Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Can neuroimaging studies identify pain endophenotypes in humans?

Abstract

Pain is a complex, multidimensional experience that has defied our understanding for centuries. Through the advent of noninvasive neuroimaging techniques, we have been able to examine the human brain and its response to nociceptive inputs. As a result, our knowledge of which brain regions are critical for generating an acute pain experience has grown, as has our understanding of how cognitive, emotional, contextual and various physiological factors influence the pain experience. Furthermore, we have been able to identify key processes within the brain that underpin the transition to and maintenance of chronic pain states, as well as highlight the dramatic consequences of chronic pain on the brain's structure and neurochemistry. Building upon this knowledge, we are now in a position to consider whether any of these brain imaging 'phenotypes' of acute or chronic pain should be considered as useful endophenotypes; thereby enabling us to relate the complex genetics that underpin everyday pain sensitivity or chronic pain states to intermediate biomarkers. This endophenotypic approach—the focus of this Review—simplifies the connection between genes and behavior and is needed for complex disorders like chronic pain.

Key Points

  • Activity within multiple brain regions is required for the experience of pain

  • Neuroimaging studies have increased our understanding of how various brain regions generate and/or modulate the perception of pain

  • Genetic make-up influences many aspects of acute and chronic pain, but the relationship between genes and pain-related behavior is complex and remains to be fully resolved

  • Neuroimaging studies might identify functional, structural or biochemical endophenotypes for pain that can help us understand the relationship between genetics and pain conditions

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors involved in generating and influencing pain perception.

References

  1. Finnerup, N. B., Otto, M., McQuay, H. J., Jensen, T. S. & Sindrup, S. H. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain 118, 289–305 (2005).

    CAS  PubMed  Google Scholar 

  2. Stewart, W. F., Ricci, J. A., Chee, E., Morganstein, D. & Lipton, R. Lost productive time and cost due to common pain conditions in the US workforce. JAMA 290, 2443–2454 (2003).

    CAS  PubMed  Google Scholar 

  3. Breivik, H., Collett, B., Ventafridda, V., Cohen, R. & Gallacher, D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur. J. Pain 10, 287–333 (2006).

    PubMed  Google Scholar 

  4. Lacroix-Fralish, M. L. & Mogil, J. S. Progress in genetic studies of pain and analgesia. Annu. Rev. Pharmacol. Toxicol. 49, 97–121 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    PubMed  Google Scholar 

  6. Zubieta, J. K. et al. COMT val158met genotype affects µ-opioid neurotransmitter responses to a pain stressor. Science 299, 1240–1243 (2003).

    CAS  PubMed  Google Scholar 

  7. Kehlet, H., Jensen, T. S. & Woolf, C. J. Persistent postsurgical pain: risk factors and prevention. Lancet 367, 1618–1625 (2006).

    PubMed  Google Scholar 

  8. Katon, W., Egan, K. & Miller, D. Chronic pain: lifetime psychiatric diagnoses and family history. Am. J. Psychiatry 142, 1156–1160 (1985).

    CAS  PubMed  Google Scholar 

  9. Bachiocco, V., Scesi, M., Morselli, A. M. & Carli, G. Individual pain history and familial pain tolerance models: relationships to post-surgical pain. Clin. J. Pain 9, 266–271 (1993).

    CAS  PubMed  Google Scholar 

  10. Buskila, D., Neumann, L., Hazanov, I. & Carmi, R. Familial aggregation in the fibromyalgia syndrome. Semin. Arthritis Rheum. 26, 605–611 (1996).

    CAS  PubMed  Google Scholar 

  11. Wiech, K. & Tracey, I. The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 47, 987–994 (2009).

    PubMed  Google Scholar 

  12. Bushnell, M., Apkarian, A V. in Wall and Melzack's Textbook of Pain (eds McMahon, S. B. & Koltzenburg, M.) 107–124 (Churchill Livingstone, London, 2005).

    Google Scholar 

  13. Bingel, U., Schoell, E. & Buchel, C. Imaging pain modulation in health and disease. Curr. Opin. Neurol. 20, 424–431 (2007).

    PubMed  Google Scholar 

  14. Apkarian, A. V., Baliki, M. N. & Geha, P. Y. Towards a theory of chronic pain. Prog. Neurobiol. 87, 81–97 (2009).

    PubMed  Google Scholar 

  15. Borsook, D. & Becerra, L. R. Breaking down the barriers: fMRI applications in pain, analgesia and analgesics. Mol. Pain 2, 30 (2006).

    PubMed  PubMed Central  Google Scholar 

  16. Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007).

    CAS  PubMed  Google Scholar 

  17. Fields, H. in Wall and Melzack's Textbook of Pain (eds McMahon, S. B. & Koltzenburg, M.) 125–142 (Churchill Livingstone, London, 2005).

    Google Scholar 

  18. Gebhart, G. F. Descending modulation of pain. Neurosci. Biobehav. Rev. 27, 729–737 (2004).

    CAS  PubMed  Google Scholar 

  19. Porreca, F., Ossipov, M. H. & Gebhart, G. F. Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319–325 (2002).

    CAS  PubMed  Google Scholar 

  20. Suzuki, R., Rygh, L. J. & Dickenson, A. H. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol. Sci. 25, 613–617 (2004).

    CAS  PubMed  Google Scholar 

  21. Gwilym, S. E. et al. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum. 61, 1226–1234 (2009).

    PubMed  Google Scholar 

  22. Moulton, E. A. et al. Capsaicin-induced thermal hyperalgesia and sensitization in the human trigeminal nociceptive pathway: an fMRI study. Neuroimage 35, 1586–1600 (2007).

    PubMed  Google Scholar 

  23. Zambreanu, L., Wise, R. G., Brooks, J. C., Iannetti, G. D. & Tracey, I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 114, 397–407 (2005).

    CAS  PubMed  Google Scholar 

  24. Lee, M. C., Zambreanu, L., Menon, D. K. & Tracey, I. Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans. J. Neurosci. 28, 11642–11649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vincent, K., Moore, J., Kennedy, S. & Tracey, I. Blood oxygenation level dependent functional magnetic resonance imaging: current and potential uses in obstetrics and gynaecology. BJOG 116, 240–246 (2009).

    CAS  PubMed  Google Scholar 

  26. Smith, Y. R. et al. Pronociceptive and antinociceptive effects of estradiol through endogenous opioid neurotransmission in women. J. Neurosci. 26, 5777–5785 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiech, K., Ploner, M. & Tracey, I. Neurocognitive aspects of pain perception. Trends Cogn. Sci. 12, 306–313 (2008).

    PubMed  Google Scholar 

  28. Tracey, I. et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J. Neurosci. 22, 2748–2752 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Valet, M. et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain—an fMRI analysis. Pain 109, 39–408 (2004).

    Google Scholar 

  30. deCharms, R. C. et al. Control over brain activation and pain learned by using real-time functional MRI. Proc. Natl Acad. Sci. USA 102, 18626–18631 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Merskey, H. & Bogduk, N. (eds) Classification of Chronic Pain (IASP Press, 1994).

    Google Scholar 

  32. Tracey, I. Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nat. Med. 16, 1277–1283 (2010).

    CAS  PubMed  Google Scholar 

  33. Singer, T. et al. Empathy for pain involves the affective but not sensory components of pain. Science 303, 1157–1162 (2004).

    CAS  PubMed  Google Scholar 

  34. Loggia, M. L., Mogil, J. S. & Bushnell, M. C. Empathy hurts: compassion for another increases both sensory and affective components of pain perception. Pain 136, 168–176 (2008).

    PubMed  Google Scholar 

  35. Danziger, N., Faillenot, I. & Peyron, R. Can we share a pain we never felt? Neural correlates of empathy in patients with congenital insensitivity to pain. Neuron 61, 203–212 (2009).

    CAS  PubMed  Google Scholar 

  36. Kong, J. et al. A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect. J. Neurosci. 28, 13354–13362 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Flor, H. Phantom-limb pain: characteristics, causes, and treatment. Lancet Neurol. 1, 182–189 (2002).

    PubMed  Google Scholar 

  38. Boivie, J., Leijon, G. & Johansson, I. Central post-stroke pain–a study of the mechanisms through analyses of the sensory abnormalities. Pain 37, 173–185 (1989).

    CAS  PubMed  Google Scholar 

  39. Boivie, J. Chapter 48 Central post-stroke pain. Handb. Clin. Neurol. 81, 715–730 (2006).

    PubMed  Google Scholar 

  40. Head, H. & Holmes, G. Sensory disturbances from cerebral lesions. Brain Research 34, 102–254 (1911).

    Google Scholar 

  41. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Google Scholar 

  42. Ostrowsky, K. et al. Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb. Cortex 12, 376–385 (2002).

    PubMed  Google Scholar 

  43. Mazzola, L., Isnard, J., Peyron, R., Guenot, M. & Mauguiere, F. Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 146, 99–104 (2009).

    CAS  PubMed  Google Scholar 

  44. Mhalla, A., de Andrade, D. C., Baudic, S., Perrot, S. & Bouhassira, D. Alteration of cortical excitability in patients with fibromyalgia. Pain 149, 495–500 (2010).

    PubMed  Google Scholar 

  45. Apkarian, A. V., Bushnell, M. C., Treede, R. D. & Zubieta, J. K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484 (2005).

    PubMed  Google Scholar 

  46. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).

    CAS  PubMed  Google Scholar 

  47. Schweinhardt, P. et al. An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 32, 256–265 (2006).

    PubMed  Google Scholar 

  48. Coghill, R. C., Sang, C. N., Maisog, J. M. & Iadarola, M. J. Pain intensity processing within the human brain: a bilateral, distributed mechanism. J. Neurophysiol. 82, 1934–1943 (1999).

    CAS  PubMed  Google Scholar 

  49. Berthier, M., Starkstein, S. & Leiguarda, R. Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann. Neurol. 24, 41–49 (1988).

    CAS  PubMed  Google Scholar 

  50. Starr, C. J. et al. Roles of the insular cortex in the modulation of pain: insights from brain lesions. J. Neurosci. 29, 2684–2694 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Greenspan, J. D., Lee, R. R. & Lenz, F. A. Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain 81, 273–282 (1999).

    CAS  PubMed  Google Scholar 

  52. Birklein, F., Rolke, R. & Muller-Forell, W. Isolated insular infarction eliminates contralateral cold, cold pain, and pinprick perception. Neurology 65, 1381 (2005).

    PubMed  Google Scholar 

  53. Nair, D. R., Najm, I., Bulacio, J. & Luders, H. Painful auras in focal epilepsy. Neurology 57, 700–702 (2001).

    CAS  PubMed  Google Scholar 

  54. Brooks, J. C., Zambreanu, L., Godinez, A., Craig, A. D. & Tracey, I. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27, 201–209 (2005).

    CAS  PubMed  Google Scholar 

  55. Henderson, L. A., Gandevia, S. C. & Macefield, V. G. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: a single-trial fMRI study. Pain 128, 20–30 (2007).

    CAS  PubMed  Google Scholar 

  56. Bjornsdotter, M., Loken, L., Olausson, H., Vallbo, A. & Wessberg, J. Somatotopic organization of gentle touch processing in the posterior insular cortex. J. Neurosci. 29, 9314–9320 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Raij, T. T., Numminen, J., Narvanen, S., Hiltunen, J. & Hari, R. Brain correlates of subjective reality of physically and psychologically induced pain. Proc. Natl Acad. Sci. USA 102, 2147–2151 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Albanese, M. C., Duerden, E. G., Rainville, P. & Duncan, G. H. Memory traces of pain in human cortex. J. Neurosci. 27, 4612–4620 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Craig, A. D., Chen, K., Bandy, D. & Reiman, E. M. Thermosensory activation of insular cortex. Nat. Neurosci. 3, 184–190 (2000).

    CAS  PubMed  Google Scholar 

  60. Keltner, J. R. et al. Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study. J. Neurosci. 26, 4437–4443 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

    CAS  PubMed  Google Scholar 

  62. Baumgartner, U. et al. Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution FMRI study. J. Neurophysiol. 104, 2863–2872 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Lorenz, J., Minoshima, S. & Casey, K. L. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126, 1079–1091 (2003).

    CAS  PubMed  Google Scholar 

  64. Seifert, F. et al. Medial prefrontal cortex activity is predictive for hyperalgesia and pharmacological antihyperalgesia. J. Neurosci. 29, 6167–6175 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bantick, S. J. et al. Imaging how attention modulates pain in humans using functional MRI. Brain 125, 310–319 (2002).

    PubMed  Google Scholar 

  66. Wiech, K. et al. Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J. Neurosci. 26, 11501–11509 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wiech, K. et al. An fMRI study measuring analgesia enhanced by religion as a belief system. Pain 139, 467–476 (2008).

    PubMed  Google Scholar 

  68. Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ochsner, K. N. et al. Your pain or mine? Common and distinct neural systems supporting the perception of pain in self and other. Soc. Cogn Affect. Neurosci. 3, 144–160 (2008).

    PubMed  PubMed Central  Google Scholar 

  70. Phelps, E. A., Delgado, M. R., Nearing, K. I. & LeDoux, J. E. Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43, 897–905 (2004).

    CAS  PubMed  Google Scholar 

  71. Quirk, G. J., Garcia, R. & Gonzalez-Lima, F. Prefrontal mechanisms in extinction of conditioned fear. Biol. Psychiatry 60, 337–343 (2006).

    PubMed  Google Scholar 

  72. Schiller, D., Levy, I., Niv, Y., LeDoux, J. E. & Phelps, E. A. From fear to safety and back: reversal of fear in the human brain. J. Neurosci. 28, 11517–11525 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fairhurst, M., Wiech, K., Dunckley, P. & Tracey, I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128, 101–110 (2007).

    PubMed  Google Scholar 

  74. Ploghaus, A. et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J. Neurosci. 21, 9896–9903 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsao, H., Galea, M. P. & Hodges, P. W. Driving plasticity in the motor cortex in recurrent low back pain. Eur J Pain 14, 832–839 (2010).

    PubMed  Google Scholar 

  76. Brighina, F. et al. rTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study. J. Neurol. Sci. 227, 67–71 (2004).

    PubMed  Google Scholar 

  77. Fierro, B. et al. Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (DLPFC) during capsaicin-induced pain: modulatory effects on motor cortex excitability. Exp. Brain Res. 203, 31–38 (2010).

    PubMed  Google Scholar 

  78. Knotkova, H. & Cruciani, R. A. Non-invasive transcranial direct current stimulation for the study and treatment of neuropathic pain. Methods Mol. Biol. 617, 505–515 (2010).

    PubMed  Google Scholar 

  79. Antal, A. & Paulus, W. Transcranial magnetic and direct current stimulation in the therapy of pain [German]. Schmerz 24, 161–166 (2010).

    CAS  PubMed  Google Scholar 

  80. Antal, A., Terney, D., Kuhnl, S. & Paulus, W. Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition. J. Pain Symptom Manage. 39, 890–903 (2010).

    PubMed  Google Scholar 

  81. Neugebauer, V., Li, W., Bird, G. C. & Han, J. S. The amygdala and persistent pain. Neuroscientist 10, 221–234 (2004).

    PubMed  Google Scholar 

  82. Carrasquillo, Y. & Gereau, R. W. 4th. Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J. Neurosci. 27, 1543–1551 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bornhovd, K. et al. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125, 1326–1336 (2002).

    CAS  PubMed  Google Scholar 

  84. Petrovic, P., Carlsson, K., Petersson, K. M., Hansson, P. & Ingvar, M. Context-dependent deactivation of the amygdala during pain. J. Cogn. Neurosci. 16, 1289–1301 (2004).

    PubMed  Google Scholar 

  85. Petrovic, P., Ingvar, M., Stone-Elander, S., Petersson, K. M. & Hansson, P. A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 83, 459–470 (1999).

    CAS  PubMed  Google Scholar 

  86. Iannetti, G. D. et al. Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans. Neuroimage 28, 708–719 (2005).

    CAS  PubMed  Google Scholar 

  87. Frot, M. & Mauguiere, F. Dual representation of pain in the operculo-insular cortex in humans. Brain 126, 438–450 (2003).

    PubMed  Google Scholar 

  88. Frot, M., Mauguiere, F., Magnin, M. & Garcia-Larrea, L. Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans. J. Neurosci. 28, 944–952 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, M. C., Mouraux, A. & Iannetti, G. D. Characterizing the cortical activity through which pain emerges from nociception. J. Neurosci. 29, 7909–7916 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Schurger, A., Pereira, F., Treisman, A. & Cohen, J. D. Reproducibility distinguishes conscious from nonconscious neural representations. Science 327, 97–99 (2010).

    CAS  PubMed  Google Scholar 

  91. Gross, J., Schnitzler, A., Timmermann, L. & Ploner, M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol. 5, e133 (2007).

    PubMed  PubMed Central  Google Scholar 

  92. Magnin, M. et al. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proc. Natl Acad. Sci. USA 107, 3829–3833 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hofbauer, R. K., Fiset, P., Plourde, G., Backman, S. B. & Bushnell, M. C. Dose-dependent effects of propofol on the central processing of thermal pain. Anesthesiology 100, 386–394 (2004).

    CAS  PubMed  Google Scholar 

  94. Davis, M. H. et al. Dissociating speech perception and comprehension at reduced levels of awareness. Proc. Natl Acad. Sci. USA 104, 16032–16037 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mhuircheartaigh, R. N. et al. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J. Neurosci. 30, 9095–9102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fastenrath, M., Friston, K. J. & Kiebel, S. J. Dynamical causal modelling for M/EEG: spatial and temporal symmetry constraints. Neuroimage 44, 154–163 (2009).

    PubMed  Google Scholar 

  97. Friston, K. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol. 7, e33 (2009).

    PubMed  Google Scholar 

  98. Friston, K. J. & Dolan, R. J. Computational and dynamic models in neuroimaging. Neuroimage 52, 752–765 (2010).

    PubMed  Google Scholar 

  99. Ploner, M., Lee, M. C., Wiech, K., Bingel, U. & Tracey, I. Prestimulus functional connectivity determines pain perception in humans. Proc. Natl Acad. Sci. USA 107, 355–360 (2010).

    CAS  PubMed  Google Scholar 

  100. Fair, D. A. et al. Development of distinct control networks through segregation and integration. Proc. Natl Acad. Sci. USA 104, 13507–13512 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Raichle, M. E. Two views of brain function. Trends Cogn. Sci. 14, 180–190 (2010).

    PubMed  Google Scholar 

  102. Raichle, M. E. & Snyder, A. Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage 37, 1083–1090 (2007).

    PubMed  Google Scholar 

  103. Fair, D. A. et al. The maturing architecture of the brain's default network. Proc. Natl Acad. Sci. USA 105, 4028–4032 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Baliki, M. N. et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J. Neurosci. 26, 12165–12173 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Napadow, V. et al. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 62, 2545–2555 (2010).

    PubMed  PubMed Central  Google Scholar 

  106. Morcom, A. M. & Fletcher, P. C. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 37, 1073–1082 (2007).

    PubMed  Google Scholar 

  107. Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 21, 424–430 (2008).

    PubMed  Google Scholar 

  108. Filippini, N. et al. Distinct patterns of brain activity in young carriers of the APOE-ɛ4 allele. Proc. Natl Acad. Sci. USA 106, 7209–7214 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Malinen, S. et al. Aberrant temporal and spatial brain activity during rest in patients with chronic pain. Proc. Natl Acad. Sci. USA 107, 6493–6497 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Harris, R. E. et al. Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia. Arthritis Rheum. 58, 903–907 (2008).

    CAS  PubMed  Google Scholar 

  111. Harris, R. E. et al. Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis Rheum. 60, 3146–3152 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Valdes, M. et al. Increased glutamate/glutamine compounds in the brain of patients with fibromyalgia: a MR spectroscopy study. Arthritis Rheum. 62, 1829–1836 (2010).

    PubMed  Google Scholar 

  113. Detre, J. A., Leigh, J. S., Williams, D. S. & Koretsky, A. P. Perfusion imaging. Magn. Reson. Med. 23, 37–45 (1992).

    CAS  PubMed  Google Scholar 

  114. Tracey, I. & Johns, E. The pain matrix: reloaded or reborn as we image tonic pain using arterial spin labelling. Pain 148, 359–360 (2010).

    PubMed  Google Scholar 

  115. Owen, D. G., Clarke, C. F., Ganapathy, S., Prato, F S. & St Lawrence, K. S. Using perfusion MRI to measure the dynamic changes in neural activation associated with tonic muscular pain. Pain 148, 375–386 (2010).

    PubMed  Google Scholar 

  116. Owen, D. G., Bureau, Y., Thomas, A. W., Prato, F. S. & St Lawrence, K. S. Quantification of pain-induced changes in cerebral blood flow by perfusion MRI. Pain 136, 8–96 (2008).

    Google Scholar 

  117. Milligan, E. D. & Watkins, L. R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 10, 23–36 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Banati, R. B. et al. Long-term trans-synaptic glial responses in the human thalamus after peripheral nerve injury. Neuroreport 12, 3439–3442 (2001).

    CAS  PubMed  Google Scholar 

  119. Pattany, P. M. et al. Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. AJNR Am. J. Neuroradiol. 23, 901–905 (2002).

    PubMed  PubMed Central  Google Scholar 

  120. Fukui, S., Matsuno, M., Inubushi, T. & Nosaka, S. N-Acetylaspartate concentrations in the thalami of neuropathic pain patients and healthy comparison subjects measured with 1H-MRS. Magn. Reson. Imaging 24, 75–79 (2006).

    CAS  PubMed  Google Scholar 

  121. Jongen, J. L. et al. Autofluorescent flavoprotein imaging of spinal nociceptive activity. J. Neurosci. 30, 4081–4087 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Slater, R. et al. Cortical pain responses in human infants. J. Neurosci. 26, 3662–3666 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Brooks, J. C. et al. Physiological noise modelling for spinal functional magnetic resonance imaging studies. Neuroimage 39, 680–692 (2008).

    PubMed  Google Scholar 

  124. Eippert, F., Finsterbusch, J., Bingel, U. & Buchel, C. Direct evidence for spinal cord involvement in placebo analgesia. Science 326, 404 (2009).

    CAS  PubMed  Google Scholar 

  125. Leeuw, M. et al. The fear-avoidance model of musculoskeletal pain: current state of scientific evidence. J. Behav. Med. 30, 77–94 (2007).

    PubMed  Google Scholar 

  126. Berna, C. et al. Induction of depressed mood disrupts emotion regulation neurocircuitry and enhances pain unpleasantness. Biol. Psychiatry 67, 1083–1090 (2010).

    PubMed  Google Scholar 

  127. Mayer, E. A. et al. Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain 115, 398–409 (2005).

    PubMed  Google Scholar 

  128. Jones, A. K. & Derbyshire, S. W. Reduced cortical responses to noxious heat in patients with rheumatoid arthritis. Ann. Rheum. Dis. 56, 601–607 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Gundel, H. et al. Altered cerebral response to noxious heat stimulation in patients with somatoform pain disorder. Pain 137, 413–421 (2008).

    CAS  PubMed  Google Scholar 

  130. Apkarian, A. V., Thomas, P. S., Krauss, B. R. & Szeverenyi, N. M. Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci. Lett. 311, 193–197 (2001).

    CAS  PubMed  Google Scholar 

  131. Gracely, R. H. et al. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127, 835–843 (2004).

    CAS  PubMed  Google Scholar 

  132. Tracey, I. & Bushnell, C. How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J. Pain 10, 1113–1120 (2009).

    PubMed  Google Scholar 

  133. May, A. Chronic pain may change the structure of the brain. Pain 137, 7–15 (2008).

    PubMed  Google Scholar 

  134. Apkarian, A. V. et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24, 10410–10415 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Seminowicz, D. A. et al. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage 47, 1007–1014 (2009).

    PubMed  Google Scholar 

  136. Metz, A. E., Yau, H. J., Centeno, M. V., Apkarian, A. V. & Martina, M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc. Natl Acad. Sci. USA 106, 2423–2428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Pezawas, L. et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci. 24, 10099–10102 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Milad, M. R. et al. Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc. Natl Acad. Sci. USA 102, 10706–10711 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Milad, M. R. et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry 62, 446–454 (2007).

    PubMed  Google Scholar 

  140. Gwilym, S. E., Fillipini, N., Douaud, G., Carr, A. J. & Tracey, I. Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty; a longitudinal voxel-based-morphometric study. Arthritis Rheum. 62, 2930–2940 (2010).

    PubMed  Google Scholar 

  141. Rodriguez-Raecke, R., Niemeier, A., Ihle, K., Ruether, W. & May, A. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J. Neurosci. 29, 13746–13750 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Willoch, F. et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108, 213–220 (2004).

    CAS  PubMed  Google Scholar 

  143. Jones, A. K. et al. Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br. J. Rheumatol. 33, 909–916 (1994).

    CAS  PubMed  Google Scholar 

  144. Jones, A. K., Watabe, H., Cunningham, V. J. & Jones, T. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur. J. Pain 8, 479–485 (2004).

    CAS  PubMed  Google Scholar 

  145. Harris, R. E. et al. Decreased central mu-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–10006 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wood, P. B. et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 25, 3576–3582 (2007).

    PubMed  Google Scholar 

  147. Wood, P. B. et al. Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J. Pain 8, 51–58 (2007).

    CAS  PubMed  Google Scholar 

  148. Scott, D. J., Heitzeg, M. M., Koeppe, R. A., Stohler, C. S. & Zubieta, J. K. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J. Neurosci. 26, 10789–10795 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Maarrawi, J. et al. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 127, 183–194 (2007).

    CAS  PubMed  Google Scholar 

  150. Boly, M. et al. Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol. 7, 1013–1020 (2008).

    PubMed  Google Scholar 

  151. Antognini, J. F., Buonocore, M. H., Disbrow, E. A. & Carstens, E. Isoflurane anesthesia blunts cerebral responses to noxious and innocuous stimuli: a fMRI study. Life Sci. 61, PL349–PL354 (1997).

    CAS  Google Scholar 

  152. Haynes, J. D. et al. Reading hidden intentions in the human brain. Curr. Biol. 17, 323–328 (2007).

    CAS  PubMed  Google Scholar 

  153. Sakai, K. & Passingham, R. E. Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance. J. Neurosci. 26, 1211–1218 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tracey, I. Can neuroimaging studies identify pain endophenotypes in humans?. Nat Rev Neurol 7, 173–181 (2011). https://doi.org/10.1038/nrneurol.2011.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing