Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neuroplasticity in the context of motor rehabilitation after stroke

Abstract

Approximately one-third of patients with stroke exhibit persistent disability after the initial cerebrovascular episode, with motor impairments accounting for most poststroke disability. Exercise and training have long been used to restore motor function after stroke. Better training strategies and therapies to enhance the effects of these rehabilitative protocols are currently being developed for poststroke disability. The advancement of our understanding of the neuroplastic changes associated with poststroke motor impairment and the innate mechanisms of repair is crucial to this endeavor. Pharmaceutical, biological and electrophysiological treatments that augment neuroplasticity are being explored to further extend the boundaries of poststroke rehabilitation. Potential motor rehabilitation therapies, such as stem cell therapy, exogenous tissue engineering and brain–computer interface technologies, could be integral in helping patients with stroke regain motor control. As the methods for providing motor rehabilitation change, the primary goals of poststroke rehabilitation will be driven by the activity and quality of life needs of individual patients. This Review aims to provide a focused overview of neuroplasticity associated with poststroke motor impairment, and the latest experimental interventions being developed to manipulate neuroplasticity to enhance motor rehabilitation.

Key Points

  • Training-based techniques, involving both physical and occupational therapy, continue to be the gold standard for poststroke motor rehabilitation

  • A better understanding of basic mechanisms of motor function and the pathophysiology of poststroke paresis will guide advances in neural repair and rehabilitation

  • Pharmacological, biological and electrophysiological techniques are being developed to augment neuroplasticity-induced and training-induced functional gains in patients with stroke

  • Exogenous cellular and neuroprosthetic technologies could enhance neural repair or offer alternative methods of motor control in patients with stroke

  • Combining measures of body function, activity, participation and patient quality of life will contribute to comprehensive goal setting in stroke rehabilitation

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Treatments currently being explored to enhance poststroke motor rehabilitation.
Figure 2: Brain–computer interface training modulates cortical activity.

References

  1. Sousa, R. M. et al. Contribution of chronic diseases to disability in elderly people in countries with low and middle incomes: a 10/66 Dementia Research Group population-based survey. Lancet 374, 1821–1830 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nudo, R. J., Wise, B. M., SiFuentes, F. & Milliken, G. W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272, 1791–1794 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Taub, E., Uswatte, G. & Elbert, T. New treatments in neurorehabilitation founded on basic research. Nat. Rev. Neurosci. 3, 228–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Lloyd-Jones, D. et al. Heart Disease and Stroke Statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119, 480–486 (2008).

    Google Scholar 

  5. Krakauer, J. W. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 19, 84–90 (2006).

    Article  PubMed  Google Scholar 

  6. Seitz, R. J. How imaging will guide rehabilitation. Curr. Opin. Neurol. 23, 79–86 (2010).

    Article  PubMed  Google Scholar 

  7. Dimyan, M. A. & Cohen, L. G. Contribution of transcranial magnetic stimulation to the understanding of functional recovery mechanisms after stroke. Neurorehabil. Neural Repair 24, 125–135 (2010).

    Article  PubMed  Google Scholar 

  8. Floel, A. & Cohen, L. G. Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke. Neurobiol. Dis. 37, 243–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    CAS  PubMed  Google Scholar 

  10. Payne, B. R. & Lomber, S. G. Reconstructing functional systems after lesions of cerebral cortex. Nat. Rev. Neurosci. 2, 911–919 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Holloway, V. et al. The reorganization of sensorimotor function in children after hemispherectomy. A functional MRI and somatosensory evoked potential study. Brain 123, 2432–2444 (2000).

    Article  PubMed  Google Scholar 

  12. Berardi, N., Pizzorusso, T. & Maffei, L. Critical periods during sensory development. Curr. Opin. Neurobiol. 10, 138–145 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Smirnakis, S. M. et al. Lack of long-term cortical reorganization after macaque retinal lesions. Nature 435, 300–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Lindvall, O. & Kokaia, Z. Stem cells for the treatment of neurological disorders. Nature 441, 1094–1096 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Delcroix, G. J., Schiller, P. C., Benoit, J. P. & Montero-Menei, C. N. Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials 31, 2105–2120 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G. & Vaughan, T. M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002).

    Article  PubMed  Google Scholar 

  17. Disability: beyond the medical model. Lancet 374, 1793 (2009).

  18. Bradt, J., Magee, W. L., Dileo, C., Wheeler, B. L. & McGilloway, E. Music therapy for acquired brain injury. Cochrane Database of Systematic Reviews, Issue 7. Art. No.: CD006787. doi:10.1002/14651858.CD006787.pub2 (2010).

  19. Latimer, C. P., Keeling, J., Lin, B., Henderson, M. & Hale, L. A. The impact of bilateral therapy on upper limb function after chronic stroke: a systematic review. Disabil. Rehabil. 32, 1221–1231 (2010).

    Article  PubMed  Google Scholar 

  20. French, B. et al. Does repetitive task training improve functional activity after stroke? A Cochrane systematic review and meta-analysis. J. Rehabil. Med. 42, 9–14 (2010).

    Article  PubMed  Google Scholar 

  21. Khaja, A. M. Acute ischemic stroke management: administration of thrombolytics, neuroprotectants, and general principles of medical management. Neurol. Clin. 26, 943–961 (2008).

    Article  PubMed  Google Scholar 

  22. Romero, J. R., Babikian, V. L., Katz, D. I. & Finklestein, S. P. Neuroprotection and stroke rehabilitation: modulation and enhancement of recovery. Behav. Neurol. 17, 17–24 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hurdowar, A. et al. Quality of stroke rehabilitation clinical practice guidelines. J. Eval. Clin. Pract. 13, 657–664 (2007).

    Article  PubMed  Google Scholar 

  24. Quinn, T. J. et al. Evidence-based stroke rehabilitation: an expanded guidance document from the european stroke organisation (ESO) guidelines for management of ischaemic stroke and transient ischaemic attack 2008. J. Rehabil. Med. 41, 99–111 (2009).

    Article  PubMed  Google Scholar 

  25. Bates, B. et al. Veterans Affairs/Department of Defense Clinical Practice Guideline for the Management of Adult Stroke Rehabilitation Care: executive summary. Stroke 36, 2049–2056 (2005).

    Article  PubMed  Google Scholar 

  26. Dobkin, B. H. Confounders in rehabilitation trials of task-oriented training: lessons from the designs of the EXCITE and SCILT multicenter trials. Neurorehabil. Neural Repair 21, 3–13 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sirtori, V., Corbetta, D., Moja, L. & Gatti, R. Constraint-induced movement therapy for upper extremities in stroke patients. Cochrane Database Systematic Reviews, Issue 4. Art. No.: CD004433. doi:10.1002/14651858.CD004433.pub2 (2009).

  28. Hakkennes, S. & Keating, J. L. Constraint-induced movement therapy following stroke: a systematic review of randomised controlled trials. Aust. J. Physiother. 51, 221–231 (2005).

    Article  PubMed  Google Scholar 

  29. Liepert, J. Evidence-based therapies for upper extremity dysfunction. Curr. Opin. Neurol. doi:10.1097/WCO.0b013e32833ff4c4.

  30. Hesse, S. Treadmill training with partial body weight support after stroke: a review. NeuroRehabilitation 23, 55–65 (2008).

    PubMed  Google Scholar 

  31. Moseley, A. M., Stark, A., Cameron, I. D. & Pollock, A. Treadmill training and body weight support for walking after stroke. Cochrane Database Systematic Reviews, Issue 4. Art. No.: CD002840. doi:10.1002/14651858.CD002840.pub2 (2005).

  32. Page, S. J., Szaflarski, J. P., Eliassen, J. C., Pan, H. & Cramer, S. C. Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabil. Neural Repair 23, 382–388 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sharma, N., Baron, J. C. & Rowe, J. B. Motor imagery after stroke: relating outcome to motor network connectivity. Ann. Neurol. 66, 604–616 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Coupar, F., Pollock, A., van Wijck, F., Morris, J. & Langhorne, P. Simultaneous bilateral training for improving arm function after stroke. Cochrane Database Systematic Reviews, Issue 4. Art. No.: CD006432. doi:10.1002/14651858.CD006432.pub2 (2010).

  35. Volpe, B. T. et al. Robotic devices as therapeutic and diagnostic tools for stroke recovery. Arch. Neurol. 66, 1086–1090 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lo, A. C. et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362, 1772–1783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kwakkel, G., Kollen, B. J. & Krebs, H. I. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair 22, 111–121 (2008).

    Article  PubMed  Google Scholar 

  38. Henderson, A., Korner-Bitensky, N. & Levin, M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top. Stroke Rehabil. 14, 52–61 (2007).

    Article  PubMed  Google Scholar 

  39. Zimmermann-Schlatter, A., Schuster, C., Puhan, M. A., Siekierka, E. & Steurer, J. Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. J. Neuroeng. Rehabil. 5, 8 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dromerick, A. W. et al. Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology 73, 195–201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wolf, S. L. et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296, 2095–2104 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Greener, J. & Langhorne, P. Systematic reviews in rehabilitation for stroke: issues and approaches to addressing them. Clin. Rehabil. 16, 69–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Brown, C. E., Aminoltejari, K., Erb, H., Winship, I. R. & Murphy, T. H. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J. Neurosci. 29, 1719–1734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jones, T. A., Kleim, J. A. & Greenough, W. T. Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic examination. Brain Res. 733, 142–148 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Dancause, N. et al. Extensive cortical rewiring after brain injury. J. Neurosci. 25, 10167–10179 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weidner, N., Ner, A., Salimi, N. & Tuszynski, M. H. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc. Natl Acad. Sci. USA 98, 3513–3518 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carmichael, S. T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann. Neurol. 59, 735–742 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Greenough, W. T., Larson, J. R. & Withers, G. S. Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. Behav. Neural Biol. 44, 301–314 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. Jones, T. A., Chu, C. J., Grande, L. A. & Gregory, A. D. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J. Neurosci. 19, 10153–10163 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kleim, J. A., Vij, K., Ballard, D. H. & Greenough, W. T. Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. J. Neurosci. 17, 717–721 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stroemer, R. P., Kent, T. A. & Hulsebosch, C. E. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke 26, 2135–2144 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Biernaskie, J. & Corbett, D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J. Neurosci. 21, 5272–5280 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adkins, D. L., Boychuk, J., Remple, M. S. & Kleim, J. A. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J. Appl. Physiol. 101, 1776–1782 (2006).

    Article  PubMed  Google Scholar 

  54. Stinear, C. M. et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130, 170–180 (2007).

    Article  PubMed  Google Scholar 

  55. Schaechter, J. D., Perdue, K. L. & Wang, R. Structural damage to the corticospinal tract correlates with bilateral sensorimotor cortex reorganization in stroke patients. Neuroimage 39, 1370–1382 (2008).

    Article  PubMed  Google Scholar 

  56. Ward, N. S. & Frackowiak, R. S. The functional anatomy of cerebral reorganisation after focal brain injury. J. Physiol. Paris 99, 425–436 (2006).

    Article  PubMed  Google Scholar 

  57. Johansen-Berg, H. Functional imaging of stroke recovery: what have we learnt and where do we go from here? Int. J. Stroke 2, 7–16 (2007).

    Article  PubMed  Google Scholar 

  58. Krakauer, J. W. Functional imaging of motor recovery after stroke: remaining challenges. Curr. Neurol. Neurosci. Rep. 4, 42–46 (2004).

    Article  PubMed  Google Scholar 

  59. Marshall, R. S. et al. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31, 656–661 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Butefisch, C. M., Netz, J., Wessling, M., Seitz, R. J. & Homberg, V. Remote changes in cortical excitability after stroke. Brain 126, 470–481 (2003).

    Article  PubMed  Google Scholar 

  61. Manganotti, P., Acler, M., Zanette, G. P., Smania, N. & Fiaschi, A. Motor cortical disinhibition during early and late recovery after stroke. Neurorehabil. Neural Repair 22, 396–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Swayne, O. B., Rothwell, J. C., Ward, N. S. & Greenwood, R. J. Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cereb. Cortex 18, 1909–1922 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Murase, N., Duque, J., Mazzocchio, R. & Cohen, L. G. Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol. 55, 400–409 (2004).

    Article  PubMed  Google Scholar 

  64. Cramer, S. C. et al. Predicting functional gains in a stroke trial. Stroke 38, 2108–2114 (2007).

    Article  PubMed  Google Scholar 

  65. Marshall, R. S. et al. Early imaging correlates of subsequent motor recovery after stroke. Ann. Neurol. 65, 596–602 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ward, N. S. & Cohen, L. G. Mechanisms underlying recovery of motor function after stroke. Arch. Neurol. 61, 1844–1848 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ward, N. S. et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129, 809–819 (2006).

    Article  PubMed  Google Scholar 

  68. Newton, J. M. et al. Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain 129, 1844–1858 (2006).

    Article  PubMed  Google Scholar 

  69. Johansen-Berg, H. et al. The role of ipsilateral premotor cortex in hand movement after stroke. Proc. Natl Acad. Sci. USA 99, 14518–14523 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Chen, R. et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin. Neurophysiol. 119, 504–532 (2008).

    Article  PubMed  Google Scholar 

  72. Baron, J. C. et al. Neuroimaging in stroke recovery: a position paper from the First International Workshop on Neuroimaging and Stroke Recovery. Cerebrovasc. Dis. 18, 260–267 (2004).

    Article  PubMed  Google Scholar 

  73. Milot, M. H. & Cramer, S. C. Biomarkers of recovery after stroke. Curr. Opin. Neurol. 21, 654–659 (2008).

    Article  PubMed  Google Scholar 

  74. Cheeran, B. et al. The future of restorative neurosciences in stroke: driving the translational research pipeline from basic science to rehabilitation of people after stroke. Neurorehabil. Neural Repair 23, 97–107 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Macht, M. B. Effects of delta-amphetamine on hemi-decorticate, decorticate, and decerebrate cats. Am. J. Physiol. 163, 731–732 (1950).

    Google Scholar 

  76. Feeney, D. M., Gonzalez, A. & Law, W. A. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217, 855–857 (1982).

    Article  CAS  PubMed  Google Scholar 

  77. Bütefisch, C. M. et al. Modulation of use-dependent plasticity by d-amphetamine. Ann. Neurol. 51, 59–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Sawaki, L., Cohen, L. G., Classen, J., Davis, B. C. & Bütefisch, C. M. Enhancement of use-dependent plasticity by D-amphetamine. Neurology 59, 1262–1264 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Crisostomo, E. A., Duncan, P. W., Propst, M., Dawson, D. V. & Davis, J. N. Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann. Neurol. 23, 94–97 (1988).

    Article  CAS  PubMed  Google Scholar 

  80. Goldstein, L. B. Amphetamine trials and tribulations. Stroke 40, S133–S135 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Martinsson, L., Wahlgren, N. G. & Hardemark, H. G. Amphetamines for improving recovery after stroke. Cochrane Database Systematic Reviews, Issue 3. Art. No.: CD002090. doi:10.1002/14651858.CD002090 (2003).

  82. Martinsson, L. & Wahlgren, N. G. Safety of dexamphetamine in acute ischemic stroke: a randomized, double-blind, controlled dose-escalation trial. Stroke 34, 475–481 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Barbay, S. & Nudo, R. J. The effects of amphetamine on recovery of function in animal models of cerebral injury: a critical appraisal. NeuroRehabilitation 25, 5–17 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Scheidtmann, K., Fries, W., Muller, F. & Koenig, E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet 358, 787–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Sonde, L. & Lokk, J. Effects of amphetamine and/or L-dopa and physiotherapy after stroke—a blinded randomized study. Acta Neurol. Scand. 115, 55–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Saver, J. L. Citicoline: update on a promising and widely available agent for neuroprotection and neurorepair. Rev. Neurol. Dis. 5, 167–177 (2008).

    PubMed  Google Scholar 

  87. Whyte, E. M. et al. An open-label pilot study of acetylcholinesterase inhibitors to promote functional recovery in elderly cognitively impaired stroke patients. Cerebrovasc. Dis. 26, 317–321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zorowitz, R. D. Road to recovery: drugs used in stroke rehabilitation. Expert Rev. Neurother. 4, 219–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Nadeau, S. E. et al. Donepezil as an adjuvant to constraint-induced therapy for upper-limb dysfunction after stroke: an exploratory randomized clinical trial. J. Rehabil. Res. Dev. 41, 525–534 (2004).

    Article  PubMed  Google Scholar 

  90. Berends, H. I. et al. The clinical use of drugs influencing neurotransmitters in the brain to promote motor recovery after stroke; a Cochrane systematic review. Eur. J. Phys. Rehabil. Med. 45, 621–630 (2009).

    CAS  PubMed  Google Scholar 

  91. Cohen, S., Levi-Montalcini, R. & Hamburger, V. A nerve growth-stimulating factor isolated from sarcom as 37 and 180. Proc. Natl Acad. Sci. USA 40, 1014–1018 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Altman, J. Are new neurons formed in the brains of adult mammals? Science 135, 1127–1128 (1962).

    Article  CAS  PubMed  Google Scholar 

  93. Finklestein, S. P. et al. Growth factor expression after stroke. Stroke 21 (Suppl. 11), 122–124 (1990).

    Google Scholar 

  94. Carmichael, S. T. Gene expression changes after focal stroke, traumatic brain and spinal cord injuries. Curr. Opin. Neurol. 16, 699–704 (2003).

    Article  PubMed  Google Scholar 

  95. Case, L. C. & Tessier-Lavigne, M. Regeneration of the adult central nervous system. Curr. Biol. 15, R749–R753 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Li, Q., Brus-Ramer, M., Martin, J. H. & McDonald, J. W. Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci. Lett. 479, 128–133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Benowitz, L. I. & Carmichael, S. T. Promoting axonal rewiring to improve outcome after stroke. Neurobiol. Dis. 37, 259–266 (2010).

    Article  PubMed  Google Scholar 

  98. Popa-Wagner, A. et al. Effects of granulocyte-colony stimulating factor after stroke in aged rats. Stroke 41, 1027–1031 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Shyu, W. C. et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110, 1847–1854 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Minnerup, J. et al. Meta-analysis of the efficacy of granulocyte-colony stimulating factor in animal models of focal cerebral ischemia. Stroke 39, 1855–1861 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Shingo, T., Sorokan, S. T., Shimazaki, T. & Weiss, S. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J. Neurosci. 21, 9733–9743 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Belayev, L. et al. A novel neurotrophic therapeutic strategy for experimental stroke. Brain Res. 1280, 117–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Kolb, B. et al. Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J. Cereb. Blood Flow Metab. 27, 983–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Schabitz, W. R. et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke 35, 992–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Ploughman, M. et al. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke 40, 1490–1495 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Muller, H. D. et al. Brain-derived neurotrophic factor but not forced arm use improves long-term outcome after photothrombotic stroke and transiently upregulates binding densities of excitatory glutamate receptors in the rat brain. Stroke 39, 1012–1021 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Ehrenreich, H. et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40, e647–e656 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Cramer, S. C. et al. The beta-hCG+erythropoietin in acute stroke (BETAS) study: a 3-center, single-dose, open-label, noncontrolled, phase IIa safety trial. Stroke 41, 927–931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Floel, A., Hummel, F., Duque, J., Knecht, S. & Cohen, L. G. Influence of somatosensory input on interhemispheric interactions in patients with chronic stroke. Neurorehabil. Neural Repair 22, 477–485 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Conforto, A. B., Kaelin-Lang, A. & Cohen, L. G. Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann. Neurol. 51, 122–125 (2002).

    Article  PubMed  Google Scholar 

  111. Conforto, A. B. et al. Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabil. Neural Repair 24, 263–272 (2010).

    Article  PubMed  Google Scholar 

  112. Ridding, M. C. & Rothwell, J. C. Afferent input and cortical organisation: a study with magnetic stimulation. Exp. Brain Res. 126, 536–544 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Spiegel, J., Tintera, J., Gawehn, J., Stoeter, P. & Treede, R. D. Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation. Clin. Neurophysiol. 110, 47–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Han, B. S. et al. Functional magnetic resonance image finding of cortical activation by neuromuscular electrical stimulation on wrist extensor muscles. Am. J. Phys. Med. Rehabil. 82, 17–20 (2003).

    Article  PubMed  Google Scholar 

  115. Floel, A. et al. Influence of somatosensory input on motor function in patients with chronic stroke. Ann. Neurol. 56, 206–212 (2004).

    Article  PubMed  Google Scholar 

  116. Chae, J., Sheffler, L. & Knutson, J. Neuromuscular electrical stimulation for motor restoration in hemiplegia. Top. Stroke Rehabil. 15, 412–426 (2008).

    Article  PubMed  Google Scholar 

  117. Embrey, D. G., Holtz, S. L., Alon, G., Brandsma, B. A. & McCoy, S. W. Functional electrical stimulation to dorsiflexors and plantar flexors during gait to improve walking in adults with chronic hemiplegia. Arch. Phys. Med. Rehabil. 91, 687–696 (2010).

    Article  PubMed  Google Scholar 

  118. Nowak, D. A., Grefkes, C., Ameli, M. & Fink, G. R. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil. Neural Repair 23, 641–656 (2009).

    Article  PubMed  Google Scholar 

  119. Hesse, S. et al. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study. Restor. Neurol. Neurosci. 25, 9–15 (2007).

    CAS  PubMed  Google Scholar 

  120. Khedr, E. M., Ahmed, M. A., Fathy, N. & Rothwell, J. C. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 65, 466–468 (2005).

    Article  PubMed  Google Scholar 

  121. Kim, Y. H. et al. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 37, 1471–1476 (2006).

    Article  PubMed  Google Scholar 

  122. Talelli, P., Greenwood, R. J. & Rothwell, J. C. Exploring theta burst stimulation as an intervention to improve motor recovery in chronic stroke. Clin. Neurophysiol. 118, 333–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Malcolm, M. P. et al. Repetitive transcranial magnetic stimulation as an adjunct to constraint-induced therapy: an exploratory randomized controlled trial. Am. J. Phys. Med. Rehabil. 86, 707–715 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Yozbatiran, N. et al. Safety and behavioral effects of high-frequency repetitive transcranial magnetic stimulation in stroke. Stroke 40, 309–312 (2009).

    Article  PubMed  Google Scholar 

  125. Hummel, F. et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128, 490–499 (2005).

    Article  PubMed  Google Scholar 

  126. Hummel, F. C. et al. Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci. 7, 73 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hummel, F. & Cohen, L. G. Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabil. Neural Repair 19, 14–19 (2005).

    Article  PubMed  Google Scholar 

  128. Boggio, P. S. et al. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor. Neurol. Neurosci. 25, 123–129 (2007).

    PubMed  Google Scholar 

  129. Koganemaru, S. et al. Recovery of upper-limb function due to enhanced use-dependent plasticity in chronic stroke patients. Brain 133, 3373–3384 (2010).

    Article  PubMed  Google Scholar 

  130. Ameli, M. et al. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann. Neurol. 66, 298–309 (2009).

    Article  PubMed  Google Scholar 

  131. Brown, J. A., Lutsep, H., Cramer, S. C. & Weinand, M. Motor cortex stimulation for enhancement of recovery after stroke: case report. Neurol. Res. 25, 815–818 (2003).

    Article  PubMed  Google Scholar 

  132. Brown, J. A., Lutsep, H. L., Weinand, M. & Cramer, S. C. Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 58, 464–473 (2006).

    Article  PubMed  Google Scholar 

  133. Levy, R. et al. Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J. Neurosurg. 108, 707–714 (2008).

    Article  PubMed  Google Scholar 

  134. Neuroregeneration enhanced by transcranial direct current current stimulation (TDCS) in stroke NCT00909714. US NIH ClinicalTrials.gov [online], (2010).

  135. Fritsch, B. et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liebetanz, D., Nitsche, M. A., Tergau, F. & Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125, 2238–2247 (2002).

    Article  PubMed  Google Scholar 

  137. Strafella, A. P., Paus, T., Fraraccio, M. & Dagher, A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 126, 2609–2615 (2003).

    Article  PubMed  Google Scholar 

  138. Nitsche, M. A. et al. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur. J. Neurosci. 19, 2720–2726 (2004).

    Article  PubMed  Google Scholar 

  139. Siebner, H. R. & Rothwell, J. Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp. Brain Res. 148, 1–16 (2003).

    Article  PubMed  Google Scholar 

  140. Ward, N. S., Brown, M. M., Thompson, A. J. & Frackowiak, R. S. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126, 2476–2496 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Lotze, M. et al. The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J. Neurosci. 26, 6096–6102 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gerloff, C. et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129, 791–808 (2006).

    Article  PubMed  Google Scholar 

  143. Nair, D. G. et al. Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. Neuroimage 34, 253–263 (2007).

    Article  PubMed  Google Scholar 

  144. Duque, J. et al. Transcallosal inhibition in chronic subcortical stroke. Neuroimage 28, 940–946 (2005).

    Article  PubMed  Google Scholar 

  145. Kinsbourne, M. Hemi-neglect and hemisphere rivalry. Adv. Neurol. 18, 41–49 (1977).

    CAS  PubMed  Google Scholar 

  146. Takeuchi, N., Chuma, T., Matsuo, Y., Watanabe, I. & Ikoma, K. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke 36, 2681–2686 (2005).

    Article  PubMed  Google Scholar 

  147. Mansur, C. G. et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 64, 1802–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Fregni, F. et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 37, 2115–2122 (2006).

    Article  PubMed  Google Scholar 

  149. Nowak, D. A. et al. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Arch. Neurol. 65, 741–747 (2008).

    Article  PubMed  Google Scholar 

  150. Kirton, A. et al. Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomised trial. Lancet Neurol. 7, 507–513 (2008).

    Article  PubMed  Google Scholar 

  151. Liepert, J., Zittel, S. & Weiller, C. Improvement of dexterity by single session low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in acute stroke: a double-blind placebo-controlled crossover trial. Restor. Neurol. Neurosci. 25, 461–465 (2007).

    PubMed  Google Scholar 

  152. Takeuchi, N. et al. Inhibition of the unaffected motor cortex by 1 Hz repetitive transcranical magnetic stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke. J. Rehabil. Med. 40, 298–303 (2008).

    Article  PubMed  Google Scholar 

  153. Ackerley, S. J., Stinear, C. M., Barber, P. A. & Byblow, W. D. Combining theta burst stimulation with training after subcortical stroke. Stroke 41, 1568–1572 (2010).

    Article  PubMed  Google Scholar 

  154. Celnik, P., Paik, N. J., Vandermeeren, Y., Dimyan, M. & Cohen, L. G. Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke. Stroke 40, 1764–1771 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Shin, H. I., Han, T. R. & Paik, N. J. Effect of consecutive application of paired associative stimulation on motor recovery in a rat stroke model: a preliminary study. Int. J. Neurosci. 118, 807–820 (2008).

    Article  PubMed  Google Scholar 

  156. Castel-Lacanal, E. et al. Induction of cortical plastic changes in wrist muscles by paired associative stimulation in the recovery phase of stroke patients. Neurorehabil. Neural Repair 23, 366–372 (2009).

    Article  PubMed  Google Scholar 

  157. Castel-Lacanal, E., Gerdelat-Mas, A., Marque, P., Loubinoux, I. & Simonetta-Moreau, M. Induction of cortical plastic changes in wrist muscles by paired associative stimulation in healthy subjects and post-stroke patients. Exp. Brain Res. 180, 113–122 (2007).

    Article  PubMed  Google Scholar 

  158. Jayaram, G. & Stinear, J. W. Contralesional paired associative stimulation increases paretic lower limb motor excitability post-stroke. Exp. Brain Res. 185, 563–570 (2008).

    Article  PubMed  Google Scholar 

  159. Grefkes, C. et al. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 50, 233–242 (2010).

    Article  PubMed  Google Scholar 

  160. Perez, M. A. & Cohen, L. G. Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. J. Neurosci. 28, 5631–5640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lindvall, O. & Kokaia, Z. Stem cells in human neurodegenerative disorders—time for clinical translation? J. Clin. Invest. 120, 29–40 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pilot investigation of stem cells in stroke (PISCES) NCT01151124. US NIH ClinicalTrials.gov [online], (2010).

  163. Jin, K. et al. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J. Cereb. Blood Flow Metab. 30, 534–544 (2010).

    Article  PubMed  Google Scholar 

  164. Zhong, J. et al. Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabil. Neural Repair 24, 636–644 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kubinova, S. & Sykova, E. Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine (Lond.) 5, 99–108 (2010).

    Article  CAS  Google Scholar 

  166. Daly, J. J. & Wolpaw, J. R. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7, 1032–1043 (2008).

    Article  PubMed  Google Scholar 

  167. Buch, E. et al. Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wang, W. et al. Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys. Med. Rehabil. Clin. N. Am. 21, 157–178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Daly, J. J. et al. Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J. Neurol. Phys. Ther. 33, 203–211 (2009).

    Article  PubMed  Google Scholar 

  170. Broetz, D. et al. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil. Neural Repair 24, 674–679 (2010).

    Article  PubMed  Google Scholar 

  171. Miesenbock, G. The optogenetic catechism. Science 326, 395–399 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tufail, Y. et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66, 681–694 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Kleim, J. A. et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat. Neurosci. 9, 735–737 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Cheeran, B. J., Ritter, C., Rothwell, J. C. & Siebner, H. R. Mapping genetic influences on the corticospinal motor system in humans. Neuroscience 164, 156–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Dahl, T. H. International classification of functioning, disability and health: an introduction and discussion of its potential impact on rehabilitation services and research. J. Rehabil. Med. 34, 201–204 (2002).

    Article  PubMed  Google Scholar 

  177. Bendz, M. The first year of rehabilitation after a stroke—from two perspectives. Scand. J. Caring Sci. 17, 215–222 (2003).

    Article  PubMed  Google Scholar 

  178. Page, S. J., Levine, P., Sisto, S., Bond, Q. & Johnston, M. V. Stroke patients' and therapists' opinions of constraint-induced movement therapy. Clin. Rehabil. 16, 55–60 (2002).

    Article  PubMed  Google Scholar 

  179. Patel, M. D. et al. Relationships between long-term stroke disability, handicap and health-related quality of life. Age Ageing 35, 273–279 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Williams, L. S., Weinberger, M., Harris, L. E. & Biller, J. Measuring quality of life in a way that is meaningful to stroke patients. Neurology 53, 1839–1843 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Levin, M. F., Kleim, J. A. & Wolf, S. L. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair 23, 313–319 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Vilkki, J. et al. Relationship of the Met allele of the brain-derived neurotrophic factor Val66Met polymorphism to memory after aneurysmal subarachnoid hemorrhage. Neurosurgery 63, 198–203 (2008).

    Article  PubMed  Google Scholar 

  183. Kim, J. M. et al. BDNF genotype potentially modifying the association between incident stroke and depression. Neurobiol. Aging 29, 789–792 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institute of Neurological Disorders and Stroke, NIH. The original illustrations used for Figure 1 were by G. Qushair of SciLingua.

Author information

Authors and Affiliations

Authors

Contributions

M. A. Dimyan and L. G. Cohen researched the data and wrote the article, and provided substantial contributions to discussions of the content, reviewing and editing of the manuscript.

Corresponding author

Correspondence to Leonardo G. Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dimyan, M., Cohen, L. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol 7, 76–85 (2011). https://doi.org/10.1038/nrneurol.2010.200

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.200

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing