Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obesity-related cardiorenal disease: the benefits of bariatric surgery

Abstract

The inexorable increase in the prevalence of obesity is a global health concern, which will result in a concomitant escalation in health-care costs. Obesity-related metabolic syndrome affects approximately 25% of adults and is associated with cardiovascular and renal disease. The heart and kidneys are physiologically interdependent, and the pathological effects of obesity can lead to cardiorenal syndrome and, ultimately, kidney and heart failure. Weight loss can prevent or ameliorate obesity-related cardiorenal syndrome, but long-term maintenance of a healthy weight has been difficult to achieve through lifestyle changes or pharmacotherapy. Bariatric surgery offers both sustained weight loss and favourable metabolic changes, including dramatic improvements in glycaemic control and symptoms of type 2 diabetes mellitus. Procedures such as Roux-en-Y gastric bypass offer immediate multisystemic benefits, including bile flow alteration, reduced gastric size, anatomical gut rearrangement and altered flow of nutrients, vagal manipulation and enteric hormone modulation. In patients with cardiorenal syndrome, bariatric surgery also offers renoprotection and cardioprotection, and attenuates both kidney and heart failure by improving organ perfusion and reversing metabolic dysfunction. However, further research is required to understand how bariatric surgery acts on the cardiorenal axis, and its pioneering role in novel treatments and interventions for cardiorenal disease.

Key Points

  • The global epidemic of obesity and metabolic syndrome is associated with both renal and cardiovascular disease

  • The physiological interdependence of the kidneys and heart leads to pathology in both organs as a consequence of obesity and metabolic dysregulation—termed cardiorenal syndrome

  • Bariatric surgery offers long-term weight reduction and profound improvements in metabolic dysfunction, including the resolution of type 2 diabetes mellitus and decreased cardiovascular risk

  • The renoprotective and cardioprotective effects of bariatric surgery ameliorate renal and cardiac failure through weight-dependent and weight-independent mechanisms leading to improved organ perfusion and improved metabolic function

  • Increased knowledge of the mechanisms through which bariatric surgery acts on the cardiorenal axis could lead to future advances in the management of obesity-related cardiorenal disease

  • Functional metabolic and endocrinological phenotyping might increase the efficiency of identifying patients with obesity who are at high risk of cardiorenal complications and might benefit from early bariatric management

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of obesity-related cardiorenal syndrome and the beneficial effects of metabolic surgery.
Figure 2: Proposed algorithm for the management of patients with obesity-related cardiorenal syndrome.
Figure 3: The mechanisms by which bariatric surgery induces resolution of cardiac and renal disease.

Similar content being viewed by others

References

  1. WHO. World Health Organisation Fact Sheet No. 311: Obesity and Overweight [online], (2013).

  2. Ford, E. S., Giles, W. H. & Dietz, W. H. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287, 356–359 (2002).

    Article  PubMed  Google Scholar 

  3. House, A. A. et al. Definition and classification of Cardio-Renal Syndromes: workgroup statements from the 7th ADQI Consensus Conference. Nephrol. Dial. Transplant. 25, 1416–1420 (2010).

    Article  PubMed  Google Scholar 

  4. Nelson, R., Antonetti, I., Bisognano, J. D. & Sloand, J. Obesity-related cardiorenal syndrome. J. Clin. Hypertens. (Greenwich) 12, 59–63 (2010).

    Article  Google Scholar 

  5. McCullough, P. A. Why is chronic kidney disease the “spoiler” for cardiovascular outcomes? J. Am. Coll. Cardiol. 41, 725–728 (2003).

    Article  PubMed  Google Scholar 

  6. Sarnak, M. J. et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 108, 2154–2169 (2003).

    Article  PubMed  Google Scholar 

  7. Brinkworth, G. D., Buckley, J. D., Noakes, M. & Clifton, P. M. Renal function following long-term weight loss in individuals with abdominal obesity on a very-low-carbohydrate diet vs high-carbohydrate diet. J. Am. Diet Assoc. 110, 633–638 (2010).

    Article  PubMed  Google Scholar 

  8. Puterbaugh, J. S. The emperor's tailors: the failure of the medical weight loss paradigm and its causal role in the obesity of America. Diabetes Obes. Metab. 11, 557–570 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Sjöström, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    Article  PubMed  Google Scholar 

  10. Eilat-Adar, S., Eldar, M. & Goldbourt, U. Association of intentional changes in body weight with coronary heart disease event rates in overweight subjects who have an additional coronary risk factor. Am. J. Epidemiol. 161, 352–358 (2005).

    Article  PubMed  Google Scholar 

  11. Algahim, M. F. et al. Progressive regression of left ventricular hypertrophy two years after bariatric surgery. Am. J. Med. 123, 549–555 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hsuan, C. F. et al. The effect of surgical weight reduction on left ventricular structure and function in severe obesity. Obesity (Silver Spring) 18, 1188–1193 (2010).

    Article  Google Scholar 

  13. Navaneethan, S. D. & Yehnert, H. Bariatric surgery and progression of chronic kidney disease. Surg. Obes. Relat. Dis. 5, 662–665 (2009).

    Article  PubMed  Google Scholar 

  14. Zalesin, K. C. & McCullough, P. A. Bariatric surgery for morbid obesity: risks and benefits in chronic kidney disease patients. Adv. Chronic Kidney Dis. 13, 403–417 (2006).

    Article  PubMed  Google Scholar 

  15. Colditz, G. A., Willett, W. C., Rotnitzky, A. & Manson, J. E. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann. Intern. Med. 122, 481–486 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Han, T. S., Richmond, P., Avenell, A. & Lean, M. E. Waist circumference reduction and cardiovascular benefits during weight loss in women. Int. J. Obes. Relat. Metab. Disord. 21, 127–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Wildman, R. P. et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch. Intern. Med. 168, 1617–1624 (2008).

    Article  PubMed  Google Scholar 

  18. Thomas, E. L. et al. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity (Silver Spring) 20, 76–87 (2012).

    Article  CAS  Google Scholar 

  19. Thomas, E. L. et al. Magnetic resonance imaging of total body fat. J. Appl. Physiol. 85, 1778–1785 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Stefan, N. et al. Identification and characterization of metabolically benign obesity in humans. Arch. Intern. Med. 168, 1609–1616 (2008).

    Article  PubMed  Google Scholar 

  21. Karelis, A. D. Metabolically healthy but obese individuals. Lancet 372, 1281–1283 (2008).

    Article  PubMed  Google Scholar 

  22. Primeau, V. et al. Characterizing the profile of obese patients who are metabolically healthy. Int. J. Obes. (Lond.) 35, 971–981 (2011).

    Article  CAS  Google Scholar 

  23. Kloting, N. et al. Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299, E506–E515 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Stefan, N. & Haring, H. U. The metabolically benign and malignant fatty liver. Diabetes 60, 2011–2017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cohen, J. C., Horton, J. D. & Hobbs, H. H. Human fatty liver disease: old questions and new insights. Science 332, 1519–1523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grujic, D. et al. Beta3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J. Biol. Chem. 272, 17686–17693 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Abbott, R. D., Donahue, R. P., Kannel, W. B. & Wilson, P. W. The impact of diabetes on survival following myocardial infarction in men vs women. The Framingham Study. JAMA 260, 3456–3460 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Yamagishi, S. & Imaizumi, T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr. Pharm. Des. 11, 2279–2299 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Gerstein, H. C. et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Griffin, K. A., Kramer, H. & Bidani, A. K. Adverse renal consequences of obesity. Am. J. Physiol. Renal Physiol. 294, F685–F696 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Kambham, N., Markowitz, G. S., Valeri, A. M., Lin, J. & D'Agati, V. D. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 59, 1498–1509 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Alexander, M. P. et al. Kidney pathological changes in metabolic syndrome: a cross-sectional study. Am. J. Kidney Dis. 53, 751–759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsuboi, N. et al. Low glomerular density with glomerulomegaly in obesity-related glomerulopathy. Clin. J. Am. Soc. Nephrol. 7, 735–741 (2012).

    Article  PubMed  Google Scholar 

  34. Deji, N. et al. Structural and functional changes in the kidneys of high-fat diet-induced obese mice. Am. J. Physiol. Renal Physiol. 296, F118–F126 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Nagase, M. et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J. Am. Soc. Nephrol. 17, 3438–3446 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Nagase, M. et al. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 47, 1084–1093 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Rubler, S. et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 30, 595–602 (1972).

    Article  CAS  PubMed  Google Scholar 

  38. Galderisi, M. et al. Left ventricular hypertrophy, compliance and ventricular filling. J. Int. Med. Res. 19, 103–111 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Shehadeh, A. & Regan, T. J. Cardiac consequences of diabetes mellitus. Clin. Cardiol. 18, 301–305 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Regan, T. J. et al. Evidence for cardiomyopathy in familial diabetes mellitus. J. Clin. Invest. 60, 884–899 (1977).

    Article  CAS  PubMed  Google Scholar 

  41. Alpert, M. A. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am. J. Med. Sci. 321, 225–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Poirier, P. et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113, 898–918 (2006).

    Article  PubMed  Google Scholar 

  43. Pinna, G. A., Curzu, M. M., Sechi, M., Chelucci, G. & Maciocco, E. Synthesis and dopamine D2-like receptor binding affinity of substituted 5-phenyl-pyrrole-3-carboxamides. Farmaco 54, 542–550 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Hu, R. M., Levin, E. R., Pedram, A. & Frank, H. J. Insulin stimulates production and secretion of endothelin from bovine endothelial cells. Diabetes 42, 351–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, J. A., Montagnani, M., Koh, K. K. & Quon, M. J. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 113, 1888–1904 (2006).

    Article  PubMed  Google Scholar 

  46. Vinik, A. I. The metabolic basis of atherogenic dyslipidemia. Clin. Cornerstone 7, 27–35 (2005).

    Article  PubMed  Google Scholar 

  47. James, W. P. Assessing obesity: are ethnic differences in body mass index and waist classification criteria justified? Obes. Rev. 6, 179–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. McFarlane, S. I., Banerji, M. & Sowers, J. R. Insulin resistance and cardiovascular disease. J. Clin. Endocrinol. Metab. 86, 713–718 (2001).

    CAS  PubMed  Google Scholar 

  49. Sowers, J. R. Insulin resistance and hypertension. Am. J. Physiol. Heart Circ. Physiol. 286, H1597–H1602 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Sowers, J. R., Epstein, M. & Frohlich, E. D. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 37, 1053–1059 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Edwards, M. S., Craven, T. E., Burke, G. L., Dean, R. H. & Hansen, K. J. Renovascular disease and the risk of adverse coronary events in the elderly: a prospective, population-based study. Arch. Intern. Med. 165, 207–213 (2005).

    Article  PubMed  Google Scholar 

  52. U. S. Renal Data System. USRDS 2003 Annual Data Report: Atlas of chronic kidney disease and end-stage renal disease in the United States [online], (2003).

  53. Dulloo, A. G. Biomedicine. A sympathetic defense against obesity. Science 297, 780–781 (2002).

    Article  PubMed  Google Scholar 

  54. Rossi, M. et al. Cardiac autonomic dysfunction in obese subjects. Clin. Sci. (Lond.) 76, 567–572 (1989).

    Article  CAS  Google Scholar 

  55. Petretta, M. et al. Assessment of cardiac autonomic control by heart period variability in patients with early-onset familial obesity. Eur. J. Clin. Invest. 25, 826–832 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Grassi, G. et al. Sympathetic activation in obese normotensive subjects. Hypertension 25, 560–563 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Esler, M. et al. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 48, 787–796 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Kotsis, V. T., Stabouli, S. V., Papamichael, C. M. & Zakopoulos, N. A. Impact of obesity in intima media thickness of carotid arteries. Obesity (Silver Spring) 14, 1708–1715 (2006).

    Article  Google Scholar 

  59. Tentolouris, N., Argyrakopoulou, G. & Katsilambros, N. Perturbed autonomic nervous system function in metabolic syndrome. Neuromolecular Med. 10, 169–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Trayhurn, P. & Wood, I. S. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 92, 347–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Trayhurn, P., Wang, B. & Wood, I. S. Hypoxia and the endocrine and signalling role of white adipose tissue. Arch. Physiol. Biochem. 114, 267–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Hak, A. E. et al. Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler. Thromb. Vasc. Biol. 19, 1986–1991 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Ito, H. et al. Association of serum tumour necrosis factor-alpha with serum low-density lipoprotein-cholesterol and blood pressure in apparently healthy Japanese women. Clin. Exp. Pharmacol. Physiol. 28, 188–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Bautista, L. E., Vera, L. M., Arenas, I. A. & Gamarra, G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J. Hum. Hypertens. 19, 149–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Tilg, H. & Moschen, A. R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Ridker, P. M., Rifai, N., Stampfer, M. J. & Hennekens, C. H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101, 1767–1772 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Langenberg, C., Bergstrom, J., Scheidt-Nave, C., Pfeilschifter, J. & Barrett-Connor, E. Cardiovascular death and the metabolic syndrome: role of adiposity-signaling hormones and inflammatory markers. Diabetes Care 29, 1363–1369 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Chae, C. U., Lee, R. T., Rifai, N. & Ridker, P. M. Blood pressure and inflammation in apparently healthy men. Hypertension 38, 399–403 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Vila, E. & Salaices, M. Cytokines and vascular reactivity in resistance arteries. Am. J. Physiol. Heart Circ. Physiol. 288, H1016–H1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Virdis, A. & Schiffrin, E. L. Vascular inflammation: a role in vascular disease in hypertension? Curr. Opin. Nephrol. Hypertens. 12, 181–187 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Lagrand, W. K. et al. C-reactive protein as a cardiovascular risk factor: more than an epiphenomenon? Circulation 100, 96–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Munkhaugen, J., Lydersen, S., Widerøe, T. E. & Hallan, S. Prehypertension, obesity, and risk of kidney disease: 20-year follow-up of the HUNT I study in Norway. Am. J. Kidney Dis. 54, 638–646 (2009).

    Article  PubMed  Google Scholar 

  73. Chakrabarti, S. K. et al. Evidence for activation of inflammatory lipoxygenase pathways in visceral adipose tissue of obese zucker rats. Am. J. Physiol. Endocrinol. Metab. 300, E175–E187 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Kuller, L. H., Tracy, R. P., Shaten, J. & Meilahn, E. N. Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple Risk Factor Intervention Trial. Am. J. Epidemiol. 144, 537–547 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P. & Hennekens, C. H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336, 973–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P. & Baskin, D. G. Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 98, 1101–1106 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marsh, A. J. et al. Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. Hypertension 42, 488–493 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Rahmouni, K., Morgan, D. A., Morgan, G. M., Mark, A. L. & Haynes, W. G. Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes 54, 2012–2018 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Correia, M. L. et al. Role of corticotrophin-releasing factor in effects of leptin on sympathetic nerve activity and arterial pressure. Hypertension 38, 384–388 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Haynes, W. G., Sivitz, W. I., Morgan, D. A., Walsh, S. A. & Mark, A. L. Sympathetic and cardiorenal actions of leptin. Hypertension 30, 619–623 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Haynes, W. G., Morgan, D. A., Walsh, S. A., Sivitz, W. I. & Mark, A. L. Cardiovascular consequences of obesity: role of leptin. Clin. Exp. Pharmacol. Physiol. 25, 65–69 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. de Courten, M. et al. Hyperleptinaemia: the missing link in the, metabolic syndrome? Diabet. Med. 14, 200–208 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Beltowski, J., Borkowska, E., Wojcicka, G. & Marciniak, A. Regulation of renal ouabain-resistant Na+-ATPase by leptin, nitric oxide, reactive oxygen species, and cyclic nucleotides: implications for obesity-associated hypertension. Clin. Exp. Hypertens. 29, 189–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Galletti, F. et al. High-circulating leptin levels are associated with greater risk of hypertension in men independently of body mass and insulin resistance: results of an eight-year follow-up study. J. Clin. Endocrinol. Metab. 93, 3922–3926 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Kramer, C. K., von Muhlen, D. & Barrett-Connor, E. Does leptin predict incident hypertension in older adults? Clin. Endocrinol. (Oxf.) 73, 201–205 (2010).

    CAS  Google Scholar 

  87. Wolf, G. & Ziyadeh, F. N. Leptin and renal fibrosis. Contrib. Nephrol. 151, 175–183 (2006).

    Article  PubMed  Google Scholar 

  88. Karmazyn, M., Purdham, D. M., Rajapurohitam, V. & Zeidan, A. Leptin as a cardiac hypertrophic factor: a potential target for therapeutics. Trends Cardiovasc. Med. 17, 206–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Rajapurohitam, V., Gan, X. T., Kirshenbaum, L. A. & Karmazyn, M. The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ. Res. 93, 277–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Selthofer-Relatic, K. et al. Hyperleptinemia – non-haemodynamic risk factor for the left ventricular hypertrophy development in hypertensive overweight females. Coll. Antropol. 32, 681–685 (2008).

    CAS  PubMed  Google Scholar 

  91. Umemoto, Y. et al. Leptin stimulates the proliferation of murine myelocytic and primitive hematopoietic progenitor cells. Blood 90, 3438–3443 (1997).

    CAS  PubMed  Google Scholar 

  92. Paolisso, G. et al. Plasma leptin level is associated with myocardial wall thickness in hypertensive insulin-resistant men. Hypertension 34, 1047–1052 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Leyva, F. et al. Hyperleptinaemia in chronic heart failure. Relationships with insulin. Eur. Heart J. 19, 1547–1551 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Purdham, D. M. et al. A neutralizing leptin receptor antibody mitigates hypertrophy and hemodynamic dysfunction in the postinfarcted rat heart. Am. J. Physiol. Heart Circ. Physiol. 295, H441–H446 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Barouch, L. A., Berkowitz, D. E., Harrison, R. W., O'Donnell, C. P. & Hare, J. M. Disruption of leptin signaling contributes to cardiac hypertrophy independently of body weight in mice. Circulation 108, 754–759 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Luo, J. D., Zhang, G. S. & Chen, M. S. Leptin and cardiovascular diseases. Drug News Perspect. 18, 427–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Reaux, A. et al. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J. Neurochem. 77, 1085–1096 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Ishida, J. et al. Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J. Biol. Chem. 279, 26274–26279 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Higuchi, K. et al. Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice. Endocrinology 148, 2690–2697 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Bacha, F., Saad, R., Gungor, N. & Arslanian, S. A. Adiponectin in youth: relationship to visceral adiposity, insulin sensitivity, and beta-cell function. Diabetes Care 27, 547–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Kadowaki, T. & Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Shibata, R. et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat. Med. 11, 1096–1103 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hashimoto, N. et al. Association of hypoadiponectinemia in men with early onset of coronary heart disease and multiple coronary artery stenoses. Metabolism 55, 1653–1657 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Ruano, M. et al. HOMA, QUICKI and MFfm to measure insulin resistance in morbid obesity. Obes. Surg. 16, 549–553 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Kidambi, S. et al. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension 49, 704–711 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Campbell, D. J. Circulating and tissue angiotensin systems. J. Clin. Invest. 79, 1–6 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Briet, M. & Schiffrin, E. L. Aldosterone: effects on the kidney and cardiovascular system. Nat. Rev. Nephrol. 6, 261–273 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Greene, E. L., Kren, S. & Hostetter, T. H. Role of aldosterone in the remnant kidney model in the rat. J. Clin. Invest. 98, 1063–1068 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    Article  PubMed  Google Scholar 

  110. Kanbay, M. et al. Uric acid and pentraxin-3 levels are independently associated with coronary artery disease risk in patients with stage 2 and 3 kidney disease. Am. J. Nephrol. 33, 325–331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kanbay, M. et al. Serum uric acid level and endothelial dysfunction in patients with nondiabetic chronic kidney disease. Am. J. Nephrol. 33, 298–304 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Anker, S. D. et al. Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging. Circulation 107, 1991–1997 (2003).

    Article  PubMed  Google Scholar 

  113. Basar, N. et al. Elevated serum uric acid predicts angiographic impaired reperfusion and 1-year mortality in ST-segment elevation myocardial infarction patients undergoing percutaneous coronary intervention. J. Investig. Med. 59, 931–937 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Masuo, K., Kawaguchi, H., Mikami, H., Ogihara, T. & Tuck, M. L. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension 42, 474–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Johnson, R. J., Herrera-Acosta, J., Schreiner, G. F. & Rodriguez-Iturbe, B. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N. Engl. J. Med. 346, 913–923 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Johnson, R. J., Feig, D. I., Herrera-Acosta, J. & Kang, D. H. Resurrection of uric acid as a causal risk factor in essential hypertension. Hypertension 45, 18–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Johnson, R. J., Rodriguez-Iturbe, B., Kang, D. H., Feig, D. I. & Herrera-Acosta, J. A unifying pathway for essential hypertension. Am. J. Hypertens. 18, 431–440 (2005).

    Article  PubMed  Google Scholar 

  118. Lv, Q. et al. High serum uric Acid and increased risk of type 2 diabetes: a systemic review and meta-analysis of prospective cohort studies. PLoS ONE 8, e56864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jin, Y. L. et al. Uric acid levels, even in the normal range, are associated with increased cardiovascular risk: The Guangzhou Biobank Cohort Study. Int. J. Cardiol. http://dx.doi.org/10.1016/j.ijcard.2013.01.214.

  120. Lanaspa, M. A. et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J. Biol. Chem. 287, 40732–40744 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, J. E. et al. Serum uric acid is associated with microalbuminuria in prehypertension. Hypertension 47, 962–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Rosolowsky, E. T. et al. High-normal serum uric acid is associated with impaired glomerular filtration rate in nonproteinuric patients with type 1 diabetes. Clin. J. Am. Soc. Nephrol. 3, 706–713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Iseki, K. et al. Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am. J. Kidney Dis. 44, 642–650 (2004).

    Article  PubMed  Google Scholar 

  124. Ford, E. S., Li, C., Cook, S. & Choi, H. K. Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation 115, 2526–2532 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Choi, H. K. & Ford, E. S. Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am. J. Med. 120, 442–447 (2007).

    Article  PubMed  Google Scholar 

  126. Pacifico, L. et al. Serum uric acid and its association with metabolic syndrome and carotid atherosclerosis in obese children. Eur. J. Endocrinol. 160, 45–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Quinones-Galvan, A. & Ferrannini, E. Renal effects of insulin in man. J. Nephrol. 10, 188–191 (1997).

    CAS  PubMed  Google Scholar 

  128. Feig, D. I. & Johnson, R. J. Hyperuricemia in childhood primary hypertension. Hypertension 42, 247–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Niskanen, L. K. et al. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch. Intern. Med. 164, 1546–1551 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Hongo, M. et al. Association between serum uric acid levels and cardiometabolic risk factors among Japanese junior high school students. Circ. J. 74, 1570–1577 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Nakagawa, T. et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am. J. Physiol. Renal Physiol. 290, F625–F631 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Khosla, U. M. et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 67, 1739–1742 (2005).

    Article  PubMed  Google Scholar 

  133. Sui, X., Church, T. S., Meriwether, R. A., Lobelo, F. & Blair, S. N. Uric acid and the development of metabolic syndrome in women and men. Metabolism 57, 845–852 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hallfrisch, J. Metabolic effects of dietary fructose. FASEB J. 4, 2652–2660 (1990).

    Article  CAS  PubMed  Google Scholar 

  135. Sanchez-Lozada, L. G. et al. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am. J. Physiol. Renal Physiol. 294, F710–F718 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Johnson, R. J. et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41, 1183–1190 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Mazzali, M. et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38, 1101–1106 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Xu, C., Yu, C., Xu, L., Miao, M. & Li, Y. High serum uric acid increases the risk for nonalcoholic fatty liver disease: a prospective observational study. PLoS ONE 5, e11578 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lee, J. W. et al. Serum uric acid as a predictor for the development of nonalcoholic fatty liver disease in apparently healthy subjects: a 5-year retrospective cohort study. Gut Liver 4, 378–383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hwang, I. C., Suh, S. Y., Suh, A. R. & Ahn, H. Y. The relationship between normal serum uric acid and nonalcoholic fatty liver disease. J. Korean Med. Sci. 26, 386–391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dawson, J. & Walters, M. Uric acid and xanthine oxidase: future therapeutic targets in the prevention of cardiovascular disease? Br. J. Clin. Pharmacol. 62, 633–644 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ronco, C. et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur. Heart J. 31, 703–711 (2010).

    Article  PubMed  Google Scholar 

  143. Ashrafian, H., le Roux., C. W., Darzi, A. & Athanasiou, T. Effects of bariatric surgery on cardiovascular function. Circulation 118, 2091–2102 (2008).

    Article  PubMed  Google Scholar 

  144. Lekawanvijit, S., Kompa, A. R., Wang, B. H., Kelly, D. J. & Krum, H. Cardiorenal syndrome: the emerging role of protein-bound uremic toxins. Circ. Res. 111, 1470–1483 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Li, J. V. et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 60, 1214–1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Fenske, W., Parker, J. & Bloom, S. R. Pharmacotherapy for obesity: a field in crisis? Expert Rev. Endocrinol. Metab. 6, 563–577 (2011).

    Article  Google Scholar 

  147. Flum, D. R. et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N. Engl. J. Med. 361, 445–454 (2009).

    Article  PubMed  Google Scholar 

  148. Ashrafian, H., Darzi, A. & Athanasiou, T. Bariatric surgery - can we afford to do it or deny doing it? Frontline Gastroenterol. 2, 82–89 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Buchwald, H. & Oien, D. M. Metabolic/bariatric surgery worldwide 2008. Obes. Surg. 19, 1605–1611 (2009).

    Article  PubMed  Google Scholar 

  150. Carlsson, L. M. et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N. Engl. J. Med. 367, 695–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Sjostrom, L. et al. Bariatric surgery and long-term cardiovascular events. JAMA 307, 56–65 (2012).

    Article  PubMed  Google Scholar 

  152. Salem, L., Jensen, C. C. & Flum, D. R. Are bariatric surgical outcomes worth their cost? A systematic review. J. Am. Coll. Surg. 200, 270–278 (2005).

    Article  PubMed  Google Scholar 

  153. Nguyen, N. T. et al. Laparoscopic versus open gastric bypass: a randomized study of outcomes, quality of life, and costs. Ann. Surg. 234, 279–289; discussion 289–291 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Buchwald, H. et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 122, 248–256.e5 (2009).

    Article  PubMed  Google Scholar 

  155. Tice, J. A., Karliner, L., Walsh, J., Petersen, A. J. & Feldman, M. D. Gastric banding or bypass? A systematic review comparing the two most popular bariatric procedures. Am. J. Med. 121, 885–893 (2008).

    Article  PubMed  Google Scholar 

  156. Ashrafian, H. et al. Metabolic surgery: an evolution through bariatric animal models. Obes. Rev. 11, 907–920 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Michell, A. R., Debnam, E. S. & Unwin, R. J. Regulation of renal function by the gastrointestinal tract: potential role of gut-derived peptides and hormones. Annu. Rev. Physiol. 70, 379–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Lennane, R. J., Carey, R. M., Goodwin, T. J. & Peart, W. S. A comparison of natriuresis after oral and intravenous sodium loading in sodium-depleted man: evidence for a gastrointestinal or portal monitor of sodium intake. Clin. Sci. Mol. Med. 49, 437–440 (1975).

    CAS  PubMed  Google Scholar 

  159. Patriti, A., Facchiano, E., Sanna, A., Gulla, N. & Donini, A. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery. Obes. Surg. 14, 840–848 (2004).

    Article  PubMed  Google Scholar 

  160. Ashrafian, H. et al. Diabetes resolution and hyperinsulinaemia after metabolic Roux-en-Y gastric bypass. Obes. Rev. 12, e257–e272 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Ashrafian, H., Darzi, A. & Athanasiou, T. Autobionics: a new paradigm in regenerative medicine and surgery. Regen. Med. 5, 279–288 (2010).

    Article  PubMed  Google Scholar 

  162. Ashrafian, H. et al. Metabolic surgery and obstructive sleep apnoea: the protective effects of bariatric procedures. Thorax 67, 442–449 (2012).

    Article  PubMed  Google Scholar 

  163. Kardassis, D. et al. Impact of body composition, fat distribution and sustained weight loss on cardiac function in obesity. Int. J. Cardiol. 159, 128–133 (2012).

    Article  PubMed  Google Scholar 

  164. MacMahon, S. W., Wilcken, D. E. & Macdonald, G. J. The effect of weight reduction on left ventricular mass. A randomized controlled trial in young, overweight hypertensive patients. N. Engl. J. Med. 314, 334–339 (1986).

    Article  CAS  PubMed  Google Scholar 

  165. McCloskey, C. A. et al. Bariatric surgery improves cardiac function in morbidly obese patients with severe cardiomyopathy. Surg. Obes. Relat. Dis. 3, 503–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Huffman, C., Wagman, G., Fudim, M., Zolty, R. & Vittorio, T. Reversible cardiomyopathies—a review. Transplant. Proc. 42, 3673–3678 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Pontiroli, A. E., Frige, F., Paganelli, M. & Folli, F. In morbid obesity, metabolic abnormalities and adhesion molecules correlate with visceral fat, not with subcutaneous fat: effect of weight loss through surgery. Obes. Surg. 19, 745–750 (2009).

    Article  PubMed  Google Scholar 

  168. Ashrafian, H., Athanasiou, T. & le Roux., C. W. Heart remodelling and obesity: the complexities and variation of cardiac geometry. Heart 97, 171–172 (2011).

    Article  PubMed  Google Scholar 

  169. Barraclough, M. A. & Bloom, S. R. Vipoma of the pancreas: observations on the diarhrhea and circulatory disturbances. Arch. Intern. Med. 139, 467–471 (1979).

    Article  CAS  PubMed  Google Scholar 

  170. Chatelain, P., Robberecht, P., de Neef, P., Claeys, M. & Christophe, J. Low responsiveness of cardiac adenylate cyclase activity to peptide hormones in spontaneously hypertensive rats. FEBS Lett. 107, 86–90 (1979).

    Article  CAS  PubMed  Google Scholar 

  171. le Roux., C. W. et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 243, 108–114 (2006).

    Article  PubMed  Google Scholar 

  172. Nikolaidis, L. A. et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109, 962–965 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Nikolaidis, L. A. et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110, 955–961 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Baessler, A. et al. Epistatic interaction between haplotypes of the ghrelin ligand and receptor genes influence susceptibility to myocardial infarction and coronary artery disease. Hum. Mol. Genet. 16, 887–899 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Nagaya, N. et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 110, 3674–3679 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Tauber, M. et al. Hyperghrelinemia is a common feature of Prader-Willi syndrome and pituitary stalk interruption: a pathophysiological hypothesis. Horm. Res. 62, 49–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Löfgren, P. et al. Long-term prospective and controlled studies demonstrate adipose tissue hypercellularity and relative leptin deficiency in the postobese state. J. Clin. Endocrinol. Metab. 90, 6207–6213 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Linscheid, P. et al. Increase in high molecular weight adiponectin by bariatric surgery-induced weight loss. Diabetes Obes. Metab. 10, 1266–1270 (2008).

    CAS  PubMed  Google Scholar 

  179. Meyer, T. E. et al. Long-term caloric restriction ameliorates the decline in diastolic function in humans. J. Am. Coll. Cardiol. 47, 398–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Pories, W. J. et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann. Surg. 222, 339–350; discussion 350–352 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hoerger, T. J., Segel, J. E., Gregg, E. W. & Saaddine, J. B. Is glycemic control improving in US adults? Diabetes Care 31, 81–86 (2008).

    Article  PubMed  Google Scholar 

  182. Knowler, W. C. et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374, 1677–1686 (2009).

    Article  PubMed  Google Scholar 

  183. Buchwald, H. et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 292, 1724–1737 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Fenske, W. K. et al. Can. a protocol for glycaemic control improve type 2 diabetes outcomes after gastric bypass? Obes. Surg. 22, 90–96 (2012).

    Article  PubMed  Google Scholar 

  185. Laferrere, B. et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93, 2479–2485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Korner, J., Bessler, M., Inabnet, W., Taveras, C. & Holst, J. J. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg. Obes. Relat. Dis. 3, 597–601 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Schauer, P. R. et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann. Surg. 238, 467–484; discussion 84–85 (2003).

    PubMed  PubMed Central  Google Scholar 

  188. Wang, Y. & Liu, J. Combination of bypassing stomach and vagus dissection in high-fat diet-induced obese rats-a long-term investigation. Obes. Surg. 20, 375–379 (2010).

    Article  PubMed  Google Scholar 

  189. Tonosaki, K., Hori, Y. & Shimizu, Y. Relationships between insulin release and taste. Biomed. Res. 28, 79–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Jialal, I., Abby, S. L., Misir, S. & Nagendran, S. Concomitant reduction in low-density lipoprotein cholesterol and glycated hemoglobin with colesevelam hydrochloride in patients with type 2 diabetes: a pooled analysis. Metab. Syndr. Relat. Disord. 7, 255–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mutch, D. M. et al. Metabolite profiling identifies candidate markers reflecting the clinical adaptations associated with Roux-en-Y gastric bypass surgery. PLoS ONE 4, e7905 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kopp, H. P. et al. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler. Thromb. Vasc. Biol. 23, 1042–1047 (2003).

    Article  CAS  PubMed  Google Scholar 

  193. Ashrafian, H. & le Roux., C. W. Metabolic surgery and gut hormones - a review of bariatric entero-humoral modulation. Physiol. Behav. 97, 620–631 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Mingrone, G. et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N. Engl. J. Med. 366, 1577–1585 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366, 1567–1576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ballantyne, G. H., Gumbs, A. & Modlin, I. M. Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin, adiponectin and resistin. Obes. Surg. 15, 692–699 (2005).

    Article  PubMed  Google Scholar 

  197. Gumbs, A. A., Modlin, I. M. & Ballantyne, G. H. Changes in insulin resistance following bariatric surgery: role of caloric restriction and weight loss. Obes. Surg. 15, 462–473 (2005).

    Article  PubMed  Google Scholar 

  198. Wickremesekera, K., Miller, G., Naotunne, T. D., Knowles, G. & Stubbs, R. S. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes. Surg. 15, 474–481 (2005).

    Article  PubMed  Google Scholar 

  199. Muscelli, E. et al. Differential effect of weight loss on insulin resistance in surgically treated obese patients. Am. J. Med. 118, 51–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Service, G. J. et al. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N. Engl. J. Med. 353, 249–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Z'Graggen, K. et al. Severe recurrent hypoglycemia after gastric bypass surgery. Obes. Surg. 18, 981–988 (2008).

    Article  PubMed  Google Scholar 

  202. Anstee, Q. M., McPherson, S. & Day, C. P. How big a problem is non-alcoholic fatty liver disease? BMJ 343, d3897 (2011).

    Article  PubMed  Google Scholar 

  203. Edmison, J. & McCullough, A. J. Pathogenesis of non-alcoholic steatohepatitis: human data. Clin. Liver Dis. 11, 75–104 (2007).

    Article  PubMed  Google Scholar 

  204. Bugianesi, E. et al. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123, 134–140 (2002).

    Article  PubMed  Google Scholar 

  205. Day, C. P. Non-alcoholic fatty liver disease: current concepts and management strategies. Clin. Med. 6, 19–25 (2006).

    Article  Google Scholar 

  206. Dixon, J. B., Bhathal, P. S., Hughes, N. R. & O'Brien, P. E. Nonalcoholic fatty liver disease: Improvement in liver histological analysis with weight loss. Hepatology 39, 1647–1654 (2004).

    Article  PubMed  Google Scholar 

  207. Sjostrom, L. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 351, 2683–2693 (2004).

    Article  PubMed  Google Scholar 

  208. Benaiges, D. et al. Impact of restrictive (sleeve gastrectomy) vs hybrid bariatric surgery (Roux-en-Y gastric bypass) on lipid profile. Obes. Surg. 22, 1268–1275 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Nguyen, N. T. et al. Resolution of hyperlipidemia after laparoscopic Roux-en-Y gastric bypass. J. Am. Coll. Surg. 203, 24–29 (2006).

    Article  PubMed  Google Scholar 

  210. Holdstock, C. et al. CRP reduction following gastric bypass surgery is most pronounced in insulin-sensitive subjects. Int. J. Obes. (Lond.) 29, 1275–1280 (2005).

    Article  CAS  Google Scholar 

  211. Vilarrasa, N. et al. Effect of weight loss induced by gastric bypass on proinflammatory interleukin-18, soluble tumour necrosis factor-alpha receptors, C-reactive protein and adiponectin in morbidly obese patients. Clin. Endocrinol. (Oxf.) 67, 679–686 (2007).

    Article  CAS  Google Scholar 

  212. Morales, E., Valero, M. A., Leon, M., Hernandez, E. & Praga, M. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am. J. Kidney Dis. 41, 319–327 (2003).

    Article  PubMed  Google Scholar 

  213. Chagnac, A. et al. The effects of weight loss on renal function in patients with severe obesity. J. Am. Soc. Nephrol. 14, 1480–1486 (2003).

    Article  PubMed  Google Scholar 

  214. Agnani, S., Vachharajani, V. T., Gupta, R., Atray, N. K. & Vachharajani, T. J. Does treating obesity stabilize chronic kidney disease? BMC Nephrol. 6, 7 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Solerte, S. B., Fioravanti, M., Schifino, N. & Ferrari, E. Effects of diet-therapy on urinary protein excretion albuminuria and renal haemodynamic function in obese diabetic patients with overt nephropathy. Int. J. Obes. 13, 203–211 (1989).

    CAS  PubMed  Google Scholar 

  216. Praga, M. & Morales, E. Obesity, proteinuria and progression of renal failure. Curr. Opin. Nephrol. Hypertens. 15, 481–486 (2006).

    Article  PubMed  Google Scholar 

  217. Navarro-Diaz, M. et al. Effect of drastic weight loss after bariatric surgery on renal parameters in extremely obese patients: long-term follow-up. J. Am. Soc. Nephrol. 17, S213–S217 (2006).

    Article  PubMed  Google Scholar 

  218. Agrawal, V. et al. The effect of weight loss after bariatric surgery on albuminuria. Clin. Nephrol. 70, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  219. Saliba, J. et al. Roux-en-Y gastric bypass reverses renal glomerular but not tubular abnormalities in excessively obese diabetics. Surgery 147, 282–287 (2010).

    Article  PubMed  Google Scholar 

  220. Ruggenenti, P., Perna, A., Ganeva, M., Ene-Iordache, B. & Remuzzi, G. Impact of blood pressure control and angiotensin-converting enzyme inhibitor therapy on new-onset microalbuminuria in type 2 diabetes: a post hoc analysis of the BENEDICT trial. J. Am. Soc. Nephrol. 17, 3472–3481 (2006).

    Article  CAS  PubMed  Google Scholar 

  221. Navaneethan, S. D. et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Systematic Reviews, Issue 2. Art. No.: CD007784 http://dx.doi.org/10.1002/14651858.CD007784.

  222. Alexander, J. W., Goodman, H. R., Hawver, L. R. & Cardi, M. A. Improvement and stabilization of chronic kidney disease after gastric bypass. Surg. Obes. Relat. Dis. 5, 237–241 (2009).

    Article  PubMed  Google Scholar 

  223. Gore, J. L. Obesity and renal transplantation: is bariatric surgery the answer? Transplantation 87, 1115 (2009).

    Article  PubMed  Google Scholar 

  224. Takata, M. C. et al. Laparoscopic bariatric surgery improves candidacy in morbidly obese patients awaiting transplantation. Surg. Obes. Relat. Dis. 4, 159–164; discussion 164–165. (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research work is supported by individual Wellcome Trust fellowships to H. Ashrafian and L. Harling.

Author information

Authors and Affiliations

Authors

Contributions

W. Fenske, L. Harling, C. Drechsler and H. Ashrafian researched data for and wrote the article. T. Athanasiou, L. Harling, A. Darzi and H. Ashrafian reviewed and edited the manuscript before submission. A. Darzi and H. Ashrafian made substantial contributions to discussions of the content.

Corresponding author

Correspondence to Hutan Ashrafian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenske, W., Athanasiou, T., Harling, L. et al. Obesity-related cardiorenal disease: the benefits of bariatric surgery. Nat Rev Nephrol 9, 539–551 (2013). https://doi.org/10.1038/nrneph.2013.145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.145

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing