Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The rehabilitation of hemianopic dyslexia

Abstract

Hemianopic dyslexia is a frequent and disabling functional impairment following brain injury. This form of dyslexia is an acquired reading disorder whereby patients with homonymous visual field defects have persistent and severe reading difficulties, despite having intact language functions. Hemianopic dyslexia has received little attention from researchers and clinicians, and this article is the first to review the rehabilitation of patients with the condition. In light of advances in our knowledge about the nature and causes of hemianopic dyslexia, I critically examine the available treatment methods for visual field disorders and evaluate their efficiency in alleviating hemianopic dyslexia. On the basis of the reviewed evidence, I suggest that compensatory therapies, which attempt to reorganize eye-movement control, are superior to restorative therapies, which aim at visual field restitution. For the rehabilitation of hemianopic dyslexia, I recommend a treatment protocol that involves the systematic and repetitive practice of specific eye movements for reading. Despite increasing evidence for the effectiveness of this treatment protocol, which has clinically relevant long-term benefits, the underlying mechanism of the therapeutic effect is still unclear. Indeed, more research is required to further improve the efficiency of rehabilitation in patients with hemianopic dyslexia.

Key Points

  • Hemianopic dyslexia is not simply the product of the visual field defect, but is caused by a disorder of control of visual information processing and eye movements in reading

  • Assessment of hemianopic dyslexia should include perimetric visual field testing and examination of reading performance and eye movements, and consideration of the underlying brain injury, maladaptive strategies and comorbidities

  • Compensatory therapies are preferred over restorative therapies in the rehabilitation of hemianopic dyslexia, as the former directly address the primary cause (of hemianopic dyslexia) and efficiently alleviate reading impairments

  • Rehabilitation of hemianopic dyslexia requires the systematic massed practice of specific reading eye movements, using moving or static words or word-like material and preferably conducted in a supervised, errorless learning condition

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Foveal and parafoveal visual field in homonymous visual field defects.
Figure 2: Foveal and parafoveal visual field in patients with a central scotoma.
Figure 3: Eye-movement recordings in normal readers and patients with unilateral homonymous hemianopia.

Similar content being viewed by others

References

  1. Zihl, J. Rehabilitation of Visual Disorders after Brain Injury (Psychology Press, Hove, 2000).

    Google Scholar 

  2. Wilbrand, H. On the macular-hemianopic reading disorder and the v. Monakowian projection of the macula on the visual sphere [German]. Klin. Monatsbl. Augenheilkd. 45, 1–39 (1907).

    Google Scholar 

  3. Schuett, S., Heywood, C. A., Kentridge, R. W. & Zihl, J. The significance of visual information processing in reading: insights from hemianopic dyslexia. Neuropsychologia 46, 2445–2462 (2008).

    Article  PubMed  Google Scholar 

  4. Rayner, K. & Pollatsek, A. The Psychology of Reading (Lawrence Erlbaum, Hillsdale, 1989).

    Google Scholar 

  5. Leff, A. P. & Behrmann, M. Treatment of reading impairment after stroke. Curr. Opin. Neurol. 21, 1–5 (2008).

    Article  Google Scholar 

  6. Snowling, M. J. & Hulme, C. (Eds) The Science of Reading: a Handbook (Blackwell, Oxford, 2005).

    Book  Google Scholar 

  7. Bouwmeester, L., Heutink, J. & Lucas, C. The effect of visual training for patients with visual field defects due to brain damage: a systematic review. J. Neurol. Neurosurg. Psychiatry 78, 555–564 (2007).

    Article  PubMed  Google Scholar 

  8. Schofield, T. M. & Leff, A. P. Rehabilitation of hemianopia. Curr. Opin. Neurol. 22, 36–40 (2009).

    Article  PubMed  Google Scholar 

  9. Zihl, J., Krischer, C. C. & Meißen, R. Hemianopic dyslexia and its treatment [German]. Nervenarzt 55, 317–323 (1984).

    CAS  PubMed  Google Scholar 

  10. Kerkhoff, G., Münßinger, G., Eberle-Strauss, G. & Stögerer, E. Rehabilitation of hemianopic alexia in patients with postgeniculate visual field disorders. Neuropsychol. Rehabil. 2, 21–42 (1992).

    Article  Google Scholar 

  11. Zihl, J. Eye movement patterns in hemianopic dyslexia. Brain 118, 891–912 (1995).

    Article  PubMed  Google Scholar 

  12. Spitzyna, G. A. et al. Optokinetic therapy improves text reading in patients with hemianopic alexia: a controlled trial. Neurology 68, 1922–1930 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Schuett, S., Heywood, C. A., Kentridge, R. W. & Zihl, J. Rehabilitation of hemianopic dyslexia: are words necessary for re-learning oculomotor control? Brain 131, 3156–3168 (2008).

    Article  PubMed  Google Scholar 

  14. Clarke, G. Incidence of neurological vision impairment in patients who suffer from an acquired brain injury. Int. Congr. Ser. 1282, 365–369 (2005).

    Article  Google Scholar 

  15. Suchoff, I. B. et al. The frequency of occurrence, types, and characteristics of visual field defects in acquired brain injury: a retrospective analysis. Optometry 79, 259–265 (2008).

    Article  PubMed  Google Scholar 

  16. Rowe, F. et al. Visual impairment following stroke: do stroke patients require vision assessment? Age Ageing 38, 188–193 (2009).

    Article  PubMed  Google Scholar 

  17. Zhang, X., Kedar, S., Lynn, M. J., Newman, N. J. & Biousse, V. Natural history of homonymous hemianopia. Neurology 66, 901–905 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, X., Kedar, S., Lynn, M. J., Newman, N. J. & Biousse, V. Homonymous hemianopias: clinical-anatomic correlations in 904 cases. Neurology 66, 906–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Papageorgiou, E. et al. Assessment of vision-related quality of life in patients with homonymous visual field defects. Graefes Arch. Clin. Exp. Ophthalmol. 245, 1749–1758 (2007).

    Article  PubMed  Google Scholar 

  20. Gray, L. G., Galetta, S. L., Siegal, T. & Schatz, N. J. The central visual field in homonymous hemianopia: evidence for unilateral foveal representation. Arch. Neurol. 54, 312–317 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Reinhard, J. & Trauzettel-Klosinski, S. Nasotemporal overlap in humans: a functional retinal ganglion cells study. Invest. Ophthalmol. Vis. Sci. 44, 1568–1572 (2003).

    Article  PubMed  Google Scholar 

  22. Zihl, J. Cerebral disturbances of elementary visual functions. In Neuropsychology of Visual Perception (Ed. Brown, J. W.) 35–58 (Lawrence Erlbaum, Hillsdale, 1989).

    Google Scholar 

  23. Barton, J. J. S. & Benatar, M. Field of Vision: A Manual and Atlas of Perimetry (Humana Press, Totowa, 2003).

    Book  Google Scholar 

  24. Leff, A. P. et al. Impaired reading in patients with right hemianopia. Ann. Neurol. 47, 171–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. McDonald, S. A., Spitzyna, G., Shillcock, R., Wise, R. J. S. & Leff, A. P. Patients with hemianopic alexia adopt an inefficient eye movement strategy when reading text. Brain 129, 158–167 (2006).

    Article  PubMed  Google Scholar 

  26. Trauzettel-Klosinski, S. & Brendler, K. Eye movements in reading with hemianopic field defects: the significance of clinical parameters. Graefes Arch. Clin. Exp. Ophthalmol. 236, 91–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Habekost, T. & Starrfelt, R. Alexia and quadrant-amblyopia: reading disability after a minor visual field deficit. Neuropsychologia 44, 2465–2476 (2006).

    Article  PubMed  Google Scholar 

  28. Upton, N. J., Hodgson, T. L., Plant, G. T., Wise, R. J. S. & Leff, A. P. “Bottom-up” and “top-down” effects on reading saccades: a case study. J. Neurol. Neurosurg. Psychiatry 74, 1423–1428 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leff, A. P. et al. The functional anatomy of single-word reading in patients with hemianopic and pure alexia. Brain 124, 510–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Leff, A. P., Spitzyna, G. A., Plant, G. T. & Wise, R. J. S. Structural anatomy of pure and hemianopic alexia. J. Neurol. Neurosurg. Psychiatry 77, 1004–1007 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gassel, M. M. & Williams, D. Visual function in patients with homonymous hemianopia. Part II. Oculomotor mechanisms. Brain 86, 1–36 (1963).

    Article  CAS  PubMed  Google Scholar 

  32. Poppelreuter, W. Die psychischen Schädigungen durch Kopfschuß im Kriege 1914/16. Band I. Die Störungen der niederen und höheren Sehleistungen durch Verletzungen des Okzipitalhirns [German] (Verlag Leopold Voss, Leipzig, Germany, 1917). English translation in Zihl, J. & Weiskrantz, L. (Eds) Disturbances of Lower and Higher Visual Capacities Caused by Occipital Damage (Clarendon Press, Oxford, 1990).

    Google Scholar 

  33. Rayner, K. & Bertera, J. H. Reading without a fovea. Science 206, 468–469 (1979).

    Article  CAS  PubMed  Google Scholar 

  34. Fine, E. M. & Rubin, G. S. The effects of simulated cataract on reading with normal vision and simulated central scotoma. Vision Res. 39, 4274–4285 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Rayner, K., Inhoff, A. W., Morrison, R. E., Sowiaczek, M. L. & Bertera, J. H. Masking foveal and parafoveal vision during eye fixations in reading. J. Exp. Psychol. Hum. Percept. Perform. 7, 167–179 (1981).

    Article  CAS  PubMed  Google Scholar 

  36. Cummings, R. W. & Rubin, G. S. Reading speed and saccadic eye movements with an artificial paracentral scotoma. Invest. Ophthalmol. Vis. Sci. 33, 1418 (1992).

    Google Scholar 

  37. Schuett, S., Kentridge, R. W., Zihl, J. & Heywood, C. A. Are hemianopic reading and visual exploration impairments visually elicited? New insights from eye movements in simulated hemianopia. Neuropsychologia 47, 733–746 (2009).

    Article  PubMed  Google Scholar 

  38. Hahn, G. A. et al. New standardised texts for assessing reading performance in four European languages. Br. J. Ophthalmol. 90, 480–484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel, A. T., Duncan, P. W., Lai, S. M. & Studenski, S. The relation between impairments and functional outcomes poststroke. Arch. Phys. Med. Rehabil. 81, 1357–1363 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Anderson, S. W. Neuropsychologic rehabilitation for visuoperceptual impairments. Neurol. Clin. 21, 729–740 (2003). .

    Article  PubMed  Google Scholar 

  41. Walker, R., Findlay, J. M., Young, A. W. & Welch, J. Disentangling neglect and hemianopia. Neuropsychologia 29, 1019–1027 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Pambakian, A. L. M., Currie, J. & Kennard, C. Rehabilitation strategies for patients with homonymous visual field defects. J. Neuroophthalmol. 25, 136–142 (2005).

    PubMed  Google Scholar 

  43. Pelak, V. S., Dubin, M. & Whitney, W. Homonymous hemianopia: a critical analysis of optical devices, compensatory training, and NovaVision. Curr. Treat. Options Neurol. 9, 41–47 (2007).

    Article  PubMed  Google Scholar 

  44. Kerkhoff, G. Neurovisual rehabilitation: recent developments and future directions. J. Neurol. Neurosurg. Psychiatry 68, 691–706 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stoerig, P. Functional rehabilitation of partial cortical blindness? Restor. Neurol. Neurosci. 26, 291–303 (2008).

    PubMed  Google Scholar 

  46. Zihl, J. & von Cramon, D. Restitution of visual function in patients with cerebral blindness. J. Neurol. Neurosurg. Psychiatry 42, 312–322 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zihl, J. Recovery of visual functions in patients with cerebral blindness: effects of specific practice with saccadic localisation. Exp. Brain Res. 44, 159–169 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. Zihl, J. & von Cramon, D. Visual field recovery from scotoma in patients with postgeniculate damage. Brain 108, 335–365 (1985).

    Article  PubMed  Google Scholar 

  49. Kasten, E., Wüst, S., Behrens-Baumann, W. & Sabel, B. A. Computer-based training for the treatment of partial blindness. Nat. Med. 4, 1083–1087 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Kasten, E., Poggel, D. A. & Sabel, B. A. Computer-based training of stimulus detection improves color and simple pattern recognition in the defective field of hemianopic subjects. J. Cogn. Neurosci. 12, 1001–1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Mueller, I., Mast, H. & Sabel, B. A. Recovery of visual field defects: a large clinical observational study using vision restoration therapy. Restor. Neurol. Neurosci. 25, 563–572 (2007).

    PubMed  Google Scholar 

  52. Schmielau, F. & Wong, E. K. Recovery of visual fields in brain-lesioned patients by reaction perimetry treatment. J. Neuroeng. Rehabil. 4, 31 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sahraie, A. et al. Increased sensitivity after repeated stimulation of residual spatial channels in blindsight. Proc. Natl Acad. Sci. USA 103, 14971–14976 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Julkunen, L., Tenovuo, O., Jääskeläinen, S. & Hämäläinen, H. Rehabilitation of chronic post-stroke visual field defect with computer-assisted training. Restor. Neurol. Neurosci. 21, 19–28 (2003).

    PubMed  Google Scholar 

  55. Julkunen, L. et al. Functional brain imaging, clinical and neurphysiological outcome of visual rehabilitation in a chronic stroke patient. Restor. Neurol. Neurosci. 24, 123–132 (2006).

    PubMed  Google Scholar 

  56. Hyvärinen, L., Raninen, A. N. & Näsänen, R. E. Vision rehabilitation in homonymous hemianopia. J. Neuroophthalmol. 27, 97–102 (2002).

    Article  Google Scholar 

  57. Huxlin, K. R. et al. Perceptual relearning of complex visual motion after V1 damage in humans. J. Neurosci. 29, 3981–3991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mackensen, G. Examining the ability to read as clinical functional analysis [German]. Fortschr. Augenheilk. 12, 344–379 (1962).

    Google Scholar 

  59. Lovie-Kitchin, J., Mainstone, J. M., Riobinson, J. & Brown, B. What areas of the visual field are important for mobility in low vision patients? Clin. Vision Sci. 5, 249–263 (1990).

    Google Scholar 

  60. Reinhard, J. et al. Does visual restitution training change absolute homonymous visual field defects? A fundus controlled study. Br. J. Ophthalmol. 89, 30–35 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sabel, B. A., Kenkel, S. & Kasten, E. Vision restoration therapy (VRT) efficacy as assessed by comparative perimetric analysis and subjective questionnaires. Restor. Neurol. Neurosci. 22, 399–420 (2004).

    PubMed  Google Scholar 

  62. Kasten, E., Guenther, T. & Sabel, B. A. Inverse stimuli in perimetric performance reveal larger visual field defects: implications for vision restoration. Restor. Neurol. Neurosci. 26, 355–364 (2008).

    PubMed  Google Scholar 

  63. Kasten, E., Bunzenthal, U. & Sabel, B. A. Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: an eye tracker study. Behav. Brain Res. 175, 18–26 (2006).

    Article  PubMed  Google Scholar 

  64. Mueller, I., Poggel, D. A., Kenkel, S., Kasten, E. & Sabel, B. A. Vision restoration therapy after brain damage: subjective improvements of activities of daily life and their relationship to visual field enlargements. Vis. Impair. Res. 5, 157–178 (2003).

    Article  Google Scholar 

  65. Bosley, T. M. et al. Ischemic lesions of the occipital cortex and optic radiations: positron emission tomography. Neurology 35, 470–484 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. Poggel, D. A., Mueller, I., Kasten, E. & Sabel, B. A. Multifactorial predictors and outcome variables of vision restoration training in patients with post-geniculate visual field loss. Restor. Neurol. Neurosci. 26, 321–339 (2008).

    PubMed  Google Scholar 

  67. Pambakian, A. L. M. & Kennard, C. Can visual function be restored in patients with homonymous hemianopia? Br. J. Ophthalmol. 81, 324–328 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schreiber, A. et al. Effect of visual restitution training on absolute homonymous scotomas. Neurology 67, 143–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Horton, J. C. Disappointing results from Nova Vision's visual restoration therapy. Br. J. Ophthalmol. 89, 1–2 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Horton, J. C. Vision restoration therapy: confounded by eye movements. Br. J. Ophthalmol. 89, 792–794 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Plant, G. T. A work out for hemianopia. Br. J. Ophthalmol. 89, 2 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McFadzean, R. M. NovaVision: vision restoration therapy. Curr. Opin. Ophthalmol. 17, 498–503 (2006).

    Article  PubMed  Google Scholar 

  73. Glisson, C. C. Capturing the benefit of vision restoration therapy. Curr. Opin. Ophthalmol. 17, 504–508 (2006).

    Article  PubMed  Google Scholar 

  74. Glisson, C. C. & Galetta, S. L. Visual rehabilitation: now you see it; now you don't. Neurology 68, 1881–1882 (2007).

    Article  PubMed  Google Scholar 

  75. Zangemeister, W. H. & Oechsner, U. Adaptation to visual field defects with virtual reality scotoma in healthy subjects. In Current Oculomotor Research (Eds Becker, W., Deubel, H. & Mergner, T.) 89–92 (Kluwer, New York, 1999).

    Chapter  Google Scholar 

  76. Kerkhoff, G., Münßinger, G., Haaf, E., Eberle-Strauss, G. & Stögerer, E. Rehabilitation of homonymous scotomata in patients with postgeniculate damage of the visual system: saccadic compensation training. Restor. Neurol. Neurosci. 4, 245–254 (1992).

    CAS  PubMed  Google Scholar 

  77. Kerkhoff, G., Münßinger, G. & Meier, E. K. Neurovisual rehabilitation in cerebral blindness. Arch. Neurol. 51, 474–481 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Zihl, J. Sehen [German]. In Neuropsychologische Rehabilitation (Eds Von Cramon, D. & Zihl, J.) 105–131 (Springer, Berlin, 1988).

    Chapter  Google Scholar 

  79. Zihl, J. Visual scanning behavior in patients with homonymous hemianopia. Neuropsychologia 33, 287–303 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Nelles, G. et al. Compensatory visual field training for patients with hemianopia after stroke. Neurosci. Lett. 306, 189–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Pambakian, A. L. M., Mannan, S. K., Hodgson, T. L. & Kennard, C. Saccadic visual search training: a treatment for patients with homonymous hemianopia. J. Neurol. Neurosurg. Psychiatry 75, 1443–1448 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kooijman, A. C. et al. Compensatory viewing training improves practical fitness to drive of subjects with impaired vision. Vis. Impair. Res. 6, 1–27 (2004).

    Article  Google Scholar 

  83. Peli, E. Field expansion for homonymous hemianopia by optically induced peripheral exotropia. Optom. Vis. Sci. 9, 453–464 (2000).

    Article  Google Scholar 

  84. Gottlieb, D. D. & Miesner, N. Innovative concepts in hemianopsia and complex vision loss: low vision rehabilitation for our older population. Top. Geriatr. Rehabil. 20, 212–222 (2004).

    Article  Google Scholar 

  85. Bowers, A. R., Keeney, K. & Peli, E. Community-based trial of a peripheral prism visual field expansion device for hemianopia. Arch. Ophthalmol. 126, 657–664 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Szlyk, J. P., Seiple, W., Stelmack, J. & McMahon, T. Use of prisms for navigation and driving in hemianopic patients. Ophthalmic Physiol. Opt. 25, 128–135 (2005).

    Article  PubMed  Google Scholar 

  87. Ofen-Noy, N., Dudai, Y. & Karni, A. Skill learning in mirror reading: how repetition determines acquisition. Brain Res. Cogn. Brain Res. 17, 507–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Beaunieux, H. et al. Which processes are involved in cognitive procedural learning? Memory 14, 521–539 (2006).

    Article  PubMed  Google Scholar 

  89. Bolognini, N., Rasi, F., Coccia, M. & Làdavas, E. Visual search improvement in hemianopic patients after audio-visual stimulation. Brain 128, 2830–2842 (2005).

    Article  PubMed  Google Scholar 

  90. Passamonti, C., Bertini, C. & Làdavas, E. Audio-visual stimulation improves oculomotor patterns in patients with hemianopia. Neuropsychologia 47, 546–555 (2009).

    Article  PubMed  Google Scholar 

  91. Schuett, S., Kentridge, R. W., Zihl, J. & Heywood, C. A. Adaptation of eye movements to simulated hemianopia in reading and visual exploration: transfer or specificity? Neuropsychologia 47, 1712–1720 (2009).

    Article  PubMed  Google Scholar 

  92. Clare, L. & Jones, R. S. P. Errorless learning in the rehabilitation of memory impairment: a critical review. Neuropsychol. Rev. 18, 1–23 (2008).

    Article  PubMed  Google Scholar 

  93. Mount, J. et al. Trial and error versus errorless learning of functional skills in patients with acute stroke. NeuroRehabilitation 22, 123–132 (2007).

    Article  PubMed  Google Scholar 

  94. Ownsworth, T. & Clare, L. The association between awareness deficits and rehabilitation outcome following acquired brain injury. Clin. Psychol. Rev. 26, 783–795 (2006).

    Article  PubMed  Google Scholar 

  95. Fleming, J. M. & Ownsworth, T. A review of awareness interventions in brain injury rehabilitation. Neuropsychol. Rehabil. 16, 474–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Bisiach, E., Vallar, G., Perani, D., Papagno, C. & Berti, A. Unawareness of disease following lesions of the right hemisphere: anosognosia for hemiplegia and anosognosia for hemianopia. Neuropsychologia 24, 471–482 (1986).

    Article  CAS  PubMed  Google Scholar 

  97. Vallar, G. & Ronchi, R. Anosognosia for motor and sensory deficits after unilateral brain damage: a review. Restor. Neurol. Neurosci. 24, 247–257 (2006).

    PubMed  Google Scholar 

  98. Celesia, G. G., Brigell, M. G. & Vaphiades, M. S. Hemianopic anosognosia. Neurology 49, 88–97 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Koehler, P. J., Endtz, L. J., Te Velde, J. & Hekster, R. E. M. Aware or non-aware: on the significance of awareness for the localization of the lesion responsible for homonymous hemianopia. J. Neurol. Sci. 75, 255–262 (1986).

    Article  CAS  PubMed  Google Scholar 

  100. Levine, D. N. Unawareness of visual and sensorimotor defects: a hypothesis. Brain Cogn. 13, 233–281 (1990).

    Article  CAS  PubMed  Google Scholar 

  101. Orfei, M. D., Caltagironea, C. & Spallettaa, G. The evaluation of anosognosia in stroke patients. Cerebrovasc. Dis. 27, 280–289 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Hadidi, N., Treat-Jacobson, D. J. & Lindquist, R. Poststroke depression and functional outcome: a critical review of literature. Heart Lung 38, 151–162 (2009).

    Article  PubMed  Google Scholar 

  103. Zihl, J. & Priglinger, S. Sehstörungen bei Kindern: Diagnostik und Frühförderung (Springer, Wien, 2002).

    Book  Google Scholar 

  104. Kedar, S., Zhang, X., Lynn, M. J., Newman, N. J. & Biousse, V. Pediatric homonymous hemianopia. J. AAPOS 10, 249–252 (2006).

    Article  PubMed  Google Scholar 

  105. Nelles, G. et al. Saccade induced cortical activation in patients with post-stroke visual field defects. J. Neurol. 254, 1432–1459 (2007).

    Article  Google Scholar 

  106. Kassubek, J., Schmidtke, K., Kimmig, H., Lücking, C. H. & Greenlee, M. W. Changes in cortical activation during mirror reading before and after training: an fMRI study of procedural learning. Brain Res. Cogn. Brain Res. 10, 207–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Poldrack, R. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. The neural basis of visual skill learning: an fMRI study of mirror reading. Cereb. Cortex 8, 1–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Poldrack, R. A. & Gabrieli, J. D. E. Characterizing the neural mechanisms of skill learning and repetition priming: evidence from mirror reading. Brain 124, 67–82 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Josef Zihl and the four peer reviewers for their insightful comments and suggestions on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Schuett.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuett, S. The rehabilitation of hemianopic dyslexia. Nat Rev Neurol 5, 427–437 (2009). https://doi.org/10.1038/nrneurol.2009.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.97

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing