Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Control of autophagy as a therapy for neurodegenerative disease


Autophagy is an intracellular degradation process that clears long-lived proteins and organelles from the cytoplasm. It involves the formation of double-membraned structures called autophagosomes that can engulf portions of cytoplasm containing oligomeric protein complexes and organelles, such as mitochondria. Autophagosomes fuse with lysosomes and their contents then are degraded. Failure of autophagy in neurons can result in the accumulation of aggregate-prone proteins and neurodegeneration. Pharmacological induction of autophagy can enhance the clearance of intracytoplasmic aggregate-prone proteins, such as mutant forms of huntingtin, and ameliorate pathology in cell and animal models of neurodegenerative diseases. In this Review, the autophagic machinery and the signaling pathways that regulate the induction of autophagy are described. The ways in which dysfunctions at multiple stages in the autophagic pathways contribute to numerous neurological disorders are highlighted through the use of examples of Mendelian and complex conditions, including Alzheimer disease, Parkinson disease and forms of motor neuron disease. The different ways in which autophagic pathways might be manipulated for the therapeutic benefit of patients with neurodegenerative disorders are also considered.

Key Points

  • Macroautophagy (also known as autophagy) is a process by which cytoplasmic substrates are sequestered within double-membraned vesicles called autophagosomes, which are then delivered to the lysosome for degradation

  • Autophagic dysfunction might contribute to the pathogenesis of numerous neurodegenerative diseases, including forms of Parkinson disease, Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease and Lafora disease

  • Autophagy is regulated by both mTOR-dependent and mTOR-independent pathways, which have multiple components that could be targeted for therapeutic manipulation of this degradative process

  • Patients with conditions that are associated with the accumulation of intracytoplasmic aggregate-prone proteins may benefit from pharmacological upregulation of autophagy

  • An advanced understanding of the pathways that regulate autophagy is required to maximize the potential of targeting autophagy for therapeutic purposes

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Stages of macroautophagy.
Figure 2: Signaling pathways involved in the regulation of autophagy.


  1. 1

    Klionsky, D. J. The molecular machinery of autophagy: unanswered questions. J. Cell Sci. 118, 7–18 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  2. 2

    Metcalf, D. J., García-Arencibia, G., Hochfeld, W. E. & Rubinsztein, D. C. Autophagy and misfolded proteins in neurodegeneration. Exp. Neurol.

  3. 3

    Verhoef, L. G., Lindsten, K., Masucci, M. G. & Dantuma, N. D. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum. Mol. Genet. 11, 2689–2700 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. 4

    Yamamoto, A. & Simonsen, A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol. Dis. 43, 17–28 (2011).

    CAS  PubMed  Google Scholar 

  5. 5

    Knaevelsrud, H. & Simonsen, A. Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett. 584, 2635–2645 (2010).

    CAS  PubMed  Google Scholar 

  6. 6

    Klionsky, D. J. et al. How shall I eat thee? Autophagy 3, 413–416 (2007).

    PubMed  Google Scholar 

  7. 7

    Wong, E. & Cuervo, A. M. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci. 13, 805–810 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  8. 8

    Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  9. 9

    Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004).

    CAS  Google Scholar 

  10. 10

    Ravikumar, B. et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90, 1383–1435 (2010).

    CAS  PubMed  Google Scholar 

  11. 11

    Liang, C. et al. Beclin-1 binding to UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat. Cell Biol. 10, 776–787 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. 12

    Fimia, G. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125 (2007).

    CAS  PubMed  Google Scholar 

  13. 13

    Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12, 747–757 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. 14

    Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11, 1433–1437 (2009).

    CAS  PubMed  Google Scholar 

  15. 15

    Ylä-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180–1185 (2009).

    PubMed  Google Scholar 

  16. 16

    van der Vaart, A., Griffith, J. & Reggiori, F. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol. Biol. Cell 21, 2270–2284 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. 17

    Yen, W.-L. et al. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J. Cell Biol. 188, 101–114 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. 18

    Geng, J., Nair, U., Yasumura-Yorimitsu, K. & Klionsky, D. J. Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 21, 2257–2269 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. 19

    Hailey, D. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. 20

    Moreau, K., Ravikumar, B., Renna, M., Puri, C. & Rubinsztein, D. C. Autophagosome precursor maturation requires homotypic fusion. Cell 146, 303–317 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. 21

    Mizushima, N., Sugita, H., Yoshimori, T. & Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem. 273, 33889–33892 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. 22

    Mizushima, N. et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J. Cell Sci. 116, 1679–1688 (2003).

    CAS  PubMed  Google Scholar 

  23. 23

    Luzio, J., Pryor, P. & Bright, N. Lysosomes: fusion and function. Nat. Rev. Mol. Cell Biol. 8, 622–632 (2007).

    CAS  PubMed  Google Scholar 

  24. 24

    Furuta, N., Fujita, N., Noda, T., Yoshimori, T. & Amano, A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol. Biol. Cell 21, 1001–1010 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. 25

    Sarbassov, D. D., Ali, S. M. & Sabatini, D. M. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17, 596–603 (2005).

    CAS  PubMed  Google Scholar 

  26. 26

    Wei, Y., Pattingre, S., Sinha, S., Bassik, M. & Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678–688 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. 27

    Cao, Y. & Klionsky, D. J. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 17, 839–849 (2007).

    CAS  PubMed  Google Scholar 

  28. 28

    Williams, A. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 4, 295–305 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. 29

    Cárdenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283 (2010).

    PubMed Central  PubMed  Google Scholar 

  30. 30

    Vicencio, J. M. et al. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ. 16, 1006–1017 (2009).

    CAS  PubMed  Google Scholar 

  31. 31

    Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 8, 1124–1132 (2006).

    CAS  PubMed  Google Scholar 

  32. 32

    Ross, C. A. & Poirier, M. A. What is the role of aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol. 6, 891–898 (2005).

    CAS  PubMed  Google Scholar 

  33. 33

    Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    CAS  PubMed  Google Scholar 

  34. 34

    Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–880 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol. 25, 1025–1040 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. 36

    Ravikumar, B., Berger, Z., Vacher, C., O'Kane, C. J. & Rubinsztein, D. C. Rapamycin pre-treatment protects against apoptosis. Hum. Mol. Genet. 15, 1209–1216 (2006).

    CAS  PubMed  Google Scholar 

  37. 37

    Aguado, C. et al. Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum. Mol. Genet. 19, 2867–2876 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  38. 38

    Kirkin, V., McEwan, D. G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell. 34, 259–269 (2009).

    CAS  PubMed  Google Scholar 

  39. 39

    Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell. 33, 505–516 (2009).

    CAS  PubMed  Google Scholar 

  40. 40

    Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. 41

    Imarisio, S. et al. Huntington's disease: from pathology and genetics to potential therapies. Biochem. J. 412, 191–209 (2008).

    CAS  PubMed  Google Scholar 

  42. 42

    Martinez-Vicente, M. et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 13, 567–576 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. 43

    Puls, I. et al. Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455–456 (2003).

    CAS  PubMed  Google Scholar 

  44. 44

    Münch, C. et al. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 63, 724–726 (2004).

    PubMed Central  PubMed  Google Scholar 

  45. 45

    Webb, J. L., Ravikumar, B. & Rubinsztein, D. C. Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int. J. Biochem. Cell Biol. 36, 2541–2550 (2004).

    CAS  PubMed  Google Scholar 

  46. 46

    Ravikumar, B. et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 37, 771–776 (2005).

    CAS  PubMed  Google Scholar 

  47. 47

    Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. 48

    Rusten, E. et al. ESCRTing autophagic clearance of aggregating proteins. Autophagy 4, 233–236 (2008).

    CAS  Google Scholar 

  49. 49

    Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37, 806–808 (2005).

    CAS  PubMed  Google Scholar 

  50. 50

    Parkinson, N. et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67, 1074–1077 (2006).

    CAS  PubMed  Google Scholar 

  51. 51

    Lee, J.-A., Beigneux, A., Ahmad, S. T., Young, S. G. & Gao. F.-B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 17, 1561–1567 (2007).

    CAS  PubMed  Google Scholar 

  52. 52

    Raben, N., Shea, L., Hill, V. & Plotz, P. Monitoring autophagy in lysosomal storage disorders. Methods Enzymol. 453, 417–449 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  53. 53

    Yue, Z., Friedman, L., Komatsu, M. & Tanaka, K. The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim. Biophys. Acta 1793, 1496–1507 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  54. 54

    Settembre, C. et al. A block of autophagy in lysosomal storage disorders. Hum. Mol. Genet. 17, 119–129 (2008).

    CAS  PubMed  Google Scholar 

  55. 55

    Price, D. L., Tanzi, R. E., Borchelt, D. R. & Sisodia, S. S. Alzheimer's disease: genetic studies and transgenic models. Annu. Rev. Genet. 32, 461–493 (1998).

    CAS  PubMed  Google Scholar 

  56. 56

    Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    CAS  PubMed  Google Scholar 

  57. 57

    Pimplikar, S., Nixon, R. A., Robakis, N. K., Shien, J. & Tsai, J. H. Amyloid-independent mechanisms in Alzheimer's disease pathogenesis. J. Neurosci. 30, 14946–14954 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. 58

    Nixon, R. A. & Yang, D.-S. Autophagy failure in Alzheimer's disease—locating the primary defect. Neurobiol. Dis. 43, 38–45 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. 59

    Nixon, R. A. et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64, 113–122 (2005).

    PubMed  Google Scholar 

  60. 60

    Boland, B. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J. Neurosci. 28, 6926–6937 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. 61

    Lee, J. H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  62. 62

    Yang, D. S. et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 134, 258–277 (2011).

    PubMed  Google Scholar 

  63. 63

    Mueller-Steiner, S. et al. Antiamyloidogenic and neuroprotective function of cathepsins B: implications for Alzheimer's disease. Neuron 51, 703–714 (2006).

    CAS  PubMed  Google Scholar 

  64. 64

    Sun, B. et al. Cystatin C–cathepsin B axis regulates amyloid β levels and associated neuronal deficits in an animal model of Alzheimer's disease. Neuron 60, 247–257 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. 65

    Pickford, F. et al. The autophagy related protein beclin 1 shows reduced expression in early Alzheimer's disease and regulates amyloid β accumulation in mice. J. Clin. Invest. 118, 2190–2199 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  66. 66

    Rohn, T. et al. Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer's disease brain. Neurobiol. Dis. 43, 68–78 (2010).

    PubMed Central  PubMed  Google Scholar 

  67. 67

    Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  PubMed  Google Scholar 

  68. 68

    Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    CAS  Google Scholar 

  69. 69

    Lesage, S. & Brice, A. Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet. 18, R48–R59 (2009).

    CAS  PubMed  Google Scholar 

  70. 70

    Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  71. 71

    Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  72. 72

    Narendra, D. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).

    PubMed Central  PubMed  Google Scholar 

  73. 73

    Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378–383 (2010).

    CAS  PubMed  Google Scholar 

  74. 74

    Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131 (2010).

    CAS  PubMed  Google Scholar 

  75. 75

    Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211–221 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  76. 76

    Kim, P. K., Hailey, D. W., Mullen, R. T. & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl Acad. Sci. USA 105, 20567–20574 (2008).

    CAS  PubMed  Google Scholar 

  77. 77

    Kawajiri, S. et al. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett. 584, 1073–1079 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  78. 78

    Singleton, A. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 5646–5841 (2003).

    Google Scholar 

  79. 79

    Winslow, A. et al. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 190, 1023–1037 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  80. 80

    Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    CAS  PubMed  Google Scholar 

  81. 81

    Martinez-Vicente, M. et al. Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118, 777–788 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  82. 82

    Fleming, A., Takeshi, N., Tamotsu, Y. & Rubinsztein, D. C. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat. Chem. Biol. 7, 9–17 (2010).

    Google Scholar 

  83. 83

    Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    CAS  PubMed  Google Scholar 

  84. 84

    Wu, Y. et al. Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4, 457–466 (2008).

    CAS  PubMed  Google Scholar 

  85. 85

    Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  86. 86

    Berger, Z. et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15, 433–442 (2006).

    CAS  PubMed  Google Scholar 

  87. 87

    Menzies, F. et al. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 133, 93–104 (2010).

    PubMed  Google Scholar 

  88. 88

    Menzies, F. & Rubinsztein, D. C. Broadening the therapeutic scope for rapamycin treatment. Autophagy 6, 286–287 (2010).

    CAS  PubMed  Google Scholar 

  89. 89

    Sarkar, S. et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170, 1101–1111 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  90. 90

    Zhang, L. et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl Acad. Sci. USA 104, 19023–19028 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  91. 91

    Rose, C. et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum. Mol. Genet. 19, 2144–2153 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  92. 92

    Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A. & Rubinsztein, D. C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem. 282, 5641–5652 (2007).

    CAS  PubMed  Google Scholar 

  93. 93

    Tanaka, M. et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med. 10, 148–154 (2004).

    CAS  PubMed  Google Scholar 

  94. 94

    Sarkar, S. et al. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum. Mol. Genet. 17, 170–178 (2008).

    CAS  PubMed  Google Scholar 

  95. 95

    Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat. Chem. Biol. 6, 331–338 (2007).

    Google Scholar 

  96. 96

    Massey, A. C., Zhang, C. & Cuervo, A. M. Chaperone-mediated autophagy in aging and disease. Curr. Top. Dev. Biol. 73, 205–235 (2006).

    CAS  PubMed  Google Scholar 

  97. 97

    Yang, Z. & Klionsky, D. J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124–131 (2010).

    CAS  PubMed  Google Scholar 

  98. 98

    Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science 306, 1037–1040 (2004).

    CAS  PubMed  Google Scholar 

  99. 99

    Gutierrez, M. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    CAS  Google Scholar 

  100. 100

    Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    CAS  PubMed  Google Scholar 

  101. 101

    Birmingham, C., Smith, A., Bakowski, M., Yoshimori, T. & Brummel, J. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281, 11374–11383 (2006).

    CAS  PubMed  Google Scholar 

  102. 102

    Py, B., Lipinski, M. & Yuan, J. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3, 117–125 (2007).

    CAS  Google Scholar 

  103. 103

    Andrade, R., Wessendarp, M., Gubbels, M., Striepen, B. & Subauste, C. CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J. Clin. Invest. 116, 2366–2377 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  104. 104

    Ling, Y. et al. Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J. Exp. Med. 203, 2063–2071 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  105. 105

    Rioux, J. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. 106

    Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 39, 830–832 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  107. 107

    Terman, A. & Brunk, B. Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc. Res. 68, 355–365 (2005).

    CAS  PubMed  Google Scholar 

  108. 108

    Liang, X. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    CAS  Google Scholar 

  109. 109

    Marino, G. et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J. Biol. Chem. 282, 18573–18583 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  110. 110

    Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51–64 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references


The authors are grateful to the Wellcome Trust for providing funding for the studentship of H. Harris and a Senior Fellowship for D. C. Rubinsztein, to the Medical Research Council for providing a program grant and a Medical Research Council/Wellcome Trust Strategic Award to D. C. Rubinsztein, and to the National Institute for Health Research Biomedical Research Center at Addenbrooke's Hospital. We also thank M. Renna for helpful comments on the manuscript.

Author information




Both authors researched data for the article, discussed the content, wrote the text, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to David C. Rubinsztein.

Ethics declarations

Competing interests

D. C. Rubinsztein has received grant support from Lilly and Wyeth. H. Harris declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harris, H., Rubinsztein, D. Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 8, 108–117 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing