Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Use of oral anticoagulants in patients with atrial fibrillation and renal dysfunction

Key Points

  • Atrial fibrillation (AF) and chronic kidney disease (CKD) share common risk factors, including older age, hypertension and diabetes mellitus.

  • CKD increases the risk of incident AF, whereas AF increases the risk of development and progression of CKD.

  • AF and CKD are associated with an increased risk of thromboembolic events; patients with severe CKD also exhibit a paradoxical increase in bleeding risk.

  • In trials that compared non-vitamin K antagonist oral anticoagulants (NOACs) with warfarin, the relative efficacy and safety of NOACs were consistent in patients with and without mild or moderate CKD.

  • Patients with end-stage renal disease (ESRD) were excluded from NOAC trials; these patients are at high risk of thromboembolism and bleeding, but no high-quality evidence exists to guide their management.

  • In patients with ESRD, vitamin K antagonists might increase the risk of bleeding and thrombotic events; however, good anticoagulation control might reduce the risk of ischaemic stroke without increasing bleeding risk.

Abstract

Atrial fibrillation (AF) and chronic kidney disease (CKD) are increasingly prevalent in the general population and share common risk factors such as older age, hypertension and diabetes mellitus. The presence of CKD increases the risk of incident AF, and, likewise, AF increases the risk of CKD development and/or progression. Both conditions are associated with substantial thromboembolic risk, but patients with advanced CKD also exhibit a paradoxical increase in bleeding risk. In the landmark randomized clinical trials that compared non-vitamin K antagonist oral anticoagulants (NOACs) with warfarin for thromboprophylaxis in patients with AF, the efficacy and safety of NOACs in patients with mild-to-moderate CKD were similar to those in patients without CKD. Dose adjustment of NOACs as per the prescribing label is required in this population. Owing to limited trial data, evidence-based recommendations for the management of patients with AF and severe CKD or end-stage renal disease on dialysis are lacking. Observational cohort studies have reported conflicting results, and the management of these particularly vulnerable patients remains challenging and requires careful assessment of stroke and bleeding risk and, where appropriate, use of warfarin with good-quality anticoagulation control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathophysiology of prohaemorrhagic conditions in patients with CKD.
Figure 2: The pathophysiology of prothrombotic conditions in patients with AF and CKD.
Figure 3: Algorithm for the use of oral anticoagulant therapy in patients with AF and CKD.

Similar content being viewed by others

References

  1. Hill, N. R. et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PloS One 11, e0158765 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  3. Benjamin, E. J. et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation 135, e146–e603 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Lip, G. Y. et al. Atrial fibrillation. Nat. Rev. Dis. Primers 2, 16016 (2016).

    Article  PubMed  Google Scholar 

  5. Baber, U. et al. Association of chronic kidney disease with atrial fibrillation among adults in the United States: REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Circul. Arrhythmia Electrophysiol. 4, 26–32 (2011).

    Article  Google Scholar 

  6. Liao, J. N. et al. Incidence and risk factors for new-onset atrial fibrillation among patients with end-stage renal disease undergoing renal replacement therapy. Kidney Int. 87, 1209–1215 (2015).

    Article  PubMed  Google Scholar 

  7. Soliman, E. Z. et al. Chronic kidney disease and prevalent atrial fibrillation: the Chronic Renal Insufficiency Cohort (CRIC). Am. Heart J. 159, 1102–1107 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alonso, A. et al. Chronic kidney disease is associated with the incidence of atrial fibrillation: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 123, 2946–2953 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ohyama, Y., Imai, M. & Kurabayashi, M. Estimated glomerular filtration rate and proteinuria are separately and independently associated with the prevalence of atrial fibrillation in general population. PloS One 8, e79717 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suzuki, S. et al. Estimated glomerular filtration rate and proteinuria are associated with persistent form of atrial fibrillation: analysis in Japanese patients. J. Cardiol. 61, 53–57 (2013).

    Article  PubMed  Google Scholar 

  11. McManus, D. D., Corteville, D. C., Shlipak, M. G., Whooley, M. A. & Ix, J. H. Relation of kidney function and albuminuria with atrial fibrillation (from the Heart and Soul Study). Am. J. Cardiol. 104, 1551–1555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nelson, S. E., Shroff, G. R., Li, S. & Herzog, C. A. Impact of chronic kidney disease on risk of incident atrial fibrillation and subsequent survival in medicare patients. J. Am. Heart Assoc. 1, e002097 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bansal, N. et al. Incident atrial fibrillation and risk of end-stage renal disease in adults with chronic kidney disease. Circulation 127, 569–574 (2013).

    Article  PubMed  Google Scholar 

  14. Guo, Y. et al. Sequential changes in renal function and the risk of stroke and death in patients with atrial fibrillation. Int. J. Cardiol. 168, 4678–4684 (2013).

    Article  PubMed  Google Scholar 

  15. Watanabe, H. et al. Close bidirectional relationship between chronic kidney disease and atrial fibrillation: the Niigata preventive medicine study. Am. Heart J. 158, 629–636 (2009).

    Article  PubMed  Google Scholar 

  16. Zimmerman, D. et al. Systematic review and meta-analysis of incidence, prevalence and outcomes of atrial fibrillation in patients on dialysis. Nephrol., Dialysis Transplant. 27, 3816–3822 (2012).

    Article  CAS  Google Scholar 

  17. Kirchhof, P. et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016).

    Article  PubMed  Google Scholar 

  18. January, C. T. et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. College Cardiol. 64, e1–76 (2014).

    Article  Google Scholar 

  19. Bos, M. J., Koudstaal, P. J., Hofman, A. & Breteler, M. M. Decreased glomerular filtration rate is a risk factor for hemorrhagic but not for ischemic stroke: the Rotterdam Study. Stroke; J. Cerebral Circul. 38, 3127–3132 (2007).

    Article  Google Scholar 

  20. Iseki, K., Kinjo, K., Kimura, Y., Osawa, A. & Fukiyama, K. Evidence for high risk of cerebral hemorrhage in chronic dialysis patients. Kidney Int. 44, 1086–1090 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Ovbiagele, B. et al. Association of chronic kidney disease with cerebral microbleeds in patients with primary intracerebral hemorrhage. Stroke; J. Cerebral Circul. 44, 2409–2413 (2013).

    Article  Google Scholar 

  22. Sood, P. et al. Chronic kidney disease and end-stage renal disease predict higher risk of mortality in patients with primary upper gastrointestinal bleeding. Am. J. Nephrol. 35, 216–224 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Kuo, C. C., Kuo, H. W., Lee, I. M., Lee, C. T. & Yang, C. Y. The risk of upper gastrointestinal bleeding in patients treated with hemodialysis: a population-based cohort study. BMC Nephrol. 14, 15 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Luo, J. C. et al. Nonpeptic ulcer, nonvariceal gastrointestinal bleeding in hemodialysis patients. Am. J. Med. 126, 264.e25–264.e32 (2013).

    Article  Google Scholar 

  25. Connolly, S. J. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Patel, M. R. et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 365, 883–891 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Granger, C. B. et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 365, 981–992 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Giugliano, R. P. et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 369, 2093–2104 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Stroke Prevention in Atrial Fibrillation Investigators. Adjusted-dose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation: Stroke Prevention in Atrial Fibrillation III randomised clinical trial. Lancet 348, 633–638 (1996).

  30. Hart, R. G., Pearce, L. A., Asinger, R. W. & Herzog, C. A. Warfarin in atrial fibrillation patients with moderate chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 2599–2604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vassalotti, J. A., Li, S., McCullough, P. A. & Bakris, G. L. Kidney early evaluation program: a community-based screening approach to address disparities in chronic kidney disease. Semin. Nephrol. 30, 66–73 (2010).

    Article  PubMed  Google Scholar 

  32. Minutolo, R. et al. Detection and awareness of moderate to advanced CKD by primary care practitioners: a cross-sectional study from Italy. Am. J. Kidney Dis. 52, 444–453 (2008).

    Article  PubMed  Google Scholar 

  33. Plantinga, L. C. et al. Patient awareness of chronic kidney disease: trends and predictors. Arch. Internal Med. 168, 2268–2275 (2008).

    Article  Google Scholar 

  34. Chugh, S. S. et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129, 837–847 (2014).

    Article  PubMed  Google Scholar 

  35. Freedman, B., Potpara, T. S. & Lip, G. Y. Stroke prevention in atrial fibrillation. Lancet 388, 806–817 (2016).

    Article  PubMed  Google Scholar 

  36. Lau, Y. C., Proietti, M., Guiducci, E., Blann, A. D. & Lip, G. Y. H. Atrial fibrillation and thromboembolism in patients with chronic kidney disease. J. Am. College Cardiol. 68, 1452–1464 (2016).

    Article  Google Scholar 

  37. Hobbs, F. D. et al. A randomised controlled trial and cost-effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in people aged 65 and over. The SAFE study. Health Technol. Assess. 9, iii–iv, ix–x, 1–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Goldstein, B. A. et al. Trends in the incidence of atrial fibrillation in older patients initiating dialysis in the United States. Circulation 126, 2293–2301 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Buiten, M. S. et al. The dialysis procedure as a trigger for atrial fibrillation: new insights in the development of atrial fibrillation in dialysis patients. Heart 100, 685–690 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Lentine, K. L. et al. Incidence, predictors, and associated outcomes of atrial fibrillation after kidney transplantation. Clin. J. Am. Soc. Nephrol. 1, 288–296 (2006).

    Article  PubMed  Google Scholar 

  41. Schnabel, R. B. et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet 386, 154–162 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bansal, N., Hsu, C. Y. & Go, A. S. Intersection of cardiovascular disease and kidney disease: atrial fibrillation. Curr. Opin. Nephrol. Hypertens. 23, 275–282 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Foley, R. N., Curtis, B. M., Randell, E. W. & Parfrey, P. S. Left ventricular hypertrophy in new hemodialysis patients without symptomatic cardiac disease. Clin. J. Am. Soc. Nephrol. 5, 805–813 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levin, A. & Foley, R. N. Cardiovascular disease in chronic renal insufficiency. Am. J. Kidney Dis. 36, S24–S30 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Bansal, N. et al. A longitudinal study of left ventricular function and structure from CKD to ESRD: the CRIC study. Clin. J. Am. Soc. Nephrol. 8, 355–362 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Eckardt, K. U. et al. Left ventricular geometry predicts cardiovascular outcomes associated with anemia correction in CKD. J. Am. Soc. Nephrol. 20, 2651–2660 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Foley, R. N. et al. Serial change in echocardiographic parameters and cardiac failure in end-stage renal disease. J. Am. Soc. Nephrol. 11, 912–916 (2000).

    CAS  PubMed  Google Scholar 

  48. Yamamoto, K. T. et al. Dietary phosphorus is associated with greater left ventricular mass. Kidney Int. 83, 707–714 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gutierrez, O. M. et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119, 2545–2552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Melamed, M. L. & Thadhani, R. I. Vitamin D therapy in chronic kidney disease and end stage renal disease. Clin. J. Am. Soc. Nephrol. 7, 358–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ketteler, M., Schlieper, G. & Floege, J. Calcification and cardiovascular health: new insights into an old phenomenon. Hypertension 47, 1027–1034 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Ochodnicky, P., Henning, R. H., van Dokkum, R. P. & de Zeeuw, D. Microalbuminuria and endothelial dysfunction: emerging targets for primary prevention of end-organ damage. J. Cardiovasc. Pharmacol. 47 (Suppl. 2), S151–S162; discussion S172-156 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Krane, V. & Wanner, C. Statins, inflammation and kidney disease. Nat. Rev. Nephrol. 7, 385–397 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Gupta, J. et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol.: CJASN 7, 1938–1946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Upadhyay, A. et al. Inflammation, kidney function and albuminuria in the Framingham Offspring cohort. Nephrol. Dialysis Transplant. 26, 920–926 (2011).

    Article  CAS  Google Scholar 

  56. Khatib, R., Joseph, P., Briel, M., Yusuf, S. & Healey, J. Blockade of the renin-angiotensin-aldosterone system (RAAS) for primary prevention of non-valvular atrial fibrillation: a systematic review and meta analysis of randomized controlled trials. Int. J. Cardiol. 165, 17–24 (2013).

    Article  PubMed  Google Scholar 

  57. Schlaich, M. P. et al. Sympathetic activation in chronic renal failure. J. Am. Soc. Nephrol. 20, 933–939 (2009).

    Article  PubMed  Google Scholar 

  58. Pecoits-Filho, R. et al. Associations between circulating inflammatory markers and residual renal function in CRF patients. Am. J. Kidney Dis. 41, 1212–1218 (2003).

    Article  Google Scholar 

  59. Bansal, N. et al. Atrial Fibrillation and Risk of ESRD in Adults with CKD. Clin. J. Am. Soc. Nephrol. 11, 1189–1196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goette, A. et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Europace 18, 1455–1490 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen, S. C. et al. Echocardiographic parameters are independently associated with rate of renal function decline and progression to dialysis in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 2750–2758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olesen, J. B. et al. Stroke and bleeding in atrial fibrillation with chronic kidney disease. N. Engl. J. Med. 367, 625–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Banerjee, A. et al. A prospective study of estimated glomerular filtration rate and outcomes in patients with atrial fibrillation: the Loire Valley Atrial Fibrillation Project. Chest 145, 1370–1382 (2014).

    Article  PubMed  Google Scholar 

  64. Friberg, L., Rosenqvist, M. & Lip, G. Y. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. Eur. Heart J. 33, 1500–1510 (2012).

    Article  PubMed  Google Scholar 

  65. Go, A. S. et al. Impact of proteinuria and glomerular filtration rate on risk of thromboembolism in atrial fibrillation: the anticoagulation and risk factors in atrial fibrillation (ATRIA) study. Circulation 119, 1363–1369 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wetmore, J. B. et al. Atrial fibrillation and risk of stroke in dialysis patients. Ann. Epidemiol. 23, 112–118 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wetmore, J. B. et al. Stroke and the “stroke belt” in dialysis: contribution of patient characteristics to ischemic stroke rate and its geographic variation. J. Am. Soc. Nephrol. 24, 2053–2061 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wizemann, V. et al. Atrial fibrillation in hemodialysis patients: clinical features and associations with anticoagulant therapy. Kidney Int. 77, 1098–1106 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Lenihan, C. R., Montez-Rath, M. E., Scandling, J. D., Turakhia, M. P. & Winkelmayer, W. C. Outcomes after kidney transplantation of patients previously diagnosed with atrial fibrillation. Am. J. Transplant 13, 1566–1575 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, K. W. et al. Different peptic ulcer bleeding risk in chronic kidney disease and end-stage renal disease patients receiving different dialysis. Dig. Dis. Sci. 59, 807–813 (2014).

    Article  PubMed  Google Scholar 

  71. Jalal, D. I., Chonchol, M. & Targher, G. Disorders of hemostasis associated with chronic kidney disease. Semin. Thromb. Hemost 36, 34–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Molino, D., De Lucia, D. & Gaspare De Santo, N. Coagulation disorders in uremia. Semin. Nephrol. 26, 46–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Lutz, J., Menke, J., Sollinger, D., Schinzel, H. & Thurmel, K. Haemostasis in chronic kidney disease. Nephrol, Dialysis Transplant. 29, 29–40 (2014).

    Article  CAS  Google Scholar 

  74. Calenda, B. W., Fuster, V., Halperin, J. L. & Granger, C. B. Stroke risk assessment in atrial fibrillation: risk factors and markers of atrial myopathy. Nature reviews. Cardiology 13, 549–559 (2016).

    CAS  PubMed  Google Scholar 

  75. Watson, T., Shantsila, E. & Lip, G. Y. Mechanisms of thrombogenesis in atrial fibrillation: Virchow's triad revisited. Lancet 373, 155–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Keller, C., Katz, R., Cushman, M., Fried, L. F. & Shlipak, M. Association of kidney function with inflammatory and procoagulant markers in a diverse cohort: a cross-sectional analysis from the Multi-Ethnic Study of Atherosclerosis (MESA). BMC Nephrol. 9, 9 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Healey, J. S., Morillo, C. A. & Connolly, S. J. Role of the renin-angiotensin-aldosterone system in atrial fibrillation and cardiac remodeling. Curr. Opin. Cardiol. 20, 31–37 (2005).

    PubMed  Google Scholar 

  78. Chue, C. D., Townend, J. N., Steeds, R. P. & Ferro, C. J. Arterial stiffness in chronic kidney disease: causes and consequences. Heart 96, 817–823 (2010).

    Article  PubMed  Google Scholar 

  79. Wang, M. C., Tsai, W. C., Chen, J. Y. & Huang, J. J. Stepwise increase in arterial stiffness corresponding with the stages of chronic kidney disease. Am. J. Kidney Dis. 45, 494–501 (2005).

    Article  PubMed  Google Scholar 

  80. Carrero, J. J. et al. Prolactin levels, endothelial dysfunction, and the risk of cardiovascular events and mortality in patients with CKD. Clin. J. Am. Soc. Nephrol. 7, 207–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ghosh, A. K. & Vaughan, D. E. PAI-1 in tissue fibrosis. J. Cell. Physiol. 227, 493–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sobel, B. E., Taatjes, D. J. & Schneider, D. J. Intramural plasminogen activator inhibitor type-1 and coronary atherosclerosis. Arterioscler Thromb. Vasc. Biol. 23, 1979–1989 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Mercier, E. et al. Tissue factor coagulation pathway and blood cells activation state in renal insufficiency. Hematol. J. 2, 18–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Lip, G., Freedman, B., De Caterina, R. & Potpara, T. S. Stroke prevention in atrial fibrillation: Past, present and future. Comparing the guidelines and practical decision-making. Thromb. Haemostasis 117, 1230–1239 (2017).

    Article  Google Scholar 

  85. Dahal, K., Kunwar, S., Rijal, J., Schulman, P. & Lee, J. Stroke, major bleeding, and mortality outcomes in warfarin users with atrial fibrillation and chronic kidney disease: a meta-analysis of observational studies. Chest 149, 951–959 (2016).

    Article  PubMed  Google Scholar 

  86. Tan, J., Liu, S., Segal, J. B., Alexander, G. C. & McAdams-DeMarco, M. Warfarin use and stroke, bleeding and mortality risk in patients with end stage renal disease and atrial fibrillation: a systematic review and meta-analysis. BMC Nephrol. 17, 157 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Chan, K. E., Lazarus, J. M., Thadhani, R. & Hakim, R. M. Warfarin use associates with increased risk for stroke in hemodialysis patients with atrial fibrillation. J. Am. Soc. Nephrol. 20, 2223–2233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Winkelmayer, W. C., Liu, J., Setoguchi, S. & Choudhry, N. K. Effectiveness and safety of warfarin initiation in older hemodialysis patients with incident atrial fibrillation. Clin. J. Am. Soc. Nephrol. 6, 2662–2668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Keskar, V. et al. The association of anticoagulation, ischemic stroke, and hemorrhage in elderly adults with chronic kidney disease and atrial fibrillation. Kidney Int. 91, 928–936 (2017).

    Article  PubMed  Google Scholar 

  90. Shen, J. I. et al. Outcomes after warfarin initiation in a cohort of hemodialysis patients with newly diagnosed atrial fibrillation. Am. J. Kidney Dis. 66, 677–688 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Knoll, F. et al. Coumarins and survival in incident dialysis patients. Nephrol. Dialysis Transplant. 27, 332–337 (2012).

    Article  CAS  Google Scholar 

  92. Chen, J. J. et al. Anti-platelet or anti-coagulant agent for the prevention of ischemic stroke in patients with end-stage renal disease and atrial fibrillation — a nation-wide database analyses. Int. J. Cardiol. 177, 1008–1011 (2014).

    Article  PubMed  Google Scholar 

  93. Chan, P. H. et al. Ischaemic stroke in patients with atrial fibrillation with chronic kidney disease undergoing peritoneal dialysis. Europace 18, 665–671 (2016).

    Article  PubMed  Google Scholar 

  94. Bonde, A. N. et al. Net clinical benefit of antithrombotic therapy in patients with atrial fibrillation and chronic kidney disease: a nationwide observational cohort study. J. Am. College Cardiol. 64, 2471–2482 (2014).

    Article  CAS  Google Scholar 

  95. Genovesi, S. et al. Warfarin use, mortality, bleeding and stroke in haemodialysis patients with atrial fibrillation. Nephrol, Dialysis Transplant. 30, 491–498 (2015).

    Article  CAS  Google Scholar 

  96. Findlay, M. D. et al. Risk factors of ischemic stroke and subsequent outcome in patients receiving hemodialysis. Stroke 46, 2477–2481 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Abbott, K. C., Trespalacios, F. C., Taylor, A. J. & Agodoa, L. Y. Atrial fibrillation in chronic dialysis patients in the United States: risk factors for hospitalization and mortality. BMC Nephrol. 4, 1 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Friberg, L., Benson, L. & Lip, G. Y. Balancing stroke and bleeding risks in patients with atrial fibrillation and renal failure: the Swedish Atrial Fibrillation Cohort study. Eur. Heart J. 36, 297–306 (2015).

    Article  PubMed  Google Scholar 

  99. Sjogren, V. et al. Safety and efficacy of well managed warfarin. A Rep. From Swedish Qual. Register Auricula. Thromb. Haemost. 113, 1370–1377 (2015).

    Article  PubMed  Google Scholar 

  100. Proietti, M., Lane, D. A. & Lip, G. Y. Chronic kidney disease, time in therapeutic range and adverse clinical outcomes in anticoagulated patients with non-valvular atrial fibrillation: observations from the SPORTIF trials. EBioMedicine 8, 309–316 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bonde, A. N. et al. Effect of reduced renal function on time in therapeutic range among anticoagulated atrial fibrillation patients. J. Am. College Cardiol. 69, 752–753 (2017).

    Article  Google Scholar 

  102. Yang, F. et al. Warfarin utilisation and anticoagulation control in patients with atrial fibrillation and chronic kidney disease. Heart 103, 818–826 (2017).

    Article  PubMed  Google Scholar 

  103. Garcia, D. A., Lopes, R. D. & Hylek, E. M. New-onset atrial fibrillation and warfarin initiation: high risk periods and implications for new antithrombotic drugs. Thromb. Haemostasis 104, 1099–1105 (2010).

    Article  CAS  Google Scholar 

  104. Jun, M. et al. The association between kidney function and major bleeding in older adults with atrial fibrillation starting warfarin treatment: population based observational study. BMJ 350, h246 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Andrews, J. et al. Warfarin use is associated with progressive coronary arterial calcification: insights from serial intravascular ultrasound. JACC Cardiovasc. Imag. https://doi.org/10.1016/j.jcmg.2017.04.010 (2017).

    PubMed  Google Scholar 

  106. Koos, R. et al. Relation of circulating Matrix Gla-Protein and anticoagulation status in patients with aortic valve calcification. Thromb. Haemostasis 101, 706–713 (2009).

    Article  CAS  Google Scholar 

  107. Brodsky, S. V. et al. Warfarin-related nephropathy occurs in patients with and without chronic kidney disease and is associated with an increased mortality rate. Kidney Int. 80, 181–189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, Y., Liu, T., Zhao, J. & Li, G. Warfarin-related nephropathy: prevalence, risk factors and prognosis. Int. J. Cardiol. 176, 1297–1298 (2014).

    Article  PubMed  Google Scholar 

  109. Galloway, P. A. et al. Vitamin K antagonists predispose to calciphylaxis in patients with end-stage renal disease. Nephron 129, 197–201 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Mazurek, M. et al. Regional Differences in Antithrombotic Treatment for Atrial Fibrillation: Insights from the GLORIA-AF Phase II Registry. Thromb. Haemostasis 117, 2376–2388 (2017).

    Article  Google Scholar 

  111. Ruff, C. T. et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383, 955–962 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Raparelli, V. et al. Adherence to oral anticoagulant therapy in patients with atrial fibrillation. Focus on non-vitamin K antagonist oral anticoagulants. Thromb. Haemostasis 117, 209–218 (2017).

    Article  Google Scholar 

  113. Hijazi, Z. et al. Efficacy and safety of dabigatran compared with warfarin in relation to baseline renal function in patients with atrial fibrillation: a RE-LY (Randomized Evaluation of Long-term Anticoagulation Therapy) trial analysis. Circulation 129, 961–970 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Fox, K. A. et al. Prevention of stroke and systemic embolism with rivaroxaban compared with warfarin in patients with non-valvular atrial fibrillation and moderate renal impairment. Eur. Heart J. 32, 2387–2394 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Hohnloser, S. H. et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. Eur. Heart J. 33, 2821–2830 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Bohula, E. A. et al. Impact of renal function on outcomes with edoxaban in the ENGAGE AF-TIMI 48 Trial. Circulation 134, 24–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Nielsen, P. B., Lane, D. A., Rasmussen, L. H., Lip, G. Y. & Larsen, T. B. Renal function and non-vitamin K oral anticoagulants in comparison with warfarin on safety and efficacy outcomes in atrial fibrillation patients: a systemic review and meta-regression analysis. Clin. Res. Cardiol. 104, 418–429 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Hijazi, Z. et al. Efficacy and Safety of Apixaban Compared With Warfarin in Patients With Atrial Fibrillation in Relation to Renal Function Over Time: Insights From the ARISTOTLE Randomized Clinical Trial. JAMA Cardiol. 1, 451–460 (2016).

    Article  PubMed  Google Scholar 

  119. Fordyce, C. B. et al. On-treatment outcomes in patients with worsening renal function with rivaroxaban compared with warfarin: insights from ROCKET AF. Circulation 134, 37–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Bohm, M. et al. Changes in renal function in patients with atrial fibrillation: an analysis from the RE-LY trial. J. Am. College Cardiol. 65, 2481–2493 (2015).

    Article  Google Scholar 

  121. Chan, Y. H. et al. Acute Kidney Injury in Asians With Atrial Fibrillation Treated With Dabigatran or Warfarin. J. Am. College Cardiol. 68, 2272–2283 (2016).

    Article  CAS  Google Scholar 

  122. Heidbuchel, H. et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace. 17, 1467–1507 (2015).

    Article  PubMed  Google Scholar 

  123. Food & Drug Administration, U. S. FDA approved drug products: label information for PRADAXA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022512s009lbl.pdf Vol. 2018.

  124. Food & Drug Administration, U. S. FDA approved drug products: label information for ELIQUIS. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/202155s012lbl.pdf Vol. 2018.

  125. Wang, X. et al. Pharmacokinetics, pharmacodynamics, and safety of apixaban in subjects with end-stage renal disease on hemodialysis. J. Clin. Pharmacol. 56, 628–636 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Stangier, J., Rathgen, K., Stahle, H. & Mazur, D. Influence of renal impairment on the pharmacokinetics and pharmacodynamics of oral dabigatran etexilate: an open-label, parallel-group, single-centre study. Clin. Pharmacokinet. 49, 259–268 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Mavrakanas, T. A., Samer, C. F., Nessim, S. J., Frisch, G. & Lipman, M. L. Apixaban Pharmacokinetics at Steady State in Hemodialysis Patients. J. Am. Soc. Nephrol. 28, 2241–2248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. De Vriese, A. S. et al. Dose-finding study of rivaroxaban in hemodialysis patients. Am. J. Kidney Dis. 66, 91–98 (2015).

    Article  CAS  Google Scholar 

  129. Koretsune, Y. et al. Short-term safety and plasma concentrations of edoxaban in Japanese patients with non-valvular atrial fibrillation and severe renal impairment. Circ. J. 79, 1486–1495 (2015).

    Article  PubMed  Google Scholar 

  130. Food & Drug Administration, U. S. FDA approved drug products: label information for SAVAYSA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/206316s012lbl.pdf Vol. 2018.

  131. Chan, K. E., Edelman, E. R., Wenger, J. B., Thadhani, R. I. & Maddux, F. W. Dabigatran and rivaroxaban use in atrial fibrillation patients on hemodialysis. Circulation 131, 972–979 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yao, X., Shah, N. D., Sangaralingham, L. R., Gersh, B. J. & Noseworthy, P. A. Non-vitamin K antagonist oral anticoagulant dosing in patients with atrial fibrillation and renal dysfunction. J. Am. College Cardiol. 69, 2779–2790 (2017).

    Article  CAS  Google Scholar 

  133. Olesen, J. B., Torp-Pedersen, C., Hansen, M. L. & Lip, G. Y. The value of the CHA2DS2-VASc score for refining stroke risk stratification in patients with atrial fibrillation with a CHADS2 score 0-1: a nationwide cohort study. Thromb. Haemostasis 107, 1172–1179 (2012).

    Article  CAS  Google Scholar 

  134. Piccini, J. P. et al. Renal dysfunction as a predictor of stroke and systemic embolism in patients with nonvalvular atrial fibrillation: validation of the R(2)CHADS(2) index in the ROCKET AF (Rivaroxaban Once-daily, oral, direct factor Xa inhibition Compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation) and ATRIA (AnTicoagulation and Risk factors In Atrial fibrillation) study cohorts. Circulation 127, 224–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Banerjee, A. et al. Renal impairment and ischemic stroke risk assessment in patients with atrial fibrillation: the Loire Valley Atrial Fibrillation Project. J. Am. College Cardiol. 61, 2079–2087 (2013).

    Article  Google Scholar 

  136. Roldan, V. et al. Does chronic kidney disease improve the predictive value of the CHADS2 and CHA2DS2-VASc stroke stratification risk scores for atrial fibrillation? Thromb. Haemostasis 109, 956–960 (2013).

    Article  CAS  Google Scholar 

  137. Apostolakis, S., Guo, Y., Lane, D. A., Buller, H. & Lip, G. Y. Renal function and outcomes in anticoagulated patients with non-valvular atrial fibrillation: the AMADEUS trial. Eur. Heart J. 34, 3572–3579 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Lip, G. Y., Nieuwlaat, R., Pisters, R., Lane, D. A. & Crijns, H. J. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 137, 263–272 (2010).

    Article  PubMed  Google Scholar 

  139. Lip, G. Y. Stroke and bleeding risk assessment in atrial fibrillation: when, how, and why? Eur. Heart J. 34, 1041–1049 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Chao, T. F. et al. Incidence and prediction of ischemic stroke among atrial fibrillation patients with end-stage renal disease requiring dialysis. Heart Rhythm. 11, 1752–1759 (2014).

    Article  PubMed  Google Scholar 

  141. Wang, T. K., Sathananthan, J., Marshall, M., Kerr, A. & Hood, C. Relationships between anticoagulation, risk scores and adverse outcomes in dialysis patients with atrial fibrillation. Heart Lung Circ. 25, 243–249 (2016).

    Article  PubMed  Google Scholar 

  142. Shih, C. J. et al. Risks of death and stroke in patients undergoing hemodialysis with new-onset atrial fibrillation: a competing-risk analysis of a nationwide cohort. Circulation 133, 265–272 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Khalid, F. et al. Impact of restarting warfarin therapy in renal disease anticoagulated patients with gastrointestinal hemorrhage. Ren. Fail. 35, 1228–1235 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Murphy, M. et al. Modified HASBLED bleeding risk score in dialysis patients with atrial Fibrillation. Circulation 132, A12014 (2015).

    Google Scholar 

  145. Yoon, C. Y. et al. Warfarin use in patients with atrial fibrillation undergoing hemodialysis: a nationwide population-based study. Stroke 48, 2472–2479 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Kittelson, J. M. et al. Bivariate evaluation of thromboembolism and bleeding in clinical trials of anticoagulants in patients with atrial fibrillation. Thromb. Haemostasis 116, 544–553 (2016).

    Article  Google Scholar 

  147. Chao, T. F. et al. Relationship of aging and incident comorbidities to stroke risk in patients with atrial fibrillation. J. Am. College Cardiol. 71, 122–132 (2018).

    Article  Google Scholar 

  148. Esteve-Pastor, M. A. et al. Assessing bleeding risk in atrial fibrillation patients: comparing a bleeding risk score based only on modifiable bleeding risk factors against the HAS-BLED Score. The AMADEUS trial. Thromb. Haemostasis 117, 2261–2266 (2017).

    Article  Google Scholar 

  149. Freedman, B. et al. Screening for atrial fibrillation: a report of the AF-SCREEN International Collaboration. Circulation 135, 1851–1867 (2017).

    Article  PubMed  Google Scholar 

  150. Herzog, C. A. et al. Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 80, 572–586 (2011).

    Article  PubMed  Google Scholar 

  151. Ageno, W. et al. Managing reversal of direct oral anticoagulants in emergency situations. Anticoagulation Education Task Force White Paper. Thromb. Haemostasis 116, 1003–1010 (2016).

    Article  Google Scholar 

  152. De Caterina, R. et al. Vitamin K antagonists in heart disease: current status and perspectives (Section III). Position paper of the ESC Working Group on Thrombosis — Task Force on Anticoagulants in Heart Disease. Thromb. Haemostasis 110, 1087–1107 (2013).

    Article  CAS  Google Scholar 

  153. Pollack, C. V. Jr. et al. Idarucizumab for dabigatran reversal. N. Engl. J. Med. 373, 511–520 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Boriani, G. et al. Chronic kidney disease in patients with cardiac rhythm disturbances or implantable electrical devices: clinical significance and implications for decision making-a position paper of the European Heart Rhythm Association endorsed by the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. Europace 17, 1169–1196 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kefer, J. et al. Impact of chronic kidney disease on left atrial appendage occlusion for stroke prevention in patients with atrial fibrillation. Int. J. Cardiol. 207, 335–340 (2016).

    Article  PubMed  Google Scholar 

  156. Potpara, T. S. et al. Management of atrial fibrillation in patients with chronic kidney disease in Europe Results of the European Heart Rhythm Association Survey. Europace. 17, 1862–1867 (2015).

    Article  PubMed  Google Scholar 

  157. Bonde, A. N. et al. Renal function, time in therapeutic range and outcomes in warfarin-treated atrial fibrillation patients: a retrospective analysis of nationwide registries. Thromb. Haemostasis 117, 2291–2299 (2017).

    Article  Google Scholar 

  158. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02886962 (2018).

  159. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02933697 (2018).

  160. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02942407 (2018).

  161. Potpara, T. S. & Lip, G. Y. Postapproval observational studies of non-vitamin K antagonist oral anticoagulants in atrial fibrillation. JAMA 317, 1115–1116 (2017).

    Article  PubMed  Google Scholar 

  162. Pisters, R. et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest 138, 1093–1100 (2010).

    Article  PubMed  Google Scholar 

  163. Ple, H. et al. Alteration of the platelet transcriptome in chronic kidney disease. Thromb. Haemostasis 108, 605–615 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for this article, wrote the text and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Gregory Y. H. Lip.

Ethics declarations

Competing interests

G.Y.H.L. is a consultant for Bayer/Janssen, BMS/Pfizer, Biotronik, Medtronic, Boehringer Ingelheim, Novartis, Verseon and Daiichi-Sankyo and a speaker for Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim and Daiichi-Sankyo. He does not personally receive any fees from these companies. T.S.P. declares no competing interests.

PowerPoint slides

Glossary

Concentric LVH

Increased left ventricle muscle mass in response to high pressure load (for example, due to chronic hypertension).

Renal microinfarcts

Small areas of renal tissue damage due to ischaemia.

Virchow's triad

The concept that three abnormalities predispose to thrombus formation: abnormal blood flow, abnormal blood constituents and abnormal vessel walls.

Left ventricular afterload

The pressure against which the heart must work to eject blood during systole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potpara, T., Ferro, C. & Lip, G. Use of oral anticoagulants in patients with atrial fibrillation and renal dysfunction. Nat Rev Nephrol 14, 337–351 (2018). https://doi.org/10.1038/nrneph.2018.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2018.19

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing