Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Memory T cells in organ transplantation: progress and challenges

Key Points

  • Memory T cells and their ability to generate an anamnestic response are critical for protective immunity, but contribute to allogeneic organ transplant rejection

  • Allospecific memory can be generated through heterologous cross-reactivity and homeostatic proliferation, as well as through prior exposure to allogeneic antigens

  • Inhibitors of calcineurin and mammalian target of rapamycin effectively, but non-specifically, impede memory T-cell responses

  • Co-stimulation blockade inhibits T-cell responses to de novo alloantigen, but does not inhibit allospecific memory T-cell responses

  • Several therapeutic agents that target molecules upregulated on memory T cells have been shown to synergize with co-stimulation blockade to mitigate the effects of memory T cells in organ transplantation

  • Further investigation of memory T cells in transplantation will enhance the application of current immunosuppression therapies, as well as guide the development of novel agents to improve outcomes

Abstract

Antigen-experienced T cells, also known as memory T cells, are functionally and phenotypically distinct from naive T cells. Their enhanced expression of adhesion molecules and reduced requirement for co-stimulation enables them to mount potent and rapid recall responses to subsequent antigen encounters. Memory T cells generated in response to prior antigen exposures can cross-react with other nonidentical, but similar, antigens. This heterologous cross-reactivity not only enhances protective immune responses, but also engenders de novo alloimmunity. This latter characteristic is increasingly recognized as a potential barrier to allograft acceptance that is worthy of immunotherapeutic intervention, and several approaches have been investigated. Calcineurin inhibition effectively controls memory T-cell responses to allografts, but this benefit comes at the expense of increased infectious morbidity. Lymphocyte depletion eliminates allospecific T cells but spares memory T cells to some extent, such that patients do not completely lose protective immunity. Co-stimulation blockade is associated with reduced adverse-effect profiles and improved graft function relative to calcineurin inhibition, but lacks efficacy in controlling memory T-cell responses. Targeting the adhesion molecules that are upregulated on memory T cells might offer additional means to control co-stimulation-blockade-resistant memory T-cell responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasticity of memory T cells.
Figure 2: Immunosuppressive agents target molecules that are differentially expressed on naive and memory T cells.

Similar content being viewed by others

References

  1. Jameson, S. C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  3. Lakkis, F. G., Arakelov, A., Konieczny, B. T. & Inoue, Y. Immunologic 'ignorance' of vascularized organ transplants in the absence of secondary lymphoid tissue. Nat. Med. 6, 686–688 (2000).

    CAS  PubMed  Google Scholar 

  4. Curtsinger, J. M., Lins, D. C. & Mescher, M. F. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C) to TCR/CD8 signaling in response to antigen. J. Immunol. 160, 3236–3243 (1998).

    CAS  PubMed  Google Scholar 

  5. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    CAS  PubMed  Google Scholar 

  6. Chang, J. T., Wherry, E. J. & Goldrath, A. W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol. 15, 1104–1115 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    CAS  PubMed  Google Scholar 

  8. Weninger, W., Crowley, M. A., Manjunath, N. & von Andrian, U. H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Baron, V. et al. The repertoires of circulating human CD8+ central and effector memory T cell subsets are largely distinct. Immunity 18, 193–204 (2003).

    PubMed  Google Scholar 

  10. Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290, 92–97 (2000).

    CAS  PubMed  Google Scholar 

  11. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    CAS  PubMed  Google Scholar 

  12. Kaech, S. M., Wherry, E. J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

    CAS  PubMed  Google Scholar 

  13. Gerlach, C. et al. One naive T cell, multiple fates in CD8+ T cell differentiation. J. Exp. Med. 207, 1235–1246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stemberger, C. et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27, 985–997 (2007).

    CAS  PubMed  Google Scholar 

  15. Gaide, O. et al. Common clonal origin of central and resident memory T cells following skin immunization. Nat. Med. 21, 647–653 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    CAS  PubMed  Google Scholar 

  17. Chang, J. T. et al. Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity 34, 492–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kinjyo, I. et al. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation. Nat. Commun. 6, 6301 (2015).

    CAS  PubMed  Google Scholar 

  20. Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 108, 871–878 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, H., Perez, S. D., Cheeseman, J., Mehta, A. K. & Kirk, A. D. The allo- and viral-specific immunosuppressive effect of belatacept, but not tacrolimus, attenuates with progressive T cell maturation. Am. J. Transplant. 14, 319–332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Guerder, S., Carding, S. R. & Flavell, R. A. B7 costimulation is necessary for the activation of the lytic function in cytotoxic T lymphocyte precursors. J. Immunol. 155, 5167–5174 (1995).

    CAS  PubMed  Google Scholar 

  23. Turka, L. A., Ledbetter, J. A., Lee, K., June, C. H. & Thompson, C. B. CD28 is an inducible T cell surface antigen that transduces a proliferative signal in CD3+ mature thymocytes. J. Immunol. 144, 1646–1653 (1990).

    CAS  PubMed  Google Scholar 

  24. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Mou, D., Espinosa, J., Lo, D. J. & Kirk, A. D. CD28 negative T cells: is their loss our gain? Am. J. Transplant. 14, 2460–2466 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Selvaraj, P. et al. The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. Nature 326, 400–403 (1987).

    CAS  PubMed  Google Scholar 

  27. Semnani, R. T., Nutman, T. B., Hochman, P., Shaw, S. & van Seventer, G. A. Costimulation by purified intercellular adhesion molecule 1 and lymphocyte function-associated antigen 3 induces distinct proliferation, cytokine and cell surface antigen profiles in human 'naive' and 'memory' CD4+ T cells. J. Exp. Med. 180, 2125–2135 (1994).

    CAS  PubMed  Google Scholar 

  28. Yusuf-Makagiansar, H., Anderson, M. E., Yakovleva, T. V., Murray, J. S. & Siahaan, T. J. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med. Res. Rev. 22, 146–167 (2002).

    CAS  PubMed  Google Scholar 

  29. Nicolls, M. R. & Gill, R. G. LFA-1 (CD11a) as a therapeutic target. Am. J. Transplant. 6, 27–36 (2006).

    CAS  PubMed  Google Scholar 

  30. Kim, T. K., Billard, M. J., Wieder, E. D., McIntyre, B. W. & Komanduri, K. V. Co-engagement of α4β1 integrin (VLA-4) and CD4 or CD8 is necessary to induce maximal Erk1/2 phosphorylation and cytokine production in human T cells. Hum. Immunol. 71, 23–28 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Krummey, S. M. & Ford, M. L. Heterogeneity within T cell memory: implications for transplant tolerance. Front. Immunol. 3, 36 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Heeger, P. S. et al. Pretransplant frequency of donor-specific, IFN-γ-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes. J. Immunol. 163, 2267–2275 (1999).

    CAS  PubMed  Google Scholar 

  33. San Segundo, D. et al. Increased numbers of circulating CD8 effector memory T cells before transplantation enhance the risk of acute rejection in lung transplant recipients. PLoS ONE 8, e80601 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Su, C. A., Iida, S., Abe, T. & Fairchild, R. L. Endogenous memory CD8 T cells directly mediate cardiac allograft rejection. Am. J. Transplant. 14, 568–579 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mou, D., Espinosa, J. E., Stempora, L., Iwakoshi, N. N. & Kirk, A. D. Viral-induced CD28 loss evokes costimulation independent alloimmunity. J. Surg. Res. 196, 241–246 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Espinosa, J. R. et al. CD57+ CD4 T cells underlie belatacept-resistant allograft rejection. Am. J. Transplant. http://dx.doi.org/10.1111/ajt.13613 (2016).

  37. Landais, E. et al. EBV-specific CD4+ T cell clones exhibit vigorous allogeneic responses. J. Immunol. 177, 1427–1433 (2006).

    CAS  PubMed  Google Scholar 

  38. Burrows, S. R. et al. Cross-reactive memory T cells for Epstein−Barr virus augment the alloresponse to common human leukocyte antigens: degenerate recognition of major histocompatibility complex-bound peptide by T cells and its role in alloreactivity. Eur. J. Immunol. 27, 1726–1736 (1997).

    CAS  PubMed  Google Scholar 

  39. Pantenburg, B., Heinzel, F., Das, L., Heeger, P. S. & Valujskikh, A. T cells primed by Leishmania major infection cross-react with alloantigens and alter the course of allograft rejection. J. Immunol. 169, 3686–3693 (2002).

    CAS  PubMed  Google Scholar 

  40. Brehm, M. A. et al. T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat. Immunol. 3, 627–634 (2002).

    CAS  PubMed  Google Scholar 

  41. Macedo, C. et al. Contribution of naive and memory T-cell populations to the human alloimmune response. Am. J. Transplant. 9, 2057–2066 (2009).

    CAS  PubMed  Google Scholar 

  42. Welsh, R. M. & Selin, L. K. No one is naive: the significance of heterologous T-cell immunity. Nat. Rev. Immunol. 2, 417–426 (2002).

    CAS  PubMed  Google Scholar 

  43. Adams, A. B. et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J. Clin. Invest. 111, 1887–1895 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, T. et al. Prevention of allograft tolerance by bacterial infection with Listeria monocytogenes. J. Immunol. 180, 5991–5999 (2008).

    CAS  PubMed  Google Scholar 

  45. Stapler, D. et al. Expansion of effector memory TCR Vβ4+CD8+ T cells is associated with latent infection-mediated resistance to transplantation tolerance. J. Immunol. 180, 3190–3200 (2008).

    CAS  PubMed  Google Scholar 

  46. Williams, M. A. et al. Characterization of virus-mediated inhibition of mixed chimerism and allospecific tolerance. J. Immunol. 167, 4987–4995 (2001).

    CAS  PubMed  Google Scholar 

  47. Beus, J. M. et al. Heterologous immunity triggered by a single, latent virus in Mus musculus: combined costimulation- and adhesion- blockade decrease rejection. PLoS ONE 8, e71221 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Oberbarnscheidt, M. H. et al. Memory T cells migrate to and reject vascularized cardiac allografts independent of the chemokine receptor CXCR3. Transplantation 91, 827–832 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chalasani, G., Dai, Z., Konieczny, B. T., Baddoura, F. K. & Lakkis, F. G. Recall and propagation of allospecific memory T cells independent of secondary lymphoid organs. Proc. Natl Acad. Sci. USA 99, 6175–6180 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Watts, R. P., Thom, O. & Fraser, J. F. Inflammatory signalling associated with brain dead organ donation: from brain injury to brain stem death and posttransplant ischaemia reperfusion injury. J. Transplant. 2013, 521369 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Takada, M., Chandraker, A., Nadeau, K. C., Sayegh, M. H. & Tilney, N. L. The role of the B7 costimulatory pathway in experimental cold ischemia/reperfusion injury. J. Clin. Invest. 100, 1199–1203 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rao, J., Lu, L. & Zhai, Y. T cells in organ ischemia reperfusion injury. Curr. Opin. Organ Transplant. 19, 115–120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Asgari, E., Farrar, C. A. & Sacks, S. H. Control of innate immunological mechanisms as a route to drug minimization. Curr. Opin. Organ Transplant. 19, 342–347 (2014).

    CAS  PubMed  Google Scholar 

  54. Pratt, J. R., Basheer, S. A. & Sacks, S. H. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat. Med. 8, 582–587 (2002).

    CAS  PubMed  Google Scholar 

  55. Kirk, A. D. Location, location, location: regional immune mechanisms critically influence rejection. Nat. Med. 8, 553–555 (2002).

    CAS  PubMed  Google Scholar 

  56. Krupnick, A. S. et al. Central memory CD8+ T lymphocytes mediate lung allograft acceptance. J. Clin. Invest. 124, 1130–1143 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, S. et al. A naturally occurring CD8+CD122+ T-cell subset as a memory-like Treg family. Cell. Mol. Immunol. 11, 326–331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wan, N. et al. Bystander central memory but not effector memory CD8+ T cells suppress allograft rejection. J. Immunol. 180, 113–121 (2008).

    CAS  PubMed  Google Scholar 

  59. Popescu, I. et al. EBV-specific CD8+ T cell reactivation in transplant patients results in expansion of CD8+ type-1 regulatory T cells. Am. J. Transplant. 7, 1215–1223 (2007).

    CAS  PubMed  Google Scholar 

  60. Hricik, D. E. et al. Enzyme linked immunosorbent spot (ELISPOT) assay for interferon-gamma independently predicts renal function in kidney transplant recipients. Am. J. Transplant. 3, 878–884 (2003).

    CAS  PubMed  Google Scholar 

  61. Bestard, O. et al. Cross-validation of IFN-γ Elispot assay for measuring alloreactive memory/effector T cell responses in renal transplant recipients. Am. J. Transplant. 13, 1880–1890 (2013).

    CAS  PubMed  Google Scholar 

  62. Mohty, M. Mechanisms of action of antithymocyte globulin: T-cell depletion and beyond. Leukemia 21, 1387–1394 (2007).

    CAS  PubMed  Google Scholar 

  63. LaCorcia, G. et al. Polyclonal rabbit antithymocyte globulin exhibits consistent immunosuppressive capabilities beyond cell depletion. Transplantation 87, 966–974 (2009).

    CAS  PubMed  Google Scholar 

  64. Kirk, A. D. et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 76, 120–129 (2003).

    CAS  PubMed  Google Scholar 

  65. Neujahr, D. C. et al. Accelerated memory cell homeostasis during T cell depletion and approaches to overcome it. J. Immunol. 176, 4632–4639 (2006).

    CAS  PubMed  Google Scholar 

  66. Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pearl, J. P. et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am. J. Transplant. 5, 465–474 (2005).

    CAS  PubMed  Google Scholar 

  68. Viret, C., Wong, F. S. & Janeway, C. A. Jr. Designing and maintaining the mature TCR repertoire. Immunity 10, 559–568 (1999).

    CAS  PubMed  Google Scholar 

  69. Cho, B. K., Rao, V. P., Ge, Q., Eisen, H. N. & Chen, J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J. Exp. Med. 192, 549–556 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Murali-Krishna, K. & Ahmed, R. Cutting edge: naive T cells masquerading as memory cells. J. Immunol. 165, 1733–1737 (2000).

    CAS  PubMed  Google Scholar 

  71. Tchao, N. K. & Turka, L. A. Lymphodepletion and homeostatic proliferation: implications for transplantation. Am. J. Transplant. 12, 1079–1090 (2012).

    CAS  PubMed  Google Scholar 

  72. Sener, A., Tang, A. L. & Farber, D. L. Memory T-cell predominance following T-cell depletional therapy derives from homeostatic expansion of naive T cells. Am. J. Transplant. 9, 2615–2623 (2009).

    CAS  PubMed  Google Scholar 

  73. Wu, Z. et al. Homeostatic proliferation is a barrier to transplantation tolerance. Nat. Med. 10, 87–92 (2004).

    CAS  PubMed  Google Scholar 

  74. Stock, P. & Kirk, A. D. The risk and opportunity of homeostatic repopulation. Am. J. Transplant. 11, 1349–1350 (2011).

    CAS  PubMed  Google Scholar 

  75. Cherkassky, L. et al. Evaluation of alloreactivity in kidney transplant recipients treated with antithymocyte globulin versus IL-2 receptor blocker. Am. J. Transplant. 11, 1388–1396 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Trzonkowski, P., Zilvetti, M., Friend, P. & Wood, K. J. Recipient memory-like lymphocytes remain unresponsive to graft antigens after CAMPATH-1H induction with reduced maintenance immunosuppression. Transplantation 82, 1342–1351 (2006).

    PubMed  Google Scholar 

  77. Kirk, A. D. et al. Renal transplantation using belatacept without maintenance steroids or calcineurin inhibitors. Am. J. Transplant. 14, 1142–1151 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Xu, H. et al. Postdepletional lymphocyte reconstitution during belatacept and rapamycin treatment in kidney transplant recipients. Am. J. Transplant. http://dx.doi.org/10.1111/ajt.13469 (2015).

  79. Calne, R. Y., White, D. J., Rolles, K., Smith, D. P. & Herbertson, B. M. Prolonged survival of pig orthotopic heart grafts treated with cyclosporin A. Lancet 1, 1183–1185 (1978).

    CAS  PubMed  Google Scholar 

  80. Webster, A. C., Woodroffe, R. C., Taylor, R. S., Chapman, J. R. & Craig, J. C. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. 331, 810 (2005).

  81. Trompeter, R. et al. Randomized trial of tacrolimus versus cyclosporin microemulsion in renal transplantation. Pediatr. Nephrol. 17, 141–149 (2002).

    PubMed  Google Scholar 

  82. Haddad, E. M. et al. Cyclosporin versus tacrolimus for liver transplanted patients. Cochrane Database Syst. Rev. 18, CD005161 (2006).

    Google Scholar 

  83. Tsuda, K. et al. Calcineurin inhibitors suppress cytokine production from memory T cells and differentiation of naive T cells into cytokine-producing mature T cells. PLoS ONE 7, e31465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pollizzi, K. N. & Powell, J. D. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol. 14, 435–446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, S. et al. Effect of inhibiting the signal of mammalian target of rapamycin on memory T cells. Transplant. Proc. 46, 1642–1648 (2014).

    CAS  PubMed  Google Scholar 

  86. Li, Q. et al. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity 34, 541–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Maekawa, Y. et al. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. Nat. Med. 21, 55–61 (2015).

    CAS  PubMed  Google Scholar 

  88. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  Google Scholar 

  89. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    CAS  PubMed  Google Scholar 

  90. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Brown, N. F., Stefanovic-Racic, M., Sipula, I. J. & Perdomo, G. The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metabolism - Clin. Exp. 56, 1500–1507 (2007).

    CAS  Google Scholar 

  92. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ferrer, I. R. et al. Cutting edge: rapamycin augments pathogen-specific but not graft-reactive CD8+ T cell responses. J. Immunol. 185, 2004–2008 (2010).

    CAS  PubMed  Google Scholar 

  94. Gao, W. et al. Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am. J. Transplant. 7, 1722–1732 (2007).

    CAS  PubMed  Google Scholar 

  95. Wekerle, T. & Grinyo, J. M. Belatacept: from rational design to clinical application. Transpl. Int. 25, 139–150 (2012).

    CAS  PubMed  Google Scholar 

  96. Valujskikh, A., Pantenburg, B. & Heeger, P. S. Primed allospecific T cells prevent the effects of costimulatory blockade on prolonged cardiac allograft survival in mice. Am. J. Transplant. 2, 501–509 (2002).

    CAS  PubMed  Google Scholar 

  97. Krummey, S. M. et al. High CTLA-4 expression on Th17 cells results in increased sensitivity to CTLA-4 coinhibition and resistance to belatacept. Am. J. Transplant. 14, 607–614 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lo, D. J. et al. Selective targeting of human alloresponsive CD8+ effector memory T cells based on CD2 expression. Am. J. Transplant. 11, 22–33 (2011).

    CAS  PubMed  Google Scholar 

  99. Weaver, T. A. et al. Alefacept promotes co-stimulation blockade based allograft survival in nonhuman primates. Nat. Med. 15, 746–749 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kitchens, W. H. et al. Integrin antagonists prevent costimulatory blockade-resistant transplant rejection by CD8+ memory T cells. Am. J. Transplant. 12, 69–80 (2012).

    CAS  PubMed  Google Scholar 

  101. Anderson, D. J. et al. Anti–leukocyte function-associated antigen 1 therapy in a nonhuman primate renal transplant model of costimulation blockade-resistant rejection. Am. J. Transplant. http://dx.doi.org/10.1111/ajt.13628 (2016).

  102. Lo, D. J. et al. A pilot trial targeting the ICOS-ICOS-L pathway in nonhuman primate kidney transplantation. Am. J. Transplant. 15, 984–992 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Badell, I. R. et al. LFA-1-specific therapy prolongs allograft survival in rhesus macaques. J. Clin. Invest. 4520–4531 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Li, X. C., Rothstein, D. M. & Sayegh, M. H. Costimulatory pathways in transplantation: challenges and new developments. Immunol. Rev. 229, 271–293 (2009).

    CAS  PubMed  Google Scholar 

  105. da Silva, A. J. et al. Alefacept, an immunomodulatory recombinant LFA-3/IgG1 fusion protein, induces CD16 signaling and CD2/CD16-dependent apoptosis of CD2+ cells. J. Immunol. 168, 4462–4471 (2002).

    CAS  PubMed  Google Scholar 

  106. Lowe, M. C. et al. Belatacept and sirolimus prolong nonhuman primate islet allograft survival: adverse consequences of concomitant alefacept therapy. Am. J. Transplant. 13, 312–319 (2013).

    CAS  PubMed  Google Scholar 

  107. Lo, D. J. et al. Belatacept and sirolimus prolong nonhuman primate renal allograft survival without a requirement for memory T cell depletion. Am. J. Transplant. 13, 320–328 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Freitas, A. M. et al. Studies introducing costimulation blockade for vascularized composite allografts in nonhuman primates. Am. J. Transplant. 15, 2240–2249 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Setoguchi, K. et al. LFA-1 antagonism inhibits early infiltration of endogenous memory CD8 T cells into cardiac allografts and donor-reactive T cell priming. Am. J. Transplant. 11, 923–935 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Posselt, A. M. et al. Islet transplantation in type 1 diabetics using an immunosuppressive protocol based on the anti-LFA-1 antibody efalizumab. Am. J. Transplant. 10, 1870–1880 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Posselt, A. M. et al. Islet transplantation in type 1 diabetic patients using calcineurin inhibitor-free immunosuppressive protocols based on T-cell adhesion or costimulation blockade. Transplantation 90, 1595–1601 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Turgeon, N. A. et al. Experience with a novel efalizumab-based immunosuppressive regimen to facilitate single donor islet cell transplantation. Am. J. Transplant. 10, 2082–2091 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Isobe, M. et al. Immunosuppression to cardiac allografts and soluble antigens by anti-vascular cellular adhesion molecule-1 and anti-very late antigen-4 monoclonal antibodies. J. Immunol. 153, 5810–5818 (1994).

    CAS  PubMed  Google Scholar 

  114. Schwab, N. et al. Fatal PML associated with efalizumab therapy: insights into integrin αLβ2 in JC virus control. Neurology 78, 458–467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Allan D. Kirk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa, J., Samy, K. & Kirk, A. Memory T cells in organ transplantation: progress and challenges. Nat Rev Nephrol 12, 339–347 (2016). https://doi.org/10.1038/nrneph.2016.9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing