 200

    Tshibanda, L. et al. Neuroimaging after coma. Neuroradiology 52, 15–24 (2010).

    Article  PubMed  Google Scholar 

  201. 201

    Tshibanda, L. et al. Magnetic resonance spectroscopy and diffusion tensor imaging in coma survivors: promises and pitfalls. Prog. Brain Res. 177, 215–229 (2009).

    Article  PubMed  Google Scholar 

  202. 202

    Bruno, M. A. et al. Visual fixation in the vegetative state: an observational case series PET study. BMC Neurol. 10, 35 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  203. 203

    Jox, R. J., Bernat, J. L., Laureys, S. & Racine, E. Disorders of consciousness: responding to requests for novel diagnostic and therapeutic interventions. Lancet Neurol. 11, 732–738 (2012).

    Article  PubMed  Google Scholar 

  204. 204

    Gill-Thwaites, H. & Munday, R. The Sensory Modality Assessment Rehabilitation Technique (SMART): a valid and reliable assessment for the vegetative and minimally conscious state patient. Brain Inj. 18, 1255–1269 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. 205

    Ansell, B. J. & Keenan, J. E. The Western Neuro Sensory Stimulation Profile: a tool for assessing slow-to-recover head-injured patients. Arch. Phys. Med. Rehabil. 70, 104–108 (1989).

    CAS  PubMed  Google Scholar 

  206. 206

    Rader, M. A., Alston, J. & Ellis, D. W. Sensory stimulation of severely brain-injured patients. Brain Inj. 3, 141–147 (1989).

    Article  CAS  PubMed  Google Scholar 

  207. 207

    Shiel, A. et al. The Wessex Head Injury Matrix (WHIM) main scale: a preliminary report on a scale to assess and monitor patient recovery after severe head injury. Clin Rehabil. 14, 408–416 (2000).

    Article  CAS  PubMed  Google Scholar 

  208. 208

    Pape, T. L., Heinemann, A. W., Kelly, J. P., Hurder, A. G. & Lundgren, S. A measure of neurobehavioral functioning after coma. Part I: Theory, reliability, and validity of the Disorders of Consciousness Scale. J. Rehabil. Res. Dev. 42, 1–17 (2005).

    Article  PubMed  Google Scholar 

  209. 209

    American Academy of Neurology Guideline Process Manual. AAN.com [online], (2011).

Download references

Acknowledgements

This work was supported by the National Institute on Disability and Rehabilitation Research Traumatic Brain Injury Model Systems (H133A120085), James S. McDonnell Foundation, Belgian Funds for Scientific Research (FRS), European Commission, European Space Agency, Wallonia–Brussels Federation Concerted Research Action, Mind Science Foundation and Belgian InterUniversity Attraction Pole.

Author information

Affiliations

Authors

Contributions

All four authors researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Joseph T. Giacino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giacino, J., Fins, J., Laureys, S. et al. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 10, 99–114 (2014). https://doi.org/10.1038/nrneurol.2013.279

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing