Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Three feasible strategies to minimize kidney injury in 'incipient AKI'

Abstract

Acute kidney injury (AKI) is common and increasing in hospitalized patients. The earlier recognition of renal injury, at a stage described as 'incipient AKI', may allow renoprotective strategies to be initiated at a time when more kidney tissue is salvageable. 'Incipient AKI' represents renal injury as manifested by new-onset proteinuria, cellular activity on urine microscopy, or elevated novel biomarkers of kidney injury in the absence of clinical data that meet current diagnostic criteria for AKI. We propose three strategies to preserve kidney function and minimize further kidney injury in patients with 'incipient AKI'. These include—when appropriate for the prevailing cause of 'incipient AKI'—use of low-chloride-containing intravenous solutions, continued use of renin–angiotensin system antagonists, and use of diuretics to achieve adequate control of intravascular volume. The combined approach of the early diagnosis of AKI and early employment of feasible therapeutic strategies may slow the growth of clinical AKI, AKI requiring renal replacement therapy and chronic kidney disease, and might reduce AKI-associated mortality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Continuum of tubular injury.
Figure 2: Spectrum of renal injury in acute kidney disease.
Figure 3: Effect of RAS blockade on peritubular blood flow.

Similar content being viewed by others

References

  1. Bellomo, R. et al. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second international Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 8, R205–R212 (2004).

    Article  Google Scholar 

  2. Mehta, R. L. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care 11, R31 (2007).

    Article  Google Scholar 

  3. Hsu, R. K., McCulloch, C. E., Dudley, R. A., Lo, L. J. & Hsu, C. Y. Temporal changes in incidence of dialysis-requiring AKI. J. Am. Soc. Nephrol. 24, 37–42 (2013).

    Article  Google Scholar 

  4. Siddiqui, N. F. et al. Secular trends in acute dialysis after elective major surgery—1995 to 2009. CMAJ 184, 1237–1245 (2012).

    Article  Google Scholar 

  5. Faubel, S. et al. Ongoing clinical trials in AKI. Clin. J. Am. Soc. Nephrol. 7, 861–873 (2012).

    Article  Google Scholar 

  6. Ricci, Z. et al. Practice patterns in the management of acute renal failure in the critically ill patient: an international survey. Nephrol. Dial. Transplant. 21, 690–696 (2006).

    Article  Google Scholar 

  7. Kidney Disease: Improving Global Outcomes. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 19–36 (2012).

  8. Ishani, A. et al. The magnitude of acute serum creatinine increase after cardiac surgery and the risk of chronic kidney disease, progression of kidney disease, and death. Arch. Intern. Med. 171, 226–233 (2011).

    Article  Google Scholar 

  9. Haase, M. et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol. 57, 1752–1761 (2011).

    Article  CAS  Google Scholar 

  10. Nickolas, T. L. et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J. Am. Coll. Cardiol. 59, 246–255 (2012).

    Article  CAS  Google Scholar 

  11. Devarajan, P. et al. Proteomic identification of early biomarkers of acute kidney injury after cardiac surgery in children. Am. J. Kidney Dis. 56, 632–642 (2010).

    Article  CAS  Google Scholar 

  12. Tallgren, M. et al. Acute renal injury and dysfunction following elective abdominal aortic surgery. Eur. J. Vasc. Endovasc. Surg. 33, 550–555 (2007).

    Article  CAS  Google Scholar 

  13. Dittrich, S. et al. Renal function after cardiopulmonary bypass surgery in cyanotic congenital heart disease. Int. J. Cardiol. 73, 173–179 (2000).

    Article  CAS  Google Scholar 

  14. Zappitelli, M. et al. The association of albumin/creatinine ratio with postoperative AKI in children undergoing cardiac surgery. Clin. J. Am. Soc. Nephrol. 7, 1761–1769 (2012).

    Article  CAS  Google Scholar 

  15. Molnar, A. O. et al. Association of postoperative proteinuria with AKI after cardiac surgery among patients at high risk. Clin. J. Am. Soc. Nephrol. 7, 1749–1760 (2012).

    Article  Google Scholar 

  16. Hu, J. Y. et al. Relation between proteinuria and acute kidney injury in patients with severe burns. Crit. Care 16, R172 (2012).

    Article  Google Scholar 

  17. Schentag, J. J. et al. Urinary casts as an indicator of renal tubular damage in patients receiving aminoglycosides. Antimicrob. Agents Chemother. 16, 468–474 (1979).

    Article  CAS  Google Scholar 

  18. Chawla, L. S., Dommu, A., Berger, A., Shih, S. & Patel, S. S. Urinary sediment cast scoring index for acute kidney injury: a pilot study. Nephron Clin. Pract. 110, c145–c150 (2008).

    Article  Google Scholar 

  19. Perazella, M. A. et al. Urine microscopy is associated with severity and worsening of acute kidney injury in hospitalized patients. Clin. J. Am. Soc. Nephrol. 5, 402–408 (2010).

    Article  Google Scholar 

  20. Bagshaw, S. M. et al. A prospective evaluation of urine microscopy in septic and non-septic acute kidney injury. Nephrol. Dial. Transplant. (2011).

  21. Hall, I. E. et al. Risk of poor outcomes with novel and traditional biomarkers at clinical AKI diagnosis. Clin. J. Am. Soc. Nephrol. 6, 2740–2749 (2011).

    Article  CAS  Google Scholar 

  22. Schinstock, C. A. et al. Urinalysis is more specific and urinary neutrophil gelatinase-associated lipocalin is more sensitive for early detection of acute kidney injury. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfs127.

  23. Bullivant, E. M., Wilcox, C. S. & Welch, W. J. Intrarenal vasoconstriction during hyperchloremia: role of thromboxane. Am. J. Physiol. 256, F152–F157 (1989).

    CAS  PubMed  Google Scholar 

  24. Yunos, N. M. et al. The biochemical effects of restricting chloride-rich fluids in intensive care. Crit. Care Med. 39, 2419–2424 (2011).

    Article  CAS  Google Scholar 

  25. Shaw, A. D. & Kellum, J. A. The risk of AKI in patients treated with intravenous solutions containing hydroxyethyl starch. Clin. J. Am. Soc. Nephrol. 8, 497–503 (2013).

    Article  CAS  Google Scholar 

  26. Shaw, A. D. et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann. Surg. 255, 821–829 (2012).

    Article  Google Scholar 

  27. Yunos, N. M. et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308, 1566–1572 (2012).

    Article  CAS  Google Scholar 

  28. Nobes, M. S., Harris, P. J., Yamada, H. & Mendelsohn, F. A. Effects of angiotensin on renal cortical and papillary blood flows measured by laser-Doppler flowmetry. Am. J. Physiol. 261, F998–F1006 (1991).

    CAS  PubMed  Google Scholar 

  29. Norman, J. T., Stidwill, R., Singer, M. & Fine, L. G. Angiotensin II blockade augments renal cortical microvascular pO2 indicating a novel, potentially renoprotective action. Nephron Physiol. 94, 39–46 (2003).

    Article  Google Scholar 

  30. Omoro, S. A., Majid, D. S., El Dahr, S. S. & Navar, L. G. Roles of ANG II and bradykinin in the renal regional blood flow responses to ACE inhibition in sodium-depleted dogs. Am. J. Physiol. Renal Physiol. 279, F289–F293 (2000).

    Article  CAS  Google Scholar 

  31. Tawfik, M. K. Renoprotective activity of telmisartan versus pioglitazone on ischemia/reperfusion induced renal damage in diabetic rats. Eur. Rev. Med. Pharmacol. Sci. 16, 600–609 (2012).

    PubMed  Google Scholar 

  32. Molinas, S. M. et al. Effects of losartan pretreatment in an experimental model of ischemic acute kidney injury. Nephron Exp. Nephrol. 112, e10–e19 (2009).

    Article  CAS  Google Scholar 

  33. Mejia-Vilet, J. M. et al. Renal ischemia-reperfusion injury is prevented by the mineralocorticoid receptor blocker spironolactone. Am. J. Physiol. Renal Physiol. 293, F78–F86 (2007).

    Article  CAS  Google Scholar 

  34. Krishan, P., Sharma, A. & Singh, M. Effect of angiotensin converting enzyme inhibitors on ischaemia-reperfusion-induced renal injury in rats. Pharmacol. Res. 37, 23–29 (1998).

    Article  CAS  Google Scholar 

  35. Balasubramanian, G. et al. Early nephrologist involvement in hospital-acquired acute kidney injury: a pilot study. Am. J. Kidney Dis. 57, 228–234 (2011).

    Article  Google Scholar 

  36. Testani, J. M., Kimmel, S. E., Dries, D. L. & Coca, S. G. Prognostic importance of early worsening renal function after initiation of angiotensin-converting enzyme inhibitor therapy in patients with cardiac dysfunction. Circ. Heart Fail. 4, 685–691 (2011).

    Article  CAS  Google Scholar 

  37. Holtkamp, F. A. et al. An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int. 80, 282–287 (2011).

    Article  CAS  Google Scholar 

  38. Haase, M., Kellum, J. A. & Ronco, C. Subclinical AKI—an emerging syndrome with important consequences. Nat. Rev. Nephrol. 8, 735–739 (2012).

    Article  CAS  Google Scholar 

  39. Sward, K., Valsson, F., Sellgren, J. & Ricksten, S. E. Differential effects of human atrial natriuretic peptide and furosemide on glomerular filtration rate and renal oxygen consumption in humans. Intensive Care Med. 31, 79–85 (2005).

    Article  Google Scholar 

  40. Dupont, M. et al. Lack of significant renal tubular injury despite acute kidney injury in acute decompensated heart failure. Eur. J. Heart Fail. 14, 597–604 (2012).

    Article  CAS  Google Scholar 

  41. Damman, K. et al. Volume status and diuretic therapy in systolic heart failure and the detection of early abnormalities in renal and tubular function. J. Am. Coll. Cardiol. 57, 2233–2241 (2011).

    Article  Google Scholar 

  42. Felker, G. M. et al. Diuretic strategies in patients with acute decompensated heart failure. N. Engl. J. Med. 364, 797–805 (2011).

    Article  CAS  Google Scholar 

  43. Grams, M. E. et al. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin. J. Am. Soc. Nephrol. 6, 966–973 (2011).

    Article  Google Scholar 

  44. Testani, J. M., Chen, J., McCauley, B. D., Kimmel, S. E. & Shannon, R. P. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122, 265–272 (2010).

    Article  Google Scholar 

  45. Testani, J. M., Coca, S. G., McCauley, B. D., Shannon, R. P. & Kimmel, S. E. Impact of changes in blood pressure during the treatment of acute decompensated heart failure on renal and clinical outcomes. Eur. J. Heart Fail. 13, 877–884 (2011).

    Article  Google Scholar 

  46. Bart, B. A. et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N. Engl. J. Med. 367, 2296–2304 (2012).

    Article  CAS  Google Scholar 

  47. Testani, J. M., Cappola, T. P., Brensinger, C. M., Shannon, R. P. & Kimmel, S. E. Interaction between loop diuretic-associated mortality and blood urea nitrogen concentration in chronic heart failure. J. Am. Coll. Cardiol. 58, 375–382 (2011).

    Article  CAS  Google Scholar 

  48. Peacock, W. F. et al. Impact of intravenous loop diuretics on outcomes of patients hospitalized with acute decompensated heart failure: insights from the ADHERE registry. Cardiology 113, 12–19 (2009).

    Article  Google Scholar 

  49. Yilmaz, M. B. et al. Impact of diuretic dosing on mortality in acute heart failure using a propensity-matched analysis. Eur. J. Heart Fail. 13, 1244–1252 (2011).

    Article  CAS  Google Scholar 

  50. Uchino, S. et al. Diuretics and mortality in acute renal failure. Crit. Care Med. 32, 1669–1677 (2004).

    Article  Google Scholar 

  51. Mehta, R. L., Pascual, M. T., Soroko, S. & Chertow, G. M. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA 288, 2547–2553 (2002).

    Article  CAS  Google Scholar 

  52. Cantarovich, F., Rangoonwala, B., Lorenz, H., Verho, M. & Esnault, V. L. High-dose furosemide for established ARF: a prospective, randomized, double-blind, placebo-controlled, multicenter trial. Am. J. Kidney Dis. 44, 402–409 (2004).

    Article  CAS  Google Scholar 

  53. Shah, R. V. et al. Effect of admission oral diuretic dose on response to continuous versus bolus intravenous diuretics in acute heart failure: an analysis from diuretic optimization strategies in acute heart failure. Am. Heart J. 164, 862–868 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. G. Coca is supported by National Institutes of Health Grants K23DK080132 and R01DK096549. S. G. Coca is also a member of the NIH-sponsored ASsess, Serial Evaluation, and Subsequent Sequelae in Acute Kidney Injury (ASSESS-AKI) Consortium (U01DK082185).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Steven G. Coca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perazella, M., Coca, S. Three feasible strategies to minimize kidney injury in 'incipient AKI'. Nat Rev Nephrol 9, 484–490 (2013). https://doi.org/10.1038/nrneph.2013.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing