Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radiologic imaging of the renal parenchyma structure and function

Key Points

  • Radiologic techniques can be used to assess gross renal morphology, but morphological changes at this level show poor correlation with renal function and the changes over time are often nonspecific

  • Dynamic contrast-enhanced CT or MRI can provide haemodynamic information, such as renal blood flow or tissue perfusion, which can facilitate personalized patient management

  • Information obtained from blood oxygen level-dependent MRI could contribute to the understanding of chronic kidney disease pathophysiology, but technical issues remain to be solved before large-scale clinical use

  • MRI and renal scintigraphy can both provide a measure of split renal function in moderately dilated kidneys, but radiological measurement of single kidney glomerular filtration rate requires further development

  • The ability to identify fibrotic changes and inflammatory components in damaged renal tissue by radiologic imaging is a major goal for future research

Abstract

Radiologic imaging has the potential to identify several functional and/or structural biomarkers of acute and chronic kidney diseases that are useful diagnostics to guide patient management. A renal ultrasound examination can provide information regarding the gross anatomy and macrostructure of the renal parenchyma, and ultrasound imaging modalities based on Doppler or elastography techniques can provide haemodynamic and structural information, respectively. CT is also able to combine morphological and functional information, but the use of CT is limited due to the required exposure to X-ray irradiation and a risk of contrast-induced nephropathy following intravenous injection of a radio-contrast agent. MRI can be used to identify a wide range of anatomical and physiological parameters at the tissue and even cellular level, such as tissue perfusion, oxygenation, water diffusion, cellular phagocytic activity, tissue stiffness, and level of renal filtration. The ability of MRI to provide valuable information for most of these parameters within a renal context is still in development and requires more clinical experience, harmonization of technical procedures, and an evaluation of reliability and validity on a large scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sonographic changes in autosomal recessive polycystic kidney disease.
Figure 2: Visualization of intrarenal post-inflammatory phagocytic activity with ultrasmall supermagnetic iron oxide (USPIO)-enhanced T2*-weighted magnetic resonance sequences.
Figure 3: Diffusion-weighted MRI and diffusion tensor imaging in a kidney transplant.
Figure 4: Ultrasound-elastography using shear wave imaging technique on a renal allograft.
Figure 5: Principles of quantitative dynamic contrast-enhanced (DCE)–MRI applied to a kidney transplant.
Figure 6: Intrarenal blood oxygen level-dependent MRI in a patient with a small tumour in the upper pole of the left kidney.

Similar content being viewed by others

References

  1. Zhang, J. L., Rusinek, H., Chandarana, H. & Lee, V. S. Functional MRI of the kidneys. J. Magn. Reson. Imaging 37, 282–293 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Thoeny, H. C. & De Keyzer, F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259, 25–38 (2011).

    PubMed  Google Scholar 

  3. Khawaja, A. Z. et al. Revisiting the risks of MRI with Gadolinium based contrast agents review of literature and guidelines. Insights Imaging 6, 553–558 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. McDonald, J. S. et al. Risk of intravenous contrast material-mediated acute kidney injury: a propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology 271, 65–73 (2014).

    PubMed  Google Scholar 

  5. Widjaja, E. et al. Ultrasound measured renal length versus low dose CT volume in predicting single kidney glomerular filtration rate. Br. J. Radiol. 77, 759–764 (2004).

    CAS  PubMed  Google Scholar 

  6. van den Dool, S. W., Wasser, M. N., de Fijter, J. W., Hoekstra, J. & van der Geest, R. J. Functional renal volume: quantitative analysis at gadolinium-enhanced MR angiography — feasibility study in healthy potential kidney donors. Radiology 236, 189–195 (2005).

    PubMed  Google Scholar 

  7. Coulam, C. H., Bouley, D. M. & Sommer, F. G. Measurement of renal volumes with contrast-enhanced MRI. J. Magn. Reson. Imaging 15, 174–179 (2002).

    PubMed  Google Scholar 

  8. Rigalleau, V. et al. Large kidneys predict poor renal outcome in subjects with diabetes and chronic kidney disease. BMC Nephrol. 11, 3 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Vivier, P.-H. et al. In vitro assessment of a 3D segmentation algorithm based on the belief functions theory in calculating renal volumes by MRI. AJR Am. J. Roentgenol. 191, W127–W134 (2008).

    PubMed  Google Scholar 

  10. Cheung, C. M. et al. MR-derived renal morphology and renal function in patients with atherosclerotic renovascular disease. Kidney Int. 69, 715–722 (2006).

    CAS  PubMed  Google Scholar 

  11. Semelka, R. C. et al. Renal corticomedullary differentiation: observation in patients with differing serum creatinine levels. Radiology 190, 149–152 (1994).

    CAS  PubMed  Google Scholar 

  12. Chung, J. J., Semelka, R. C. & Martin, D. R. Acute renal failure: common occurrence of preservation of corticomedullary differentiation on MR images. Magn. Reson. Imaging 19, 789–793 (2001).

    CAS  PubMed  Google Scholar 

  13. Faubel, S., Patel, N. U., Lockhart, M. E. & Cadnapaphornchai, M. A. Renal relevant radiology: use of ultrasonography in patients with AKI. Clin. J. Am. Soc. Nephrol. 9, 382–394 (2014).

    PubMed  Google Scholar 

  14. Jeong, J. Y., Kim, S. H., Lee, H. J. & Sim, J. S. Atypical low-signal-intensity renal parenchyma: causes and patterns. Radiographics 22, 833–846 (2002).

    PubMed  Google Scholar 

  15. Chapman, A. B. et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int. 64, 1035–1045 (2003).

    PubMed  Google Scholar 

  16. Bae, K. T. et al. MRI-based kidney volume measurements in ADPKD: reliability and effect of gadolinium enhancement. Clin. J. Am. Soc. Nephrol. 4, 719–725 (2009).

    PubMed  PubMed Central  Google Scholar 

  17. Grantham, J. J. et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 354, 2122–2130 (2006).

    CAS  PubMed  Google Scholar 

  18. Torres, V. E. et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 367, 2407–2418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kurschat, C. E. et al. An approach to cystic kidney diseases: the clinician's view. Nat. Rev. Nephrol. 10, 687–699 (2014).

    CAS  PubMed  Google Scholar 

  20. Corot, C., Robert, P., Idée, J. M. & Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 1, 1471–1504 (2006).

    Google Scholar 

  21. Hauger, O. et al. Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology 217, 819–826 (2000).

    CAS  PubMed  Google Scholar 

  22. Ye, Q. et al. In vivo detection of acute rat renal allograft rejection by MRI with USPIO particles. Kidney Int. 61, 1124–1135 (2002).

    PubMed  Google Scholar 

  23. Jo, S.-K. et al. Detection of inflammation following renal ischemia by magnetic resonance imaging. Kidney Int. 64, 43–51 (2003).

    PubMed  Google Scholar 

  24. Beckmann, N. et al. Macrophage infiltration detected at MR imaging in rat kidney allografts: early marker of chronic rejection? Radiology 240, 717–724 (2006).

    PubMed  Google Scholar 

  25. Hauger, O. et al. USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans. Eur. Radiol. 17, 2898–2907 (2007).

    PubMed  Google Scholar 

  26. Hedgire, S. S. et al. Evaluation of renal quantitative T2* changes on MRI following administration of ferumoxytol as a T2* contrast agent. Int. J. Nanomedicine 9, 2101–2107 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Chae, E. Y. et al. Allogeneic renal graft rejection in a rat model: in vivo MR imaging of the homing trait of macrophages. Radiology 256, 847–854 (2010).

    PubMed  Google Scholar 

  28. Sargsyan, S. A. et al. Detection of glomerular complement C3 fragments by magnetic resonance imaging in murine lupus nephritis. Kidney Int. 81, 152–159 (2012).

    CAS  PubMed  Google Scholar 

  29. Serkova, N. J. et al. Renal inflammation: targeted iron oxide nanoparticles for molecular MR imaging in mice. Radiology 255, 517–526 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. Grabner, A. et al. Noninvasive imaging of acute renal allograft rejection by ultrasound detection of microbubbles targeted to T-lymphocytes in rats. Ultraschall Med. 37, 82–91 (2016).

    CAS  PubMed  Google Scholar 

  31. Moghazi, S. et al. Correlation of renal histopathology with sonographic findings. Kidney Int. 67, 1515–1520 (2005).

    PubMed  Google Scholar 

  32. Lee, V. S. et al. Is increased echogenicity related to a decrease in glomerular filtration rate? Objective measurements in pediatric solitary kidney patients — a retrospective analysis. PLoS ONE 10, e0133577 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Ries, M. et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. J. Magn. Reson. Imaging 17, 104–113 (2003).

    PubMed  Google Scholar 

  34. Thoeny, H. C., De Keyzer, F., Oyen, R. H. & Peeters, R. R. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235, 911–917 (2005).

    PubMed  Google Scholar 

  35. Xu, Y., Wang, X. & Jiang, X. Relationship between the renal apparent diffusion coefficient and glomerular filtration rate: preliminary experience. J. Magn. Reson. Imaging 26, 678–681 (2007).

    PubMed  Google Scholar 

  36. Togao, O. et al. Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology 255, 772–780 (2010).

    PubMed  PubMed Central  Google Scholar 

  37. Ries, M., Jones, R. A., Basseau, F., Moonen, C. T. & Grenier, N. Diffusion tensor MRI of the human kidney. J. Magn. Reson. Imaging 14, 42–49 (2001).

    CAS  PubMed  Google Scholar 

  38. Grenier, N., Gennisson, J.-L., Cornelis, F., Le Bras, Y. & Couzi, L. Ultrasound elastography of the kidney. Ultrasound Clin. 8, 551–564 (2013).

    Google Scholar 

  39. Paparo, F. et al. Real-time elastography in the assessment of liver fibrosis: a review of qualitative and semi-quantitative methods for elastogram analysis. Ultrasound Med. Biol. 40, 1923–1933 (2014).

    PubMed  Google Scholar 

  40. Gao, J. et al. Renal transplant elasticity ultrasound imaging: correlation between normalized strain and renal cortical fibrosis. Ultrasound Med. Biol. 39, 1536–1542 (2013).

    PubMed  Google Scholar 

  41. Orlacchio, A. et al. Kidney transplant: usefulness of real-time elastography (RTE) in the diagnosis of graft interstitial fibrosis. Ultrasound Med. Biol. 40, 2564–2572 (2014).

    PubMed  Google Scholar 

  42. Gennisson, J.-L., Grenier, N., Combe, C. & Tanter, M. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med. Biol. 38, 1559–1567 (2012).

    PubMed  Google Scholar 

  43. Grenier, N., Gennisson, J. L., Cornelis, F., Le Bras, Y. & Couzi, L. Renal ultrasound elastography. Diagn. Interv. Imaging 94, 545–550 (2013).

    CAS  PubMed  Google Scholar 

  44. Syversveen, T. et al. Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients. Eur. Radiol. 22, 2130–2137 (2012).

    PubMed  Google Scholar 

  45. Asano, K. et al. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow? J. Ultrasound Med. 33, 793–801 (2014).

    PubMed  Google Scholar 

  46. Guo, L.-H. et al. Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. PLoS ONE 8, e68925–e68928 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, N., Zhang, Y. & Xu, Y. Value of virtual touch tissue quantification in stages of diabetic kidney disease. J. Ultrasound Med. 33, 787–792 (2014).

    PubMed  Google Scholar 

  48. Goya, C. et al. Acoustic radiation force impulse imaging for evaluation of renal parenchyma elasticity in diabetic nephropathy. AJR Am. J. Roentgenol. 204, 324–329 (2015).

    PubMed  Google Scholar 

  49. Grenier, N. et al. Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur. Radiol. 22, 2138–2146 (2012).

    PubMed  Google Scholar 

  50. Lee, C. U. et al. MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad. Radiol. 19, 834–841 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. Feder, M. T., Blitstein, J., Mason, B. & Hoenig, D. M. Predicting differential renal function using computerized tomography measurements of renal parenchymal area. J. Urol. 180, 2110–2115 (2008).

    PubMed  Google Scholar 

  52. Kline, T. L. et al. Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn. Reson. Med. 75, 1466–1473 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Caravan, P. et al. Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew. Chem. Int. Ed. Engl. 46, 8171–8173 (2007).

    CAS  PubMed  Google Scholar 

  54. Bull, S. et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99, 932–937 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. Hueper, K. et al. T1-mapping for assessment of ischemia-induced acute kidney injury and prediction of chronic kidney disease in mice. Eur. Radiol. 24, 2252–2260 (2014).

    PubMed  Google Scholar 

  56. Wang, F. et al. Longitudinal assessment of mouse renal injury using high-resolution anatomic and magnetization transfer MR imaging. Magn. Reson. Imaging 32, 1125–1132 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. Ito, K. et al. Magnetisation transfer MR imaging of the kidney: evaluation at 3.0 T in association with renal function. Eur. Radiol. 23, 2315–2319 (2013).

    PubMed  Google Scholar 

  58. Peng, X.-G. et al. Renal lipids and oxygenation in diabetic mice: noninvasive quantification with MR imaging. Radiology 269, 748–757 (2013).

    PubMed  Google Scholar 

  59. Tögel, F. E. & Westenfelder, C. Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am. J. Kidney Dis. 60, 1012–1022 (2012).

    PubMed  Google Scholar 

  60. Bussolati, B. & Camussi, G. Therapeutic use of human renal progenitor cells for kidney regeneration. Nat. Rev. Nephrol. 11, 695–706 (2015).

    CAS  PubMed  Google Scholar 

  61. Bos, C. et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233, 781–789 (2004).

    PubMed  Google Scholar 

  62. Ittrich, H. et al. In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3T. J. Magn. Reson. Imaging 25, 1179–1191 (2007).

    PubMed  Google Scholar 

  63. Hauger, O. et al. MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238, 200–210 (2006).

    PubMed  Google Scholar 

  64. Torres, V. E. et al. Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2, 112–120 (2007).

    PubMed  Google Scholar 

  65. Schoenberg, S. O. et al. Morphologic and functional magnetic resonance imaging of renal artery stenosis: a multireader tricenter study. J. Am. Soc. Nephrol. 13, 158–169 (2002).

    PubMed  Google Scholar 

  66. Gillis, K. A. et al. Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla. BMC Nephrol. 15, 23 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Wang, L. et al. Diagnostic value of quantitative contrast-enhanced ultrasound (CEUS) for early detection of renal hyperperfusion in diabetic kidney disease. J. Nephrol. 28, 669–678 (2015).

    CAS  PubMed  Google Scholar 

  68. Piscaglia, F. et al. The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med. 33, 33–59 (2012).

    CAS  PubMed  Google Scholar 

  69. Lemoine, S. et al. Renal perfusion: noninvasive measurement with multidetector CT versus fluorescent microspheres in a pig model. Radiology 260, 414–420 (2011).

    PubMed  Google Scholar 

  70. Bokacheva, L., Rusinek, H., Zhang, J. L. & Lee, V. S. Assessment of renal function with dynamic contrast-enhanced MR imaging. Magn. Reson. Imaging Clin. N. Am. 16, 597–611 (2008).

    PubMed  PubMed Central  Google Scholar 

  71. Attenberger, U. I., Morelli, J. N., Schoenberg, S. O. & Michaely, H. J. Assessment of the kidneys: magnetic resonance angiography, perfusion and diffusion. J. Cardiovasc. Magn. Reson. 13, 70 (2011).

    PubMed  PubMed Central  Google Scholar 

  72. Sourbron, S. Compartmental modelling for magnetic resonance renography. Z. Med. Phys. 20, 101–114 (2010).

    PubMed  Google Scholar 

  73. Bokacheva, L., Rusinek, H., Zhang, J. L., Chen, Q. & Lee, V. S. Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J. Magn. Reson. Imaging 29, 371–382 (2009).

    PubMed  PubMed Central  Google Scholar 

  74. Haase, V. H. Mechanisms of hypoxia responses in renal tissue. J. Am. Soc. Nephrol. 24, 537–541 (2013).

    CAS  PubMed  Google Scholar 

  75. Miyata, T. & van Ypersele de Strihou, C. Diabetic nephropathy: a disorder of oxygen metabolism? Nat. Rev. Nephrol. 6, 83–95 (2009).

    PubMed  Google Scholar 

  76. Takiyama, Y. & Haneda, M. Hypoxia in diabetic kidneys. Biomed. Res. Int. 2014, 837421 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Brezis, M. & Rosen, S. Hypoxia of the renal medulla — its implications for disease. N. Engl. J. Med. 9, 647–655 (1995).

    Google Scholar 

  78. Pedersen, M. et al. Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. Kidney Int. 67, 2305–2312 (2005).

    PubMed  Google Scholar 

  79. Prasad, P. V., Priatna, A., Spokes, K. & Epstein, F. H. Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J. Magn. Reson. Imaging 13, 744–747 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Epstein, F. H., Veves, A. & Prasad, P. V. Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care 25, 575–578 (2002).

    PubMed  Google Scholar 

  81. Economides, P. A. et al. Kidney oxygenation during water diuresis and endothelial function in patients with type 2 diabetes and subjects at risk to develop diabetes. Metabolism 53, 222–227 (2004).

    CAS  PubMed  Google Scholar 

  82. Inoue, T. et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J. Am. Soc. Nephrol. 22, 1429–1434 (2011).

    PubMed  PubMed Central  Google Scholar 

  83. Michaely, H. J. et al. Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int. 81, 684–689 (2012).

    CAS  PubMed  Google Scholar 

  84. Textor, S. C. et al. The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J. Am. Soc. Nephrol. 19, 780–788 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. Welch, W. J., Baumgärtl, H., Lübbers, D. & Wilcox, C. S. Renal oxygenation defects in the spontaneously hypertensive rat: role of AT1 receptors. Kidney Int. 63, 202–208 (2003).

    CAS  PubMed  Google Scholar 

  86. Siddiqi, L. et al. Inhibition of the renin–angiotensin system affects kidney tissue oxygenation evaluated by magnetic resonance imaging in patients with chronic kidney disease. J. Clin. Hypertens. (Greenwich) 16, 214–218 (2014).

    CAS  Google Scholar 

  87. Gloviczki, M. L. et al. Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis. Hypertension 55, 961–966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Manotham, K. et al. Angiotensin II receptor blocker partially ameliorated intrarenal hypoxia in chronic kidney disease patients: a pre-/post-study. Int. Med. J. 42, e33–e37 (2012).

    CAS  Google Scholar 

  89. Thoeny, H. C. et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241, 812–821 (2006).

    PubMed  Google Scholar 

  90. Sadowski, E. A. et al. Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn. Reson. Imaging 28, 56–64 (2010).

    PubMed  Google Scholar 

  91. Han, F. et al. The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol. Dial. Transplant. 23, 2666–2672 (2008).

    PubMed  Google Scholar 

  92. Neugarten, J. & Golestaneh, L. Blood oxygenation level-dependent MRI for assessment of renal oxygenation. Int. J. Nephrol. Renovasc. Dis. 7, 421–435 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. Saad, A. et al. Human renovascular disease: estimating fractional tissue hypoxia to analyze blood oxygen level-dependent MR. Radiology 268, 770–778 (2013).

    PubMed  PubMed Central  Google Scholar 

  94. Pohlmann, A. et al. Detailing the relation between renal T2* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements. Invest. Radiol. 49, 547–560 (2014).

    CAS  PubMed  Google Scholar 

  95. Bude, R. O. & Rubin, J. M. Effect of downstream cross-sectional area of an arterial bed on the resistive index and the early systolic acceleration. Radiology 212, 732–738 (1999).

    CAS  PubMed  Google Scholar 

  96. Ninet, S. et al. Doppler-based renal resistive index for prediction of renal dysfunction reversibility: a systematic review and meta-analysis. J. Crit. Care 30, 629–635 (2015).

    PubMed  Google Scholar 

  97. Dewitte, A. et al. Doppler resistive index to reflect regulation of renal vascular tone during sepsis and acute kidney injury. Crit. Care 16, R165 (2012).

    PubMed  PubMed Central  Google Scholar 

  98. Radermacher, J., Ellis, S. & Haller, H. Renal resistance index and progression of renal disease. Hypertension 39, 699–703 (2002).

    CAS  PubMed  Google Scholar 

  99. Bruno, R. M. et al. Predictive role of renal resistive index for clinical outcome after revascularization in hypertensive patients with atherosclerotic renal artery stenosis: a monocentric observational study. Cardiovasc. Ultrasound 12, 9 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Doi, Y. et al. Renal resistive index and cardiovascular and renal outcomes in essential hypertension. Hypertension 60, 770–777 (2012).

    CAS  PubMed  Google Scholar 

  101. McArthur, C., Geddes, C. C. & Baxter, G. M. Early measurement of pulsatility and resistive indexes: correlation with long-term renal transplant function. Radiology 259, 278–285 (2011).

    PubMed  Google Scholar 

  102. Naesens, M. et al. Intrarenal resistive index after renal transplantation. N. Engl. J. Med. 369, 1797–1806 (2013).

    CAS  PubMed  Google Scholar 

  103. Herts, B. R. et al. Estimating glomerular filtration rate in kidney donors: a model constructed with renal volume measurements from donor CT scans. Radiology 252, 109–116 (2009).

    PubMed  Google Scholar 

  104. Summerlin, A. L. et al. Determination of split renal function by 3D reconstruction of CT angiograms: a comparison with gamma camera renography. AJR Am. J. Roentgenol. 191, 1552–1558 (2008).

    PubMed  PubMed Central  Google Scholar 

  105. Claudon, M. et al. Chronic urinary obstruction: evaluation of dynamic contrast-enhanced MR urography for measurement of split renal function. Radiology 273, 801–812 (2014).

    PubMed  Google Scholar 

  106. Kwon, S. H., Saad, A., Herrmann, S. M., Textor, S. C. & Lerman, L. O. Determination of single-kidney glomerular filtration rate in human subjects by using CT. Radiology 276, 490–498 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. Lim, S. W., Chrysochou, C., Buckley, D. L., Kalra, P. A. & Sourbron, S. P. Prediction and assessment of responses to renal artery revascularization with dynamic contrast-enhanced magnetic resonance imaging: a pilot study. Am. J. Physiol. Renal Physiol. 305, F672–F678 (2013).

    CAS  PubMed  Google Scholar 

  108. Vivier, P.-H. et al. Kidney function: glomerular filtration rate measurement with MR renography in patients with cirrhosis. Radiology 259, 462–470 (2011).

    PubMed  Google Scholar 

  109. Hackstein, N., Kooijman, H., Tomaselli, S. & Rau, W. S. Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J. Magn. Reson. Imaging 22, 406–414 (2005).

    PubMed  Google Scholar 

  110. Lee, V. S. et al. Renal function measurements from MR renography and a simplified multicompartmental model. Am. J. Physiol. Renal Physiol. 292, F1548–F1559 (2007).

    CAS  PubMed  Google Scholar 

  111. Yamamoto, A. et al. Quantitative evaluation of acute renal transplant dysfunction with low-dose three-dimensional MR renography. Radiology 260, 781–789 (2011).

    PubMed  PubMed Central  Google Scholar 

  112. Grenier, N. et al. Measurement of glomerular filtration rate with magnetic resonance imaging: principles, limitations, and expectations. Semin. Nucl. Med. 38, 47–55 (2008).

    PubMed  Google Scholar 

  113. Tugnoli, V. & Tosi, M. R. Biochemical characterization of human brain and kidney tissues by magnetic resonance spectroscopy. Ital. J. Biochem. 52, 80–86 (2003).

    CAS  PubMed  Google Scholar 

  114. Gallagher, F. A. et al. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad. Sci. USA 106, 19801–19806 (2009).

    CAS  PubMed  Google Scholar 

  115. Clatworthy, M. R. et al. Magnetic resonance imaging with hyperpolarized [1,4-13C2]fumarate allows detection of early renal acute tubular necrosis. Proc. Natl Acad. Sci. USA 109, 13374–13379 (2012).

    CAS  PubMed  Google Scholar 

  116. Maril, N. et al. Sodium MRI of the human kidney at 3 Tesla. Magn. Reson. Med. 56, 1229–1234 (2006).

    CAS  PubMed  Google Scholar 

  117. Maril, N., Margalit, R., Mispelter, J. & Degani, H. Functional sodium magnetic resonance imaging of the intact rat kidney. Kidney Int. 65, 927–935 (2004).

    PubMed  Google Scholar 

  118. Haneder, S. et al. Quantitative and qualitative 23Na MR imaging of the human kidneys at 3 T: before and after a water load. Radiology 260, 857–865 (2011).

    PubMed  Google Scholar 

  119. Maril, N., Margalit, R., Rosen, S., Heyman, S. N. & Degani, H. Detection of evolving acute tubular necrosis with renal 23Na MRI: studies in rats. Kidney Int. 69, 765–768 (2006).

    CAS  PubMed  Google Scholar 

  120. Raghunand, N., Howison, C., Sherry, A. D., Zhang, S. & Gillies, R. J. Renal and systemic pH imaging by contrast-enhanced MRI. Magn. Reson. Med. 49, 249–257 (2003).

    CAS  PubMed  Google Scholar 

  121. Longo, D. L., Busato, A., Lanzardo, S., Antico, F. & Aime, S. Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn. Reson. Med. 70, 859–864 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57. The authors would like to thank Pippa McKelvie-Sebileau, University of Bordeaux, France, for her editorial assistance prior to submission.

Author information

Authors and Affiliations

Authors

Contributions

N.G. and C.C. researched the data and wrote the article. N.G., C.C. P.M. made substantial contributions to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Nicolas Grenier.

Ethics declarations

Competing interests

N.G. is a member of the advisory board of Supersonic Imagine, Aix-en-Provence, France. P.M. and C.C. declare no competing interests.

Supplementary information

Supplementary S1 (figure)

Automatic segmentation of the renal parenchyma and renal cortex for automatic volume assessment of the entire kidney or the entire cortex, respectively. (PDF 522 kb)

Supplementary S2 (figure)

MRI of the homing effect of superparamagnetic iron oxide particle-labelled mesenchymal stem cells. (PDF 339 kb)

Supplementary S3 (figure)

Dynamic contrast-enhanced ultrasound of a segmental renal infarction. (PDF 611 kb)

Supplementary S4 (figure)

Principles of renal blood oxygen level-dependent MRI demonstrated in a rabbit kidney. (PDF 283 kb)

Supplementary S5 (figure)

Evaluation of split renal function in a patient with renal atrophy, 1 year after bilateral dissection of the renal arteries. (PDF 450 kb)

PowerPoint slides

Glossary

MRI

Imaging modality that uses a strong oscillating magnetic field to induce endogenous atoms to emit radiowaves that are detected and used to generate 2D and 3D images of a living subject.

CT

An imaging modality that processes and combines X-ray images to produce tomographic (slice) images. CT provides cross sectional images of organs, bones, soft tissues in multiple planes.

Doppler ultrasonography

Doppler ultraound estimates blood flow through vessels by bouncing high-frequency sound waves off circulating red blood cells.

Corticomedullary differentiation

(CMD). Visualizes the differences in intensity, echogenity, or attenuation between cortical and medullary compartments of the kidney, and can be a biomarker of renal insufficiency.

Ultrasonography

Visualization of deep body structures based on a recording of the reflections or echoes of ultrasonic pulses directed into the tissue. Frequencies of the pulses typically range from 1.6 MHz to 10 MHz.

Tesla (T)

Unit of measurement to quantify the strength of a magnetic field. Clinical MRI scanners operate at a level of 1.5T or 3T.

Superparamagnetic iron oxide particles (SPIO)

Iron oxide (magnetite and maghemite) particles 150 nm in size that exhibit superparamagnetism and can be used to label cells and monitor them in real time.

Apparent diffusion coefficient (ADC)

A measure of the magnitude of diffusion of water molecules within a tissue that is calculated using MRI with diffusion weighted imaging. The ADC provides an assessment of tissue integrity.

Diffusion tensor imaging (DTI)

A technique to measure the restricted diffusion of water according to the major direction of tissue architecture. DTI enables characterization of microstructural changes by measuring the fractional anisotropy and orientation of the diffusion tensor

Fractional anisotropy

Indicates the percentage of a tissue that displays oriented diffusion axes and is a reflection of tissue microstructure.

Shear wave velocity (SWV)

Shear waves are an elastic waveform that move as a shear or transverse wave through the body of an object. The SWV is a measure of tissue stiffness in m/s.

Transient elastography

An ultrasound-based form of transient elastography developed by FibroScan that measures the extent of fibrosis and quantifies steatosis.

Acoustic radiation force impulse (ARFI)

A form of ultrasound elastography that uses acoustic radiation forces (<1 ms) to assess tissue stiffness and stage fibrosis.

Supersonic shear imaging (SSI)

An ultrasound-based technique for real time visualization of soft tissue viscoelastic properties. SSI provides a measure of tissue stiffness.

Relaxation time (T2*)

Time constant for signal decay in MRI that uses a T2*-weighted gradient-echo sequence. T2* is the inverse of the rate of signal decay R2*.

Dynamic contrast-enhanced (DCE)

Intravenous administration of a contrast agent prior to MRI or CT to facilitate quantification of physiological parameters in comparison to baseline (no contrast) images. Functional information such as perfusion, permeability, and renal filtration can be obtained through the acquisition of high resolution parametric images.

Blood oxygen level-dependent MRI (BOLD-MRI)

Method used in functional MRI to observe variations in oxygen concentration within tissues based on the oxy-deoxyhaemoglobin ratio.

Relaxation rate (R2*)

Rate of signal decay in MRI using a T2*-weighted gradient-echo sequence, and is the inverse of the time constant T2*. R2* is sensitive to tissue oxygenation levels and the presence of iron oxide particles.

Scintigraphy

2D imaging of the distribution of radioactivity after administration of a radio-pharmaceutical imaging agent with affinity for the organ of interest. Scintigraphy enables evaluation of kidney function.

Magnetic resonance spectroscopy (MRS)

A complement to MRI that uses information derived from different atoms to determine the concentration of metabolites in the tissue examined.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grenier, N., Merville, P. & Combe, C. Radiologic imaging of the renal parenchyma structure and function. Nat Rev Nephrol 12, 348–359 (2016). https://doi.org/10.1038/nrneph.2016.44

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.44

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing