Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery

Key Points

  • Urinary extracellular vesicles comprise a wide range of biologically distinct structures with contents that are a snapshot of the life of a cell

  • Urine is a dynamic biofluid, which changes over hours and days within an individual; therefore, at present, no single approach for the isolation of urinary extracellular vesicles is likely to comprehensively distinguish between healthy and disease states

  • Alterations in the composition of urinary extracellular vesicles are useful experimentally and may provide information about disease pathophysiology as well as provide diagnostic end points for the study of renal disease

  • Perhaps the greatest promise of this 'extracellular organelle' is to open a window for science into a greater understanding of cellular therapeutics

Abstract

Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of urinary extracellular vesicle formation regulate their composition.
Figure 2: Overview of exosome formation.
Figure 3: Comparison of approaches to isolate extracellular vesicles from the urine of healthy individuals and from patients with nephrotic syndrome.

Similar content being viewed by others

References

  1. Wolf, P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 13, 269–288 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Taylor, D. D. & Doellgast, G. J. Quantitation of peroxidase-antibody binding to membrane fragments using column chromatography. Anal. Biochem. 98, 53–59 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A. & Ratajczak, M. Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20, 1487–1495 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Street, J. M. et al. Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. J. Physiol. 589, 6119–6127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Simpson, R. J., Kalra, H. & Mathivanan, S. ExoCarta as a resource for exosomal research. J. Extracell. Vesicles 1, 18374 (2012).

    Article  CAS  Google Scholar 

  7. Mathivanan, S., Fahner, C. J., Reid, G. E. & Simpson, R. J. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 40, D1241–D1244 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim, D. K. et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 31, 933–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, D. K. et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J. Extracell. Vesicles 2, 20384 (2013).

    Article  CAS  Google Scholar 

  11. Dear, J. W., Street, J. M. & Bailey, M. A. Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intrarenal signalling. Proteomics 13, 1572–1580 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Thery, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Simpson, R. J. & Mathivanan, S. Extracellular microvesicles: the need for internationally recognised nomenclature and stringent purification criteria. J. Proteomics Bioinf. 5, 1–2 (2012).

    Article  Google Scholar 

  14. Simpson, R. J., Jensen, S. S. & Lim, J. W. Proteomic profiling of exosomes: current perspectives. Proteomics 8, 4083–4099 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Lotvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    Article  PubMed  Google Scholar 

  16. Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013).

    Article  CAS  Google Scholar 

  17. Gould, S. J. & Raposo, G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2, 20389 (2013).

    Article  Google Scholar 

  18. Thongboonkerd, V., McLeish, K. R., Arthur, J. M. & Klein, J. B. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int. 62, 1461–1469 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Pisitkun, T., Shen, R. F. & Knepper, M. A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl Acad. Sci. USA 101, 13368–13373 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gonzales, P. A. et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J. Am. Soc. Nephrol. 20, 363–379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moon, P. G., You, S., Lee, J. E., Hwang, D. & Baek, M. C. Urinary exosomes and proteomics. Mass Spectrom. Rev. 30, 1185–1202 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Dear, J. W. Urinary exosomes join the fight against infection. J. Am. Soc. Nephrol. 25, 1889–1891 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Borges, F. T. et al. TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J. Am. Soc. Nephrol. 24, 385–392 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Raimondo, F., Morosi, L., Chinello, C., Magni, F. & Pitto, M. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics 11, 709–720 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. van Niel, G. et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121, 337–349 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 30, 3.22.1–3.22.29 (2006).

    Article  Google Scholar 

  30. Fevrier, B. & Raposo, G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol. 16, 415–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Mathivanan, S., Ji, H. & Simpson, R. J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics 73, 1907–1920 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nat. Rev. Mol. Cell Biol. 8, 355–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Hurley, J. H. ESCRT complexes and the biogenesis of multivesicular bodies. Curr. Opin. Cell Biol. 20, 4–11 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Keller, S., Sanderson, M. P., Stoeck, A. & Altevogt, P. Exosomes: from biogenesis and secretion to biological function. Immunol. Lett. 107, 102–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Laulagnier, K. et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem. J. 380, 161–171 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Skotland, T., Sandvig, K. & Llorente, A. Lipids in exosomes: current knowledge and the way forward. Prog. Lipid Res. 66, 30–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Record, M., Carayon, K., Poirot, M. & Silvente-Poirot, S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim. Biophys. Acta 1841, 108–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Record, M., Poirot, M. & Silvente-Poirot, S. Emerging concepts on the role of exosomes in lipid metabolic diseases. Biochimie 96, 67–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Bard, M. P. et al. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am. J. Respir. Cell Mol. Biol. 31, 114–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Escola, J. M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121–20127 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Chaput, N. et al. The potential of exosomes in immunotherapy of cancer. Blood Cells Mol. Dis. 35, 111–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Thery, C. et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi, A. et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun. 8, 15287 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J. & Sixma, J. J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 94, 3791–3799 (1999).

    CAS  PubMed  Google Scholar 

  46. Hugel, B., Martinez, M. C., Kunzelmann, C. & Freyssinet, J. M. Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20, 22–27 (2005).

    CAS  Google Scholar 

  47. McConnell, R. E. et al. The enterocyte microvillus is a vesicle-generating organelle. J. Cell Biol. 185, 1285–1298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van der Pol, E., Boing, A. N., Harrison, P., Sturk, A. & Nieuwland, R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64, 676–705 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Barry, O. P. & FitzGerald, G. A. Mechanisms of cellular activation by platelet microparticles. Thromb. Haemost. 82, 794–800 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Redman, C. W. & Sargent, I. L. Microparticles and immunomodulation in pregnancy and pre-eclampsia. J. Reprod. Immunol. 76, 61–67 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Miyazaki, Y. et al. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 88, 3456–3464 (1996).

    CAS  PubMed  Google Scholar 

  53. Horstman, L. L., Jy, W., Jimenez, J. J., Bidot, C. & Ahn, Y. S. New horizons in the analysis of circulating cell-derived microparticles. Keio J. Med. 53, 210–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Cocucci, E., Racchetti, G. & Meldolesi, J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Pilzer, D., Gasser, O., Moskovich, O., Schifferli, J. A. & Fishelson, Z. Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Semin. Immunopathol. 27, 375–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Dean, W. L., Lee, M. J., Cummins, T. D., Schultz, D. J. & Powell, D. W. Proteomic and functional characterisation of platelet microparticle size classes. Thromb. Haemost. 102, 711–718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hunter, M. P. et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE. 3, e3694 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7, 347–358 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Donaldson, J. G. Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J. Biol. Chem. 278, 41573–41576 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Beyer, C. & Pisetsky, D. S. The role of microparticles in the pathogenesis of rheumatic diseases. Nat. Rev. Rheumatol. 6, 21–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Turturici, G., Tinnirello, R., Sconzo, G. & Geraci, F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am. J. Physiol. Cell Physiol. 306, C621–C633 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Hristov, M., Erl, W., Linder, S. & Weber, P. C. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104, 2761–2766 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Turiak, L. et al. Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/c mice. J. Proteomics 74, 2025–2033 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Poon, I. K., Lucas, C. D., Rossi, A. G. & Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14, 166–180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bobrie, A., Colombo, M., Raposo, G. & Thery, C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12, 1659–1668 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Choi, D. S., Kim, D. K., Kim, Y. K. & Gho, Y. S. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom. Rev. 34, 474–490 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Simons, M. & Raposo, G. Exosomes — vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Musante, L., Saraswat, M., Ravida, A., Byrne, B. & Holthofer, H. Recovery of urinary nanovesicles from ultracentrifugation supernatants. Nephrol. Dial. Transplant. 28, 1425–1433 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Alvarez, M. L., Khosroheidari, M., Kanchi Ravi, R. & DiStefano, J. K. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 82, 1024–1032 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Gonzales, P. A. et al. Isolation and purification of exosomes in urine. Methods Mol. Biol. 641, 89–99 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Merchant, M. L. et al. Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin. Appl. 4, 84–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Rood, I. M. et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int. 78, 810–816 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Hiemstra, T. F. et al. Human urinary exosomes as innate immune effectors. J. Am. Soc. Nephrol. 25, 2017–2027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, C. Y., Hogan, M. C. & Ward, C. J. Purification of exosome-like vesicles from urine. Methods Enzymol. 524, 225–241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hogan, M. C. et al. Characterization of PKD protein-positive exosome-like vesicles. J. Am. Soc. Nephrol. 20, 278–288 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hogan, M. C. et al. Subfractionation, characterization, and in-depth proteomic analysis of glomerular membrane vesicles in human urine. Kidney Int. 85, 1225–1237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Miranda, K. C. et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 78, 191–199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Prunotto, M. et al. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine. J. Proteomics 82, 193–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Hildonen, S., Skarpen, E., Halvorsen, T. G. & Reubsaet, L. Isolation and mass spectrometry analysis of urinary extraexosomal proteins. Sci. Rep. 6, 36331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Salih, M. et al. Proteomics of urinary vesicles links plakins and complement to polycystic kidney disease. J. Am. Soc. Nephrol. 27, 3079–3092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Salih, M., Fenton, R. A., Zietse, R. & Hoorn, E. J. Urinary extracellular vesicles as markers to assess kidney sodium transport. Curr. Opin. Nephrol. Hypertens. 25, 67–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Cheruvanky, A. et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am. J. Physiol. Renal Physiol. 292, F1657–F1661 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Zubiri, I. et al. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis. J. Proteomics 96, 92–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Channavajjhala, S. K. et al. Optimizing the purification and analysis of miRNAs from urinary exosomes. Clin. Chem. Lab. Med. 52, 345–354 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Rider, M. A., Hurwitz, S. N. & Meckes, D. G. Jr. ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci. Rep. 6, 23978 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, D. & Sun, W. Urinary extracellular microvesicles: isolation methods and prospects for urinary proteome. Proteomics 14, 1922–1932 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Salih, M., Zietse, R. & Hoorn, E. J. Urinary extracellular vesicles and the kidney: biomarkers and beyond. Am. J. Physiol. Renal Physiol. 306, F1251–F1259 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Gardiner, C. et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J. Extracell. Vesicles 5, 32945 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Bobrie, A., Colombo, M., Krumeich, S., Raposo, G. & Thery, C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles 1, 18397 (2012).

    Article  CAS  Google Scholar 

  91. Jacquillet, G., Hoorn, E. J., Vilasi, A. & Unwin, R. J. Urinary vesicles: in splendid isolation. Nephrol. Dial. Transplant. 28, 1332–1335 (2013).

    Article  PubMed  Google Scholar 

  92. Lv, L. L. et al. Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery. Int. J. Biol. Sci. 9, 1021–1031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fernandez-Llama, P. et al. Tamm-Horsfall protein and urinary exosome isolation. Kidney Int. 77, 736–742 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Musante, L. et al. Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. PLoS ONE 7, e37279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheng, L., Sun, X., Scicluna, B. J., Coleman, B. M. & Hill, A. F. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 86, 433–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Gonzales, P., Pisitkun, T. & Knepper, M. A. Urinary exosomes: is there a future? Nephrol. Dial. Transplant. 23, 1799–1801 (2008).

    Article  PubMed  Google Scholar 

  97. Woo, H. K. et al. Exodisc for rapid, size-selective, and efficient isolation and analysis of nanoscale extracellular vesicles from biological samples. ACS Nano 11, 1360–1370 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Liang, L. G. et al. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci. Rep. 7, 46224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Taylor, D. D., Zacharias, W. & Gercel-Taylor, C. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol. Biol. 728, 235–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Albertsson, P. A. & Frick, G. Partition of virus particles in a liquid two-phase system. Biochim. Biophys. Acta 37, 230–237 (1960).

    Article  CAS  PubMed  Google Scholar 

  101. van der Pol, E. et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 12, 1182–1192 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rupert, D. L., Claudio, V., Lasser, C. & Bally, M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim. Biophys. Acta 1861, 3164–3179 (2017).

    Article  CAS  Google Scholar 

  104. Szatanek, R. et al. The methods of choice for extracellular vesicles (EVs) characterization. Int. J. Mol. Sci. 18, E1153 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Erdbrugger, U. & Lannigan, J. Analytical challenges of extracellular vesicle detection: a comparison of different techniques. Cytometry A 89, 123–134 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Coumans, F. A. W. et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 120, 1632–1648 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Daaboul, G. G. et al. Digital detection of exosomes by interferometric imaging. Sci. Rep. 6, 37246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Faez, S. et al. Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber. ACS Nano 9, 12349–12357 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. McLeish, K. R., Merchant, M. L., Klein, J. B. & Ward, R. A. Technical note: proteomic approaches to fundamental questions about neutrophil biology. J. Leukoc. Biol. 94, 683–692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Erdbrugger, U. & Le, T. H. Extracellular vesicles in renal diseases: more than novel biomarkers? J. Am. Soc. Nephrol. 27, 12–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, W. et al. Extracellular vesicles in diagnosis and therapy of kidney diseases. Am. J. Physiol. Renal Physiol. 311, F844–F851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Smalley, D. M., Sheman, N. E., Nelson, K. & Theodorescu, D. Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. J. Proteome Res. 7, 2088–2096 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Stamer, W. D., Hoffman, E. A., Luther, J. M., Hachey, D. L. & Schey, K. L. Protein profile of exosomes from trabecular meshwork cells. J. Proteomics 74, 796–804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Moon, P. G. et al. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics 11, 2459–2475 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Raj, D. A., Fiume, I., Capasso, G. & Pocsfalvi, G. A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. Kidney Int. 81, 1263–1272 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Principe, S. et al. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine. Proteomics 13, 1667–1671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fraser, K. B. et al. LRRK2 secretion in exosomes is regulated by 14-3-3. Hum. Mol. Genet. 22, 4988–5000 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hogan, M. C. et al. Identification of biomarkers for PKD1 using urinary exosomes. J. Am. Soc. Nephrol. 26, 1661–1670 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Bourderioux, M. et al. A new workflow for proteomic analysis of urinary exosomes and assessment in cystinuria patients. J. Proteome Res. 14, 567–577 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Rood, I. M. et al. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy. Proteomics 15, 3722–3730 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Zhou, H. et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 69, 1471–1476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhou, H. et al. Exosomal fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int. 70, 1847–1857 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhou, H. et al. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int. 74, 613–621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, Z., Hill, S., Luther, J. M., Hachey, D. L. & Schey, K. L. Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT). Proteomics 12, 329–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Gerlach, J. Q. et al. Surface glycosylation profiles of urine extracellular vesicles. PLoS ONE 8, e74801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Corbetta, S. et al. Urinary exosomes in the diagnosis of Gitelman and Bartter syndromes. Nephrol. Dial. Transplant. 30, 621–630 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Esteva-Font, C. et al. Renal sodium transporters are increased in urinary exosomes of cyclosporine-treated kidney transplant patients. Am. J. Nephrol. 39, 528–535 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Saraswat, M. et al. N-linked (N) glycoproteomics of urinary exosomes. [Corrected]. Mol. Cell. Proteomics 14, 263–276 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Kosanovic, M. & Jankovic, M. Isolation of urinary extracellular vesicles from Tamm- Horsfall protein-depleted urine and their application in the development of a lectin-exosome-binding assay. Biotechniques 57, 143–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Turco, A. E. et al. Specific renal parenchymal-derived urinary extracellular vesicles identify age-associated structural changes in living donor kidneys. J. Extracell. Vesicles 5, 29642 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Panich, T. et al. Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-induced acute kidney injury. BMC Nephrol. 18, 10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wolley, M. J. et al. In primary aldosteronism, mineralocorticoids influence exosomal sodium-chloride cotransporter abundance. J. Am. Soc. Nephrol. 28, 56–63 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Lytvyn, Y. et al. Assessment of urinary microparticles in normotensive patients with type 1 diabetes. Diabetologia 60, 581–584 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Hogan, M. C. et al. Strategy and rationale for urine collection protocols employed in the NEPTUNE study. BMC Nephrol. 16, 190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Thomas, C. E., Sexton, W., Benson, K., Sutphen, R. & Koomen, J. Urine collection and processing for protein biomarker discovery and quantification. Cancer Epidemiol. Biomarkers Prev. 19, 953–959 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rodby, R. A. Timed urine collections for albumin and protein: “the king is dead, long live the king!”. Am. J. Kidney Dis. 68, 836–838 (2016).

    Article  PubMed  Google Scholar 

  137. Musante, L., Tataruch, D. E. & Holthofer, H. Use and isolation of urinary exosomes as biomarkers for diabetic nephropathy. Front. Endocrinol. (Lausanne) 5, 149 (2014).

    Article  Google Scholar 

  138. Sir Elkhatim, R., Li, J. Y., Yong, T. Y. & Gleadle, J. M. Dipping your feet in the water: podocytes in urine. Expert Rev. Mol. Diagn. 14, 423–437 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Trionfini, P., Benigni, A. & Remuzzi, G. MicroRNAs in kidney physiology and disease. Nat. Rev. Nephrol. 11, 23–33 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Schageman, J. et al. The complete exosome workflow solution: from isolation to characterization of RNA cargo. Biomed Res. Int. 2013, 253957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cantaluppi, V. et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 82, 412–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Gildea, J. J. et al. Exosomal transfer from human renal proximal tubule cells to distal tubule and collecting duct cells. Clin. Biochem. 47, 89–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Murakami, T. et al. Development of glomerulus-, tubule-, and collecting duct-specific mRNA assay in human urinary exosomes and microvesicles. PLoS ONE 9, e109074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen, H. H. et al. Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion. J. Cell. Physiol. 229, 1202–1211 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Lv, L. L. et al. CD2AP mRNA in urinary exosome as biomarker of kidney disease. Clin. Chim. Acta 428, 26–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Lv, L. L. et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am. J. Physiol. Renal Physiol. 305, F1220–F1227 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Ichii, O. et al. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS ONE 9, e110383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Barutta, F. et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS ONE 8, e73798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Eissa, S., Matboli, M., Aboushahba, R., Bekhet, M. M. & Soliman, Y. Urinary exosomal microRNA panel unravels novel biomarkers for diagnosis of type 2 diabetic kidney disease. J. Diabetes Complications 30, 1585–1592 (2016).

    Article  PubMed  Google Scholar 

  151. Jia, Y. et al. miRNAs in urine extracellular vesicles as predictors of early-stage diabetic nephropathy. J. Diabetes Res. 2016, 7932765 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rekker, K. et al. Comparison of serum exosome isolation methods for microRNA profiling. Clin. Biochem. 47, 135–138 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Nicolson, G. L. The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta 1838, 1451–1466 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Kreimer, S. et al. Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J. Proteome Res. 14, 2367–2384 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Gyorgy, B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68, 2667–2688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Llorente, A. et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta 1831, 1302–1309 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Subra, C., Laulagnier, K., Perret, B. & Record, M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89, 205–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Muralidharan-Chari, V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875–1885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Agmon, E. & Stockwell, B. R. Lipid homeostasis and regulated cell death. Curr. Opin. Chem. Biol. 39, 83–89 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Del Boccio, P. et al. A hyphenated microLC-Q-TOF-MS platform for exosomal lipidomics investigations: application to RCC urinary exosomes. Electrophoresis 33, 689–696 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Ichimura, T. et al. Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest. 118, 1657–1668 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhao, N. et al. MicroRNA miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells. Circ. Res. 116, 23–34 (2015).

    CAS  PubMed  Google Scholar 

  164. Kelly, K. J. et al. Improved structure and function in autosomal recessive polycystic rat kidneys with renal tubular cell therapy. PLoS ONE 10, e0131677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Collino, F. et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs. J. Am. Soc. Nephrol. 26, 2349–2360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bruno, S. et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS ONE 7, e33115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bruno, S. et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 20, 1053–1067 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02138331 (2014).

  169. Gracia, T. et al. Urinary exosomes contain microRNAs capable of paracrine modulation of tubular transporters in kidney. Sci. Rep. 7, 40601 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Burger, D. et al. Urinary podocyte microparticles identify prealbuminuric diabetic glomerular injury. J. Am. Soc. Nephrol. 25, 1401–1407 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Khurana, R. et al. Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA 23, 142–152 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.B.K. and M.L.M. are supported in part by grants R01DK110077 (J.B.K.), R01DK091584 (M.L.M.), P50AA024337 (M.L.M.) and P20GM113226 (MLM) from the US NIH. I.M.R. is supported by an AGIKO grant from ZonMw-NWO (grant 92003587).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. M.L.M, I.M.R, J.K.J.D. and J.B.K made substantial contributions to discussions of the content. M.L.M, I.M.R and J.K.J.D. wrote the article and M.L.M., I.M.R., J.K.J.D. and J.B.K. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jon B. Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

mRNAs

Messenger RNAs, which are transcripts of DNA.

MicroRNAs

(miRNAs). Small, non-coding RNAs that regulate gene expression post-transcriptionally by targeting specific mRNAs for inhibition or degradation through complementary base pairing.

Exosomes

Extracellular vesicles that are formed by inward budding of the cell membrane, followed by fusion with a multivesicular body (MVB) and formation of intraluminal vesicles inside the MVB. The intraluminal vesicles that are released by fusion of the MVB with the cell plasma membrane are called exosomes.

Microvesicles

Extracellular vesicles that are formed by direct budding from the cell plasma membrane.

Apoptotic bodies

Extracellular vesicle that are released during the late stages of cell death.

Transcriptomics

The study of the complete set of RNA transcripts (the transcriptome) that is encoded by the genome, underspecific circumstances or in a specific cell.

Proteomics

Large scale studies of proteins involving the systematic identification and quantification of the complete set of proteins (the proteome) of a biological system (cell, tissue, organ, biological fluid or organism) at a specific point in time. Mass spectrometry is the technique most often used for proteomic analysis.

Nephrotic syndrome

A constellation of symptoms characterized by heavy proteinuria (>3–3.5 g/24 h), hypoalbuminuria (<30 g/l), peripheral oedema and hyperlipidaemia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merchant, M., Rood, I., Deegens, J. et al. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol 13, 731–749 (2017). https://doi.org/10.1038/nrneph.2017.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing