Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Paradigms of acute kidney injury in the intensive care setting

Key Points

  • Acute kidney injury (AKI) is not a single disease but a loose collection of syndromes characterized by an abrupt decrease in glomerular filtration rate

  • Broad classifications of AKI — according to the dominant aetiology (such as sepsis or nephrotoxicity) as opposed to pseudo-anatomical categories (for example, prerenal or intrarenal) — demonstrate more consistent relationships with pathophysiology and can improve therapeutic approaches

  • Broad aetiology-based classification may still be insufficient, as heterogeneity could exist at the molecular level; however, whether this heterogeneity leads to differences in response to therapy is not yet known

  • Protein biomarkers and other in vitro diagnostics are likely to have a role in both characterizing clinical phenotypes of AKI and aiding the discovery of new endophenotypes, with the ultimate goal of matching subsets of patients to effective therapeutic approaches

Abstract

Acute kidney injury (AKI) is a heterogeneous clinical syndrome that has multiple aetiologies, variable pathogenesis and diverse outcomes. However, these heterogeneities are not reflected in current approaches to the diagnosis and, to some degree, treatment of AKI. For example, congestive heart failure and dehydration can produce identical changes in serum creatinine level and urine output (parameters that are used to define AKI); however, they differ vastly in their physiological contexts and demand completely opposite treatments. AKI is often still considered to be a homogeneous clinical entity, which implies a uniform pathogenesis and a well-defined prognosis. As a consequence, efforts to find effective AKI treatments have been hampered by a lack of clear clinical classifications for various types of AKI. In addition, subclassification of AKI into subclinical phenotypes — for example, on the basis of protein biomarkers and other in vitro diagnostics that take into account disease aetiology and underlying pathogenesis — might be necessary to develop therapeutic approaches that effectively target the widely differing pathomechanisms of AKI. In this Review, we discuss the major subtypes of AKI that are associated with sepsis, major surgery, renal hypoperfusion and nephrotoxin exposure —situations that are typically seen in the intensive care setting. We consider differences and similarities in their phenotype, pathogenesis and outcomes and how this information might be used to guide treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principal pathogenic mechanisms of acute kidney injury in the context of sepsis or major surgery.
Figure 2: Principal pathogenic mechanisms of acute kidney injury in the context of global hypoperfusion.
Figure 3: Principal pathogenic mechanisms of acute kidney injury in the context of exogenous and endogenous nephrotoxins, including typical examples.
Figure 4: Potential patient outcomes following acute kidney injury.

Similar content being viewed by others

References

  1. Kellum, J. A., Bellomo, R. & Ronco, C. Kidney Attack. JAMA 307, 2265–2266 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Bedford, M., Stevens, P. E., Wheeler, T. W. K. & Farmer, C. K. T. What is the real impact of acute kidney injury? BMC Nephrol. 15, 95 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. United States Renal Data System. 2013 Annual Data Report Vol. 1 Ch. 6 (USRDS, 2013).

  4. Kane-Gill, S. L. et al. Risk factors for acute kidney injury in older adults with critical illness: a retrospective cohort study. Am. J. Kidney Dis. 65, 860–869 (2015).

    Article  PubMed  Google Scholar 

  5. Murugan, R. et al. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int. 77, 527–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Sileanu, F. E. et al. AKI in low-risk versus high-risk patients in intensive care. Clin. J. Am. Soc. Nephrol. 10, 187–196 (2015).

    Article  PubMed  Google Scholar 

  7. Pickkers, P. et al. The intensive care medicine agenda on acute kidney injury. Intensive Care Med. 8, R204–R212 (2017).

    Google Scholar 

  8. Barasch, J., Zager, R. & Bonventre, J. V. Acute kidney injury: a problem of definition. Lancet 389, 779–781 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Uchino, S. et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294, 813–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Bagshaw, S. M. et al. A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol. Dial. Transplant 23, 1203–1210 (2007).

    Article  PubMed  Google Scholar 

  11. Singbartl, K. & Kellum, J. A. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. Kidney Int. 81, 819–825 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Angus, D. C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1303–1310 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Bouchard, J. et al. A prospective international multicenter study of AKI in the intensive care unit. Clin. J. Am. Soc. Nephrol. 10, 1324–1331 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vincent, J.-L. et al. Sepsis in European intensive care units: results of the SOAP study. Crit. Care Med. 34, 344–353 (2006).

    Article  PubMed  Google Scholar 

  15. Takasu, O. et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am. J. Respir. Crit. Care Med. 187, 509–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Langenberg, C., Gobe, G., Hood, S., May, C. N. & Bellomo, R. Renal histopathology during experimental septic acute kidney injury and recovery. Crit. Care Med. 42, e58–e67 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. De Backer, D., Creteur, J., Preiser, J.-C., Dubois, M.-J. & Vincent, J.-L. Microvascular blood flow is altered in patients with sepsis. Am. J. Respir. Crit. Care Med. 166, 98–104 (2002).

    Article  PubMed  Google Scholar 

  18. Spronk, P. E. et al. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360, 1395–1396 (2002).

    Article  PubMed  Google Scholar 

  19. Donati, A. et al. The aPC treatment improves microcirculation in severe sepsis/septic shock syndrome. BMC Anesthesiol. 13, 25 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Langenberg, C., Wan, L., Egi, M., May, C. N. & Bellomo, R. Renal blood flow in experimental septic acute renal failure. Kidney Int. 69, 1996–2002 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Di Giantomasso, D., May, C. N. & Bellomo, R. Vital organ blood flow during hyperdynamic sepsis. Chest 124, 1053–1059 (2003).

    Article  PubMed  Google Scholar 

  22. Prowle, J. R. & Bellomo, R. Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin. Nephrol. 35, 64–74 (2015).

    Article  PubMed  Google Scholar 

  23. Maiden, M. J. et al. Structure and function of the kidney in septic shock. a prospective controlled Exp. Study. Am. J. Respir. Crit. Care Med. 194, 692–700 (2016).

    Article  Google Scholar 

  24. Benes, J. et al. Searching for mechanisms that matter in early septic acute kidney injury: an experimental study. Crit. Care 15, R256 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gomez, H. et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock, 41, 3–11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verma, S. K. & Molitoris, B. A. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin. Nephrol. 35, 96–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Post, E. H., Kellum, J. A., Bellomo, R. & Vincent, J.-L. Renal perfusion in sepsis: from macro- to microcirculation. Kidney Int. 91, 45–60 (2017).

    Article  PubMed  Google Scholar 

  28. Calzavacca, P., Evans, R. G., Bailey, M., Bellomo, R. & May, C. N. Cortical and medullary tissue perfusion and oxygenation in experimental septic acute kidney injury. Crit. Care Med. 43, e431–e439 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Lankadeva, Y. R. et al. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury. Kidney Int. 90, 100–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Bezemer, R. et al. Real-time assessment of renal cortical microvascular perfusion heterogeneities using near-infrared laser speckle imaging. Opt. Express 18, 15054–15061 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Casellas, D. & Mimran, A. Aglomerular pathways in intrarenal microvasculature of aged rats. Am. J. Anat. 156, 293–299 (1979).

    Article  CAS  PubMed  Google Scholar 

  32. Dellepiane, S., Marengo, M. & Cantaluppi, V. Detrimental cross-talk between sepsis and acute kidney injury: new pathogenic mechanisms, early biomarkers and targeted therapies. Crit. Care 20, 61 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ghosh, C. C. et al. Gene control of tyrosine kinase TIE2 and vascular manifestations of infections. Proc. Natl Acad. Sci. USA 113, 2472–2477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mariano, F. et al. Circulating plasma factors induce tubular and glomerular alterations in septic burns patients. Crit. Care 12, R42 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mehta, R. L. et al. Sepsis as a cause and consequence of acute kidney injury: program to improve care in acute renal disease. Intensive Care Med. 37, 241–248 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Singbartl, K. et al. Differential effects of kidney–lung cross-talk during acute kidney injury and bacterial pneumonia. Kidney Int. 80, 633–644 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnston, O., Zalunardo, N., Rose, C. & Gill, J. S. Prevention of sepsis during the transition to dialysis may improve the survival of transplant failure patients. J. Am. Soc. Nephrol. 18, 1331–1337 (2007).

    Article  PubMed  Google Scholar 

  38. Sarnak, M. J., Sarnak, M. J., Jaber, B. L. & Jaber, B. L. Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. Kidney Int. 58, 1758–1764 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Vanholder, R. & Ringoir, S. Infectious morbidity and defects of phagocytic function in end-stage renal disease: a review. J. Am. Soc. Nephrol. 3, 1541–1554 (1993).

    CAS  PubMed  Google Scholar 

  40. Winters, B. D. et al. Long-term mortality and quality of life in sepsis: a systematic review. Crit. Care Med. 38, 1276–1283 (2010).

    Article  PubMed  Google Scholar 

  41. Murugan, R. et al. Plasma inflammatory and apoptosis markers are associated with dialysis dependence and death among critically ill patients receiving renal replacement therapy. Nephrol. Dial. Transplant 29, 1854–1864 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kellum, J. A. et al. The effects of alternative resuscitation strategies on acute kidney injury in patients with septic shock. Am. J. Respir. Crit. Care Med. 193, 281–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brunner, F. P., Thiel, G., Hermle, M., Bock, H. A. & Mihatsch, M. J. Long-term enalapril and verapamil in rats with reduced renal mass. Kidney Int. 36, 969–977 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Ikoma, M., Kawamura, T., Kakinuma, Y., Fogo, A. & Ichikawa, I. Cause of variable therapeutic efficiency of angiotensin converting enzyme inhibitor on glomerular lesions. Kidney Int. 40, 195–202 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Cheng, S.-Y. et al. Losartan reduces ensuing chronic kidney disease and mortality after acute kidney injury. Sci. Rep. 6, 34265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carmichael, P. & Carmichael, A. R. Acute renal failure in the surgical setting. ANZ J. Surg. 73, 144–153 (2003).

    Article  PubMed  Google Scholar 

  47. Shusterman, N. et al. Risk factors and outcome of hospital-acquired acute renal failure. Clinical epidemiologic study. Am. J. Med. 83, 65–71 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Weiser, T. G. et al. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet 385 (Suppl. 2), S11 (2015).

    Article  PubMed  Google Scholar 

  49. Weiser, T. G. et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 372, 139–144 (2008).

    Article  PubMed  Google Scholar 

  50. Kork, F. et al. Minor postoperative increases of creatinine are associated with higher mortality and longer hospital length of stay in surgical patients. Anesthesiology 123, 1301–1311 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Korenkevych, D. et al. The pattern of longitudinal change in serum creatinine and 90-day mortality after major surgery. Ann. Surg. 263, 1219–1227 (2016).

    Article  PubMed  Google Scholar 

  52. Grams, M. E. et al. Acute kidney injury after major surgery: a retrospective analysis of veterans health administration data. Am. J. Kidney Dis. 67, 872–880 (2016).

    Article  PubMed  Google Scholar 

  53. Grams, M. E. et al. Candidate surrogate end points for ESRD after AKI. J. Am. Soc. Nephrol. 27, 2851–2859 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. O'Connor, M. E. et al. Acute kidney injury and mortality 1 year after major non-cardiac surgery. Br. J. Surg. 104, 868–876 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. O'Connor, M. E., Kirwan, C. J., Pearse, R. M. & Prowle, J. R. Incidence and associations of acute kidney injury after major abdominal surgery. Intensive Care Med. 42, 521–530 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Thiele, R. H., Isbell, J. M. & Rosner, M. H. AKI associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 10, 500–514 (2015).

    Article  PubMed  Google Scholar 

  57. Chertow, G. M. et al. Preoperative renal risk stratification. Circulation 95, 878–884 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Prowle, J. R. et al. Preoperative renal dysfunction and mortality after non-cardiac surgery. Br. J. Surg. 103, 1316–1325 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Kheterpal, S. et al. Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. Anesthesiology 110, 505–515 (2009).

    Article  PubMed  Google Scholar 

  60. Brienza, N., Giglio, M. T., Marucci, M. & Fiore, T. Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit. Care Med. 37, 2079–2090 (2009).

    Article  PubMed  Google Scholar 

  61. Prowle, J. R., Chua, H.-R., Bagshaw, S. M. & Bellomo, R. Clinical review: volume of fluid resuscitation and the incidence of acute kidney injury — a systematic review. Crit. Care 16, 230 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sun, L. Y., Wijeysundera, D. N., Tait, G. A. & Beattie, W. S. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology 123, 515–523 (2015).

    Article  PubMed  Google Scholar 

  63. Walsh, M. et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119, 507–515 (2013).

    Article  PubMed  Google Scholar 

  64. Salmasi, V. et al. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology 126, 47–65 (2017).

    Article  PubMed  Google Scholar 

  65. Saotome, T., Ishikawa, K., May, C. N., Birchall, I. E. & Bellomo, R. The impact of experimental hypoperfusion on subsequent kidney function. Intensive Care Med. 36, 533–540 (2010).

    Article  PubMed  Google Scholar 

  66. Siegemund, M. et al. Aortic cross-clamping and reperfusion in pigs reduces microvascular oxygenation by altered systemic and regional blood flow distribution. Anesth. Analg. 111, 345–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Cremer, J. et al. Systemic inflammatory response syndrome after cardiac operations. Ann. Thorac. Surg. 61, 1714–1720 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Rosner, M. H., Portilla, D. & Okusa, M. D. Cardiac surgery as a cause of acute kidney injury: pathogenesis and potential therapies. J. Intensive Care Med. 23, 3–18 (2008).

    Article  PubMed  Google Scholar 

  70. Zhang, W. R. et al. Plasma IL-6 and IL-10 concentrations predict AKI and long-term mortality in adults after cardiac surgery. J. Am. Soc. Nephrol. 26, 3123–3132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Andres-Hernando, A. et al. Cytokine production increases and cytokine clearance decreases in mice with bilateral nephrectomy. Nephrol. Dial. Transplant 27, 4339–4347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lahiri, R. et al. Systemic inflammatory response syndrome after major abdominal surgery predicted by early upregulation of TLR4 and TLR5. Ann. Surg. 263, 1028–1037 (2016).

    Article  PubMed  Google Scholar 

  73. Hobson, C. E. et al. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation 119, 2444–2453 (2009).

    Article  PubMed  Google Scholar 

  74. Bihorac, A. et al. National surgical quality improvement program underestimates the risk associated with mild and moderate postoperative acute kidney injury. Crit. Care Med. 41, 2570–2583 (2013).

    Article  PubMed  Google Scholar 

  75. van Kuijk, J.-P. et al. Temporary perioperative decline of renal function is an independent predictor for chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1198–1204 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bihorac, A. et al. Incidence, clinical predictors, genomics, and outcome of acute kidney injury among trauma patients. Ann. Surg. 252, 158–165 (2010).

    Article  PubMed  Google Scholar 

  77. Bihorac, A. et al. Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann. Surg. 249, 851–858 (2009).

    Article  PubMed  Google Scholar 

  78. Ishani, A. et al. The magnitude of acute serum creatinine increase after cardiac surgery and the risk of chronic kidney disease, progression of kidney disease, and death. Arch. Intern. Med. 171, 226–233 (2011).

    PubMed  Google Scholar 

  79. Leacche, M. et al. Outcomes in patients with normal serum creatinine and with artificial renal support for acute renal failure developing after coronary artery bypass grafting. Am. J. Cardiol. 93, 353–356 (2004).

    Article  PubMed  Google Scholar 

  80. Thakar, C. V. et al. Predicting acute renal failure after cardiac surgery: validation and re-definition of a risk-stratification algorithm. Hemodial. Int. 7, 143–147 (2003).

    Article  PubMed  Google Scholar 

  81. Oliver, J., MacDowell, M. & Tracy, A. The pathogenesis of acute renal failure associated with traumatic and toxic injury; renal ischemia, nephrotoxic damage and the ischemic episode. J. Clin. Invest. 30, 1307–1439 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sandroni, C. et al. Acute kidney injury after cardiac arrest: a systematic review and meta-analysis of clinical studies. Minerva Anestesiol. 82, 989–999 (2016).

    PubMed  Google Scholar 

  83. Bonventre, J. V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121, 4210–4221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sharfuddin, A. A. & Molitoris, B. A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol. 7, 189–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Prowle, J. R., Ishikawa, K., May, C. N. & Bellomo, R. Renal blood flow during acute renal failure in man. Blood Purif. 28, 216–225 (2009).

    Article  PubMed  Google Scholar 

  86. Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Damman, K. et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. Coll. Cardiol. 53, 582–588 (2009).

    Article  PubMed  Google Scholar 

  88. Dalfino, L., Tullo, L., Donadio, I., Malcangi, V. & Brienza, N. Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med. 34, 707–713 (2008).

    Article  PubMed  Google Scholar 

  89. O'Connor, M. E. & Prowle, J. R. Fluid Overload. Crit. Care Clin. 31, 803–821 (2015).

    Article  PubMed  Google Scholar 

  90. Lauridsen, M. D. et al. Acute kidney injury treated with renal replacement therapy and 5-year mortality after myocardial infarction-related cardiogenic shock: a nationwide population-based cohort study. Crit. Care 19, 452 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Taber, S. S. & Mueller, B. A. Drug-associated renal dysfunction. Crit. Care Clin. 22, 357–374 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Hou, S. H., Bushinsky, D. A., Wish, J. B., Cohen, J. J. & Harrington, J. T. Hospital-acquired renal insufficiency: a prospective study. Am. J. Med. 74, 243–248 (1983).

    Article  CAS  PubMed  Google Scholar 

  93. Hui-Stickle, S., Brewer, E. D. & Goldstein, S. L. Pediatric ARF epidemiology at a tertiary care center from 1999 to 2001. Am. J. Kidney Dis. 45, 96–101 (2005).

    Article  PubMed  Google Scholar 

  94. Liaño, F., Junco, E., Pascual, J., Madero, R. & Verde, E. The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. The Madrid Acute Renal Fail. Study Group. Kidney Int. Suppl. 66, S16–S24 (1998).

    PubMed  Google Scholar 

  95. Nash, K., Hafeez, A. & Hou, S. Hospital-acquired renal insufficiency. Am. J. Kidney Dis. 39, 930–936 (2002).

    Article  PubMed  Google Scholar 

  96. Schetz, M., Dasta, J., Goldstein, S. & Golper, T. Drug-induced acute kidney injury. Curr. Opin. Crit. Care 11, 555–565 (2005).

    Article  PubMed  Google Scholar 

  97. Rosner, M. H. & Perazella, M. A. Acute Kidney Injury in Patients with Cancer. N. Engl. J. Med. 376, 1770–1781 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. de Broe, M. E. & Porter, G. A. Clinical Nephrotoxins (eds DeBroe, M. E., Porter, G. A., Bennett, W. M. & Deray, G.) (Springer, 2008).

    Book  Google Scholar 

  99. Ozkok, A. & Edelstein, C. L. Pathophysiology of cisplatin-induced acute kidney injury. Biomed. Res. Int. 2014, 967826 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Faubel, S. et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J. Pharmacol. Exp. Ther. 322, 8–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Ramesh, G. & Reeves, W. B. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 110, 835–842 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sánchez-González, P. D., López-Hernández, F. J., López-Novoa, J. M. & Morales, A. I. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit. Rev. Toxicol. 41, 803–821 (2011).

    Article  PubMed  CAS  Google Scholar 

  103. Skinner, R. et al. Cisplatin dose rate as a risk factor for nephrotoxicity in children. Br. J. Cancer 77, 1677–1682 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Menon, S., Kirkendall, E. S., Nguyen, H. & Goldstein, S. L. Acute kidney injury associated with high nephrotoxic medication exposure leads to chronic kidney disease after 6 months. J. Pediatr. 165, 522–527 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Kellum, J. A., Sileanu, F. E., Bihorac, A., Hoste, E. A. J. & Chawla, L. S. Recovery after acute kidney injury. Am. J. Respir. Crit. Care Med. 195, 784–791 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Molitoris, B. A. et al. Design of clinical trials in AKI: a report from an NIDDK workshop. Trials of patients with sepsis selected hospital settings. Clin. J. Am. Soc. Nephrol. 7, 856–860 (2012).

    Article  PubMed  Google Scholar 

  107. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    PubMed  Google Scholar 

  108. Yuen, P. S. T., Jo, S.-K., Holly, M. K., Hu, X. & Star, R. A. Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses. Physiol. Genom. 25, 375–386 (2006).

    Article  CAS  Google Scholar 

  109. Mar, D. et al. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes. Kidney Int. 88, 734–744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Matejovic, M. et al. Molecular differences in susceptibility of the kidney to sepsis-induced kidney injury. BMC Nephrol. 18, 183 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Fan, P.-C., Chen, C.-C., Chen, Y.-C., Chang, Y.-S. & Chu, P.-H. MicroRNAs in acute kidney injury. Hum. Genom. 10, 29 (2016).

    Article  CAS  Google Scholar 

  112. Xu, K. et al. Unique transcriptional programs identify subtypes of AKI. J. Am. Soc. Nephrol. 28, 1729–1740 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Paragas, N. et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med. 17, 216–222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nickolas, T. L. et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J. Am. Coll. Cardiol. 59, 246–255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Haase, M., Kellum, J. A. & Ronco, C. Subclinical AKI — an emerging syndrome with important consequences. Nat. Rev. Nephrol. 8, 735–739 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Borregaard, N. & Cowland, J. B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89, 3503–3521 (1997).

    CAS  PubMed  Google Scholar 

  117. Kashani, K. et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 17, R25 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bihorac, A. et al. Validation of cell-cycle arrest biomarkers for acute. Am. J. Respir. Crit. Care Med. 189, 932–939 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Honore, P. M. et al. Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 for risk stratification of acute kidney injury in patients with sepsis. Crit. Care Med. 44, 1851–1860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Murugan, R. & Kellum, J. A. Acute kidney injury: what's the prognosis? Nat. Rev. Nephrol. 7, 209–217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Koyner, J. L. et al. Tissue inhibitor metalloproteinase-2 (TIMP-2)ċIGF-binding protein-7 (IGFBP7) levels are associated with adverse long-term outcomes in patients with AKI. J. Am. Soc. Nephrol. 26, 1747–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Bellomo, R. et al. Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 8, R204–R212 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 1–138 (2012).

  124. Kellum, J. A. et al. Classifying AKI by urine output versus serum creatinine level. J. Am. Soc. Nephrol. 26, 2231–2238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kaddourah, A., Basu, R. K., Bagshaw, S. M., Goldstein, S. L. & AWARE Investigators. Epidemiology of acute kidney injury in critically ill children and young adults. N. Engl. J. Med. 376, 11–20 (2017).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.A.K. and J.R.P. researched the data, discussed the article's content, wrote the text and reviewed or edited the article before submission.

Corresponding author

Correspondence to John A. Kellum.

Ethics declarations

Competing interests

J.A.K. has received consulting fees and grant support from Astute Medical and Bioporto. J.R.P. declares no competing interests.

PowerPoint slides

Glossary

Inflammatory mediators

A wide array of substances that mediate and modulate various aspects of inflammation. These substances include vasoactive proteins (for example, bradykinin, histamine), complement and molecules involved in coagulation (for example, plasmin, thrombin). Cytokines (for example, TNF, IL-6, IL-10), chemokines (for example, IL-8) and eicosanoids (for example, leukotrienes, prostaglandins) are the major mediators of inflammation during infection. Although some molecules are often labelled pro-inflammatory (for example, IL-6) and others anti-inflammatory (for example, IL-10), the actions of each mediator may be complex and context-dependent, making simple classification difficult.

Damage-associated molecular patterns

(DAMPs; also known as danger-associated molecular patterns). Endogenous molecules often released from damaged tissues or dying cells. They can be detected by various receptors on cells, including TLRs and receptor for advanced glycosylation end products (RAGE; also known as AGER). Typical DAMPs include high mobility group protein B1 (HMGB1), RNA, DNA and myoglobin.

Pathogen-associated molecular patterns

(PAMPs). Similar to DAMPs, PAMPs are molecules released from pathogens. Many of the same receptors that recognize DAMPs also recognize PAMPs, leading to similar cellular responses when either are encountered. Typical PAMPs include lipopolysaccharide (LPS; also known as endotoxin), lipoteichoic acid from Gram-positive bacteria, peptidoglycan and nucleic acid variants normally associated with viruses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellum, J., Prowle, J. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol 14, 217–230 (2018). https://doi.org/10.1038/nrneph.2017.184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing