Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vascular complications in autosomal dominant polycystic kidney disease

Key Points

  • Intracranial aneurysms (IAs) are the most common vascular manifestation of autosomal dominant polycystic kidney disease (ADPKD)

  • Individuals with ADPKD and increased risk of IA—including those with a family or personal history of IA or subarachnoid haemorrhage—should undergo screening

  • Other vascular abnormalities in ADPKD include aneurysms and dissections of the thoracic aorta, coronary arteries and cervicocephalic arteries, aortic root dilatation and cerebral dolichoectasia; screening is not usually indicated

  • Asymptomatic IAs detected by screening are frequently small and have a low risk of rupture

  • Intervention, either surgical or endovascular, is indicated based on the size and location of the aneurysm

  • The relationship between PKD1 and PKD2 mutations and the development of vascular abnormalities is undefined; modifier genes that increase TGF-β signalling might increase the risk of vascular complications in ADPKD

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease. Relentless cyst growth substantially enlarges both kidneys and culminates in renal failure. Patients with ADPKD also have vascular abnormalities; intracranial aneurysms (IAs) are found in 10% of asymptomatic patients during screening and in up to 25% of those with a family history of IA or subarachnoid haemorrhage. As the genes responsible for ADPKD—PKD1 and PKD2—have complex integrative roles in mechanotransduction and intracellular calcium signalling, the molecular basis of IA formation might involve focal haemodynamic conditions exacerbated by hypertension and altered flow sensing. IA rupture results in substantial mortality, morbidity and poor long-term outcomes. In this Review, we focus mainly on strategies for screening, diagnosis and treatment of IAs in patients with ADPKD. Other vascular aneurysms and anomalies—including aneurysms of the aorta and coronary arteries, cervicocephalic and thoracic aortic dissections, aortic root dilatation and cerebral dolichoectasia—are less common in this population, and the available data are insufficient to recommend screening strategies. Treatment decisions should be made with expert consultation and be based on a risk–benefit analysis that takes into account aneurysm location and morphology as well as patient age and comorbidities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An aortic aneurysm in a 19-year-old patient with ADPKD.
Figure 2: Right vertebral artery dissection in a 47-year-old patient with ADPKD.
Figure 3: An unruptured intracranial aneurysm in a 47-year-old patient with ADPKD and distant smoking history.
Figure 4: Pkd1 deletion in VSMCs results in abnormal proximal ascending aortic architecture.
Figure 5: A ruptured intracranial aneurysm in a 46-year-old patient with ADPKD.
Figure 6: Surgical and endovascular techniques for the treatment of intracranial aneurysms.

Similar content being viewed by others

References

  1. Iglesias, C. et al. Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota: 1935–1980. Am. J. Kidney Dis. 2, 630–639 (1983).

    CAS  PubMed  Google Scholar 

  2. Collins, A. J. et al. United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am. J. Kidney Dis. 59 (Suppl. 1), e1–e420 (2012).

    Google Scholar 

  3. Ong, A. & Harris, P. Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int. 67, 1234–1247 (2005).

    CAS  PubMed  Google Scholar 

  4. Grantham, J. et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 354, 2122–2130 (2006).

    CAS  PubMed  Google Scholar 

  5. Grantham, J., Chapman, A. & Torres, V. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin. J. Am. Soc. Nephrol. 1, 148–157 (2006).

    PubMed  Google Scholar 

  6. Lilova, M. & Petkov, D. Intracranial aneurysms in a child with autosomal recessive polycystic kidney disease. Pediatr. Nephrol. 16, 1030–1032 (2001).

    CAS  PubMed  Google Scholar 

  7. Neumann, H., Krumme, B., van Velthoven, V., Orszagh, M. & Zerres, K. Multiple intracranial aneurysms in a patient with autosomal recessive polycystic kidney disease. Nephrol. Dial. Transplant. 14, 936–939 (1999).

    CAS  PubMed  Google Scholar 

  8. Chalhoub, V., Abi-Rafeh, L., Hachem, K., Ayoub, E. & Yazbeck, P. Intracranial aneurysm and recessive polycystic kidney disease: the third reported case. JAMA Neurol. 70, 114–116 (2013).

    PubMed  Google Scholar 

  9. Kim, K., Drummond, I., Ibraghimov-Beskrovnaya, O., Klinger, K. & Arnaout, M. Polycystin 1 is required for the structural integrity of blood vessels. Proc. Natl Acad. Sci USA 97, 1731–1736 (2000).

    CAS  PubMed  Google Scholar 

  10. Boulter, C. et al. Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc. Natl Acad. Sci USA 98, 12174–12179 (2001).

    CAS  PubMed  Google Scholar 

  11. Qian, Q., Ming, L., Somlo, S., Harris, H. & Torres, V. Analysis of polycystins in vascular smooth muscle cells. J. Am. Soc. Nephrol. 14, 2280–2287 (2003).

    CAS  PubMed  Google Scholar 

  12. Torres, V. et al. Vascular expression of polycystin-2. J. Am. Soc. Nephrol. 12, 1–9 (2001).

    CAS  PubMed  Google Scholar 

  13. Garcia-Gonzalez, M. et al. Pkd1 and Pkd2 are required for normal placental development. PLoS ONE 5, e12821 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Wu, G. et al. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat. Genet. 24, 75–78 (2000).

    CAS  PubMed  Google Scholar 

  15. Hassane, S. et al. Pathogenic sequence for dissecting aneurysm formation in a hypomorphic polycystic kidney disease 1 mouse model. Arterioscler. Thromb. Vasc. Biol. 27, 2177–2183 (2007).

    CAS  PubMed  Google Scholar 

  16. Liu, D. et al. A Pkd1–Fbn1 genetic interaction implicates TGF-β signaling in the pathogenesis of vascular complications in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 25, 81–91 (2014).

    CAS  PubMed  Google Scholar 

  17. Nauli, S. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    CAS  PubMed  Google Scholar 

  18. Nauli, S. et al. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117, 1161–1171 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. AbouAlaiwi, W. et al. Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ. Res. 104, 860–869 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharif-Naeini, R. et al. Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139, 587–596 (2009).

    CAS  PubMed  Google Scholar 

  21. Watnick, T. et al. Mutation detection of PKD1 identifies a novel mutation common to three families with aneurysms and/or very-early-onset disease. Am. J. Hum. Genet. 65, 1561–1571 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rossetti, S. et al. Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet 361, 2196–2201 (2003).

    CAS  PubMed  Google Scholar 

  23. Neumann, H. et al. Characteristics of intracranial aneurysms in the else kröner-fresenius registry of autosomal dominant polycystic kidney disease. Cerebrovasc. Dis. Extra 2, 71–79 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. Qian, F., Watnick, T., Onuchic, L. & Germino, G. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87, 979–987 (1996).

    CAS  PubMed  Google Scholar 

  25. Watnick, T. et al. Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol. Cell 2, 247–251 (1998).

    CAS  PubMed  Google Scholar 

  26. Pei, Y. et al. Somatic PKD2 mutations in individual kidney and liver cysts support a “two-hit” model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 10, 1524–1529 (1999).

    CAS  PubMed  Google Scholar 

  27. Patel, A. & Honoré, E. Polycystins and renovascular mechanosensory transduction. Nat. Rev. Nephrol. 6, 530–538 (2010).

    CAS  PubMed  Google Scholar 

  28. Qian, Q. et al. Pkd2 haploinsufficiency alters intracellular calcium regulation in vascular smooth muscle cells. Hum. Mol. Genet. 12, 1875–1880 (2003).

    CAS  PubMed  Google Scholar 

  29. Morel, N. et al. PKD1 haploinsufficiency is associated with altered vascular reactivity and abnormal calcium signaling in the mouse aorta. Pflugers Arch. 457, 845–856 (2009).

    CAS  PubMed  Google Scholar 

  30. Qian, Q. et al. Pkd2± vascular smooth muscles develop exaggerated vasocontraction in response to phenylephrine stimulation. J. Am. Soc. Nephrol. 18, 485–493 (2007).

    CAS  PubMed  Google Scholar 

  31. Du, H., Wang, X., Wu, J. & Qian, Q. Phenylephrine induces elevated RhoA activation and smooth muscle α-actin expression in Pkd2± vascular smooth muscle cells. Hypertens. Res. 33, 37–42 (2010).

    CAS  PubMed  Google Scholar 

  32. Somlo, S. et al. A kindred exhibiting cosegregation of an overlap connective tissue disorder and the chromosome 16 linked form of autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 4, 1371–1378 (1993).

    CAS  PubMed  Google Scholar 

  33. Ramirez, F. & Dietz, H. Marfan syndrome: from molecular pathogenesis to clinical treatment. Curr. Opin. Genet. Dev. 17, 252–258 (2007).

    CAS  PubMed  Google Scholar 

  34. Neptune, E. et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407–411 (2003).

    CAS  PubMed  Google Scholar 

  35. Habashi, J. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Holm, T. et al. Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332, 358–361 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hussain, I., Duffis, E., Gandhi, C. & Prestigiacomo, C. Genome-wide association studies of intracranial aneurysms: an update. Stroke 44, 2670–2675 (2013).

    PubMed  Google Scholar 

  38. Rossetti, S. & Harris, P. The genetics of vascular complications in autosomal dominant polycystic kidney disease (ADPKD). Curr. Hypertens. Rev. 9, 37–43 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huston III, J., Torres, V., Sulivan, P., Offord, K. & Wiebers, D. Value of magnetic resonance angiography for the detection of intracranial aneurysms in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 3, 1871–1877 (1993).

    Google Scholar 

  40. Ruggieri, P. et al. Occult intracranial aneurysms in polycystic kidney disease: screening with MR angiography. Radiology 191, 33–39 (1994).

    CAS  PubMed  Google Scholar 

  41. Xu, H., Yu, S., Mei, C. & Li, M. Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke 42, 204 (2011).

    CAS  PubMed  Google Scholar 

  42. Irazabal, M. et al. Extended follow-up of unruptured intracranial aneurysms detected by presymptomatic screening in patients with autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 1274–1285 (2011).

    PubMed  PubMed Central  Google Scholar 

  43. Vlak, M., Algra, A., Brandenburg, R. & Rinkel, G. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 10, 626–636 (2011).

    PubMed  Google Scholar 

  44. van Dijk, M., Chang, P., Peters, D. & Breuning, M. Intracranial aneurysms in polycystic kidney disease linked to chromosome 4. J. Am. Soc. Nephrol. 6, 1670–1673 (1995).

    CAS  PubMed  Google Scholar 

  45. Schievink, W., Torres, V., Piepgras, D. & Wiebers, D. Saccular intracranial aneurysms in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 3, 88–95 (1992).

    CAS  PubMed  Google Scholar 

  46. Schievink, W., Torres, V., Wiebers, D. & Huston, J. 3rd. Intracranial arterial dolichoectasia in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 8, 1283–1291 (1997).

    Google Scholar 

  47. Chauveau, D. et al. Intracranial aneurysms in autosomal dominant polycystic kidney disease. Kidney Int. 45, 1140–1146 (1994).

    CAS  PubMed  Google Scholar 

  48. Lozano, A. & Leblanc, R. Familial intracranial aneurysms. J. Neurosurg. 66, 522–528 (1987).

    CAS  PubMed  Google Scholar 

  49. Chauveau, D. et al. Extrarenal manifestations in autosomal dominant polycystic kidney disease. Adv. Nephrol. 26, 265–289 (1997).

    CAS  Google Scholar 

  50. Belz, M. et al. Recurrence of intracranial aneurysms in autosomal-dominant polycystic kidney disease. Kidney Int. 63, 1824 (2003).

    PubMed  Google Scholar 

  51. Hiratsuka, Y. et al. Diagnosis of unruptured intracranial aneurysms: 3T MR angiography versus 64-channel multi-detector row CT angiography. Magn. Reson. Med. Sci. 7, 169–178 (2008).

    PubMed  Google Scholar 

  52. Sailer, A., Wagemans, B., Nelemans, P., de Graaf, R. & van Zwam, W. Diagnosing intracranial aneurysms with MR angiography. Systematic review and meta-analysis. Stroke 45, 119–126 (2014).

    PubMed  Google Scholar 

  53. Rozenfeld, M. et al. Should patients with autosomal dominant polycystic kidney disease be screened for cerebral aneurysms? Am. J. Neuroradiol. 35, 3–9 (2014).

    CAS  PubMed  Google Scholar 

  54. Broderick, J., Brott, T., Duldner, J., Tomsick, T. & Leach, A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 25, 1342–1347 (1994).

    CAS  PubMed  Google Scholar 

  55. Phillips, L. 2nd, Whisnant, J., O'Fallon, W. & Sundt, T. Jr. The unchanging pattern of subarachnoid hemorrhage in a community. Neurology 30, 1034–1040 (1980).

    PubMed  Google Scholar 

  56. Grantham, J. Clinical practice. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 359, 1477–1485 (2008).

    CAS  PubMed  Google Scholar 

  57. Takao, H. & Nojo, T. Treatment of unruptured intracranial aneurysms: decision and cost-effectiveness analysis. Radiology 244, 755–766 (2007).

    PubMed  Google Scholar 

  58. Butler, W., Barker, F. G. & Crowell, R. Patients with polycystic kidney disease would benefit from routine magnetic resonance angiographic screening for intracerebral aneurysms: a decision analysis. Neurosurgery 38, 506–515 (1996).

    CAS  PubMed  Google Scholar 

  59. Alam, A. & Perrone, R. Management of ESRD in patients with autosomal dominant polycystic kidney disease. Adv. Chronic Kidney Dis. 17, 164–172 (2010).

    PubMed  Google Scholar 

  60. Abedini, S. et al. Cerebrovascular events in renal transplant recipients. Transplantation 87, 112–117 (2009).

    PubMed  Google Scholar 

  61. Perrone, R., Ruthazer, R. & Terrin, N. Survival after end-stage renal disease in autosomal dominant polycystic kidney disease: contribution of extrarenal complications to mortality. Am. J. Kidney Dis. 38, 777–784 (2001).

    CAS  PubMed  Google Scholar 

  62. Brinjikji, W. et al. Better outcomes with treatment by coiling relative to clipping of unruptured intracranial aneurysms in the United States, 2001–2008. Am. J. Neuroradiol. 32, 1071–1075 (2011).

    CAS  PubMed  Google Scholar 

  63. Brinjikji, W., Rabinstein, A., Lanzino, G., Kallmes, D. & Cloft, H. Patient outcomes are better for unruptured cerebral aneurysms treated at centers that preferentially treat with endovascular coiling: a study of the National Inpatient Sample 2001–2007. Am. J. Neuroradiol. 32, 1065–1070 (2011).

    CAS  PubMed  Google Scholar 

  64. Wiebers, D. et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362, 103–110 (2003).

    PubMed  Google Scholar 

  65. UCAS Japan Investigators et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N. Engl. J. Med. 366, 2474–2482 (2012).

  66. Sonobe, M., Yamazaki, T., Yonekura, M. & Kikuchi, H. Small unruptured intracranial aneurysm verification study: SUAVe study, Japan. Stroke. 41, 1969–1977 (2010).

    PubMed  Google Scholar 

  67. Investigators, U. J. et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N. Engl. J. Med. 366, 2474–2482 (2012).

    Google Scholar 

  68. Greving, J. et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 13, 59–66 (2014).

    PubMed  Google Scholar 

  69. Wiebers, D. et al. Reprint of Symposium on Cerebrovascular Diseases. Pathogenesis, natural history, and treatment of unruptured intracranial aneurysms. Neuroradiol. J. 19, 504–515 (2006).

    PubMed  Google Scholar 

  70. Williams, L. & Brown, R. Jr. Management of unruptured intracranial aneurysms. Neurol. Clin. Pract. 3, 99–108 (2013).

    PubMed  PubMed Central  Google Scholar 

  71. Chalouhi, N. et al. Biology of intracranial aneurysms: role of inflammation. J. Cereb. Blood Flow Metab. 32, 1659–1676 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hasan, D. M. et al. Imaging aspirin effect on macrophages in the wall of human cerebral aneurysms using ferumoxytol-enhanced MRI: preliminary results. J. Neuroradiol. 40, 187–191 (2013).

    PubMed  Google Scholar 

  73. Hasan, D. M. et al. Evidence that acetylsalicylic acid attenuates inflammation in the walls of human cerebral aneurysms: preliminary results. J. Am. Heart Assoc. 2, e000019 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Hasan, D. M. et al. Aspirin as a promising agent for decreasing incidence of cerebral aneurysm rupture. Stroke 42, 3156–3162 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Guglielmi, G., Vinuela, F., Dion, J. & Duckwiler, G. Electrothrombosis of saccular aneurysms via endovascular approach. Part 2: Preliminary clinical experience. J. Neurosurg. 75, 8–14 (1991).

    CAS  PubMed  Google Scholar 

  76. Guglielmi, G., Vinuela, F., Sepetka, I. & Macellari, V. Electrothrombosis of saccular aneurysms via endovascular approach. Part 1: Electrochemical basis, technique, and experimental results. J. Neurosurg. 75, 1–7 (1991).

    CAS  PubMed  Google Scholar 

  77. Brinjikji, W., Kallmes, D. & Kadirvel, R. Mechanisms of healing in coiled intracranial aneurysms: a review of the literature. Am. J. Neuroradiol. 36, 1216–1222 (2015).

    CAS  PubMed  Google Scholar 

  78. Kadirvel, R. et al. Cellular mechanisms of aneurysm occlusion after treatment with a flow diverter. Radiology 270, 394–399 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Connolly, E. Jr et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43, 1711–1737 (2012).

    PubMed  Google Scholar 

  80. Tidswell, P., Dias, P., Sagar, H., Mayes, A. & Battersby, R. Cognitive outcome after aneurysm rupture: relationship to aneurysm site and perioperative complications. Neurology 45, 875–882 (1995).

    CAS  PubMed  Google Scholar 

  81. Broderick, J., Brott, T., Duldner, J., Tomsick, T. & Leach, A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 25, 1342–1347 (1994).

    CAS  PubMed  Google Scholar 

  82. Graf, S. et al. Intracranial aneurysms and dolichoectasia in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 17, 819–823 (2002).

    PubMed  Google Scholar 

  83. Afari, M., Quddus, A., Bhattarai, M., John, A. & Broderick, R. Spontaneous coronary dissection in polycystic kidney disease. R. I. Med. J. 96, 44–45 (2013).

    Google Scholar 

  84. Lee, C. et al. Computed tomography angiographic demonstration of an unexpected left main coronary artery dissection in a patient with polycystic kidney disease. J. Thorac. Imaging 26, W4–W6 (2011).

    PubMed  Google Scholar 

  85. Larrangaga, J., Rutecki, G. & Whittier, F. Spontaneous vertebral artery dissection as a complication of autosomal polycystic kidney disease. Am. J. Kidney Dis. 25, 70–74 (1995).

    Google Scholar 

  86. Kim, J. et al. A case of severe aortic valve regurgitation caused by an ascending aortic aneurysm in a young patient with autosomal dominant polycystic kidney disease and normal renal function. Korean Circ. J. 42, 136–139 (2012).

    PubMed  PubMed Central  Google Scholar 

  87. Torra, R. et al. Abdominal aortic aneurysms and autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 7, 2483–2486 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.W.'s work is supported in part by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (P30DK090868, DK076017 and DK095036). R.D.P.'s work is supported in part by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (DK62411), and from the National Center for Advancing Translational Sciences Clinical and Translational Science Awards (UL1TR001064 awarded to Tufts University).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, made substantial contributions to discussion of content, wrote the article and reviewed or edited the manuscript before submission

Corresponding author

Correspondence to Ronald D. Perrone.

Ethics declarations

Competing interests

R.D.P. has received research funding from Sanofi–Genzyme and is a consultant for Otsuka and Vertex. T.W. has received research funding from Otsuka. A.M.M. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrone, R., Malek, A. & Watnick, T. Vascular complications in autosomal dominant polycystic kidney disease. Nat Rev Nephrol 11, 589–598 (2015). https://doi.org/10.1038/nrneph.2015.128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing