Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Early detection of CKD: the benefits, limitations and effects on prognosis

Abstract

The past decade has seen an increasing focus on chronic kidney disease (CKD) and its attendant complications, which has resulted in improved understanding of their impact on health-care resources. The early detection of CKD has been facilitated by the implementation of routine reporting of estimated glomerular filtration rates (eGFRs) and by education of primary care physicians on the implications of detecting a decreased eGFR with respect to patient safety as well as to cardiovascular and renal outcomes. The goals of early CKD detection are to prevent CKD progression and associated complications, thus improving patient outcomes and reducing the impact of CKD on health-care resources. This Review examines the benefits of the early detection of CKD, and describes the limitations of current knowledge with respect to screening, early detection and treatment, as well as the unintended consequences of detection. In addition, this article highlights what is currently known about cardiovascular and renal outcomes and the effects of intervention in patients with CKD.

Key Points

  • Chronic kidney disease (CKD) is prevalent worldwide and occurs in conjunction with cardiovascular disease and diabetes

  • CKD should be defined in terms of both estimated glomerular filtration rates and albuminuria, as each is an independent predictor of prognosis with respect to renal and cardiovascular outcomes

  • Early detection of CKD allows implementation of treatments and strategies that can influence both progression of kidney disease and cardiovascular health

  • Detection and identification of CKD facilitates avoidance of drugs and situations that may cause worsening of kidney function and acute kidney injury

  • CKD is recognized to have widely varying outcomes, which makes predicting the prognosis of individual patients difficult

  • Improved prediction of renal and other risks in patients with CKD is a focus for research

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Rationale for the early detection (and ideally prevention) of disease.
Figure 2: Comparison of end-stage renal disease incidence rates, 2003–2007.
Figure 3: The natural history of AKI.

References

  1. 1

    White, S. L., Chadban, S. J., Jan, S., Chapman, J. R. & Cassa, A. How can we achieve global equity in provision of renal replacement therapy? Bull. World Health Organ. 86, 229–237 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39 (2 Suppl. 1), S1–S266 (2002).

  3. 3

    National Collaborating Centre for Chronic Conditions. Chronic kidney disease: national clinical guideline for early identification and management in adults in primary and secondary care [online], (2008).

  4. 4

    Wilson, J. & Junger, G. Public health papers No. 34: Principles and practice of screening for disease (WHO, Geneva, 1968).

    Google Scholar 

  5. 5

    McLaughlin, K., Manns, B., Culleton, B., Donaldson, C. & Taub, K. An economic evaluation of early versus late referral of patients with progressive renal insufficiency. Am. J. Kidney Dis. 38, 1122–1128 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Boulware, L. E., Jaar, B. G., Tarver-Carr, M. E., Brancati, F. L. & Powe, N. R. Screening for proteinuria in US adults: a cost-effectiveness analysis. JAMA 290, 3101–3114 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Atthobari, J. et al. Cost-effectiveness of screening for albuminuria with subsequent fosinopril treatment to prevent cardiovascular events: A pharmacoeconomic analysis linked to the prevention of renal and vascular endstage disease (PREVEND) study and the prevention of renal and vascular endstage disease intervention trial (PREVEND IT). Clin. Ther. 28, 432–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Kidney Health Australia. Cost-effectiveness of early detection and intervention to prevent the progression of chronic kidney disease in Australia [online], (2006).

  9. 9

    Klebe, B. et al. The cost of implementing UK guidelines for the management of chronic kidney disease. Nephrol. Dial. Transplant. 22, 2504–2512 (2007).

    Article  PubMed  Google Scholar 

  10. 10

    National Institute for Health and Clinical Excellence. Chronic kidney disease: costing report [online], (2008).

  11. 11

    Khan, S. & Amedia C. A. Jr. Economic burden of chronic kidney disease. J. Eval. Clin. Pract. 14, 422–434 (2008).

    Article  PubMed  Google Scholar 

  12. 12

    Black, C. et al. Early referral strategies for management of people with markers of renal disease: a systematic review of the evidence of clinical effectiveness, cost-effectiveness and economic analysis. Health Technol. Assess. 14, 1–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Stevens, P. E. & O'Donoghue, D. J. The UK model for system redesign and chronic kidney disease services. Semin. Nephrol. 29, 475–482 (2009).

    Article  PubMed  Google Scholar 

  14. 14

    Wyatt, C., Konduri, V., Eng, J. & Rohatgi, R. Reporting of estimated GFR in the primary care clinic. Am. J. Kidney Dis. 49, 634–641 (2007).

    Article  PubMed  Google Scholar 

  15. 15

    Fox, C. H., Swanson, A., Kahn, L. S., Glaser, K. & Murray, B. M. Improving chronic kidney disease care in primary care practices: an upstate New York practice-based research network (UNYNET) study. J. Am. Board. Fam. Med. 21, 522–530 (2008).

    Article  PubMed  Google Scholar 

  16. 16

    Cortés-Sanabria, L. et al. Improving care of patients with diabetes and CKD: a pilot study for a cluster-randomized trial. Am. J. Kidney Dis. 51, 777–788 (2008).

    Article  PubMed  Google Scholar 

  17. 17

    Wentworth, A. L., Fox, C. H., Kahn, L. S., Glaser, K. & Cadzow, R. Two years after a quality improvement intervention for chronic kidney disease care in a primary care office. Am. J. Med. Qual. 26, 200–205 (2011).

    Article  PubMed  Google Scholar 

  18. 18

    Peralta, C. A. et al. Cystatin C identifies chronic kidney disease patients at higher risk for complications. J. Am. Soc. Nephrol. 22, 147–155 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Peralta, C. A. et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA 305, 1545–1552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  Google Scholar 

  21. 21

    Brantsma, A. H. et al. Cardiovascular and renal outcome in subjects with K/DOQI stage 1–3 chronic kidney disease: the importance of urinary albumin excretion. Nephrol. Dial. Transplant. 23, 3851–3858 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Hallan, S. I. et al. Combining GFR and albuminuria to classify CKD improves prediction of ESRD. J. Am. Soc. Nephrol. 20, 1069–1077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Hemmelgarn, B. R. et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA 303, 423–429 (2010).

    Article  CAS  Google Scholar 

  24. 24

    Chronic Kidney Disease Prognosis Consortium. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081 (2010).

  25. 25

    Astor, B. C. et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int. 79, 1331–1340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Gansevoort, R. T. et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes in both general and high-risk populations. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. doi:10.1038/ki.2010.531.

  27. 27

    Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 32 (5 Suppl. 3), S112–S119 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Sarnak, M. J. et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation 108, 2154–2169 (2003).

    Article  Google Scholar 

  29. 29

    Landray, M. J. et al. Prediction of ESRD and death among people with CKD: the Chronic Renal Impairment in Birmingham (CRIB) prospective cohort study. Am. J. Kidney Dis. 56, 1082–1094 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Keane, W. F. et al. Risk scores for predicting outcomes in patients with type 2 diabetes and nephropathy: the RENAAL Study. Clin. J. Am. Soc. Nephrol. 1, 761–767 (2006).

    Article  PubMed  Google Scholar 

  31. 31

    Wakai, K. et al. A scoring system to predict renal outcome in IgA nephropathy: from a nationwide prospective study. Nephrol. Dial. Transplant. 21, 2800–2808 (2006).

    Article  PubMed  Google Scholar 

  32. 32

    Kent, D. M. et al. Progression risk, urinary protein excretion, and treatment effects of angiotensin-converting enzyme inhibitors in nondiabetic kidney disease. J. Am. Soc. Nephrol. 18, 1959–1965 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Johnson, E. S., Thorp, M. L., Platt, R. W. & Smith, D. H. Predicting the risk of dialysis and transplant among patients with CKD: a retrospective cohort study. Am. J. Kidney Dis. 52, 653–660 (2008).

    Article  PubMed  Google Scholar 

  34. 34

    Levin, A., Djurdjev, O., Beaulieu, M. & Er, L. Variability and risk factors for kidney disease progression and death following attainment of stage 4 CKD in a referred cohort. Am. J. Kidney Dis. 52, 661–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Hsu, C. Y., Iribarren, C., McCulloch, C. E., Darbinian, J. & Go, A. S. Risk factors for end-stage renal disease. 25-year follow-up. Arch. Intern. Med. 169, 342–350 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Bash, L. D., Astor, B. C. & Coresh, J. Risk of incident ESRD: a comprehensive look at cardiovascular risk factors and 17 years of follow-up in the Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Kidney Dis. 55, 31–41 (2010).

    Article  PubMed  Google Scholar 

  37. 37

    Tangri, N. et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 305, 1553–1559 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    John, R., Webb, M., Young, A. & Stevens, P. E. Unreferred chronic kidney disease: a longitudinal study. Am. J. Kidney Dis. 43, 825–835 (2004).

    Article  PubMed  Google Scholar 

  39. 39

    Noble, E. et al. The impact of automated eGFR reporting and education on nephrology service referrals. Nephrol. Dial. Transplant, 23, 3845–3850 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Hobbs, H. et al. Referral patterns to renal services: what has changed in the past 4 years? Nephrol. Dial. Transplant. 24, 3411–3419 (2009).

    Article  PubMed  Google Scholar 

  41. 41

    BC Renal Agency. At a glance: 2010 BC Renal Agency scorecard [online], (2010).

  42. 42

    The Renal Association. The UK eCKD Guide [online], (2006).

  43. 43

    Levin, A. et al. Guidelines for the management of chronic kidney disease [online], (2008).

    Book  Google Scholar 

  44. 44

    CARI: caring for Australians with renal impairment. Chronic kidney disease guidelines: prevention of progression of kidney disease [online], (2006).

  45. 45

    Scottish Intercollegiate Guidelines Network. Diagnosis and management of chronic kidney disease: a national clinical guideline [online], (2008).

  46. 46

    Fox, C. H., Brooks, A., Zayas, L. E., McClellan, W. & Murray, B. Primary care physicians' knowledge and practice patterns in the treatment of chronic kidney disease: an upstate New York practice-based research network (UNYNET) study. J. Am. Board. Fam. Med. 19, 54–61 (2006).

    Article  PubMed  Google Scholar 

  47. 47

    Richards, N. et al. Primary care-based disease management of chronic kidney disease (CKD), based on estimated glomerular filtration rate (eGFR) reporting, improves patient outcomes. Nephrol. Dial. Transplant. 23, 549–555 (2008).

    Article  PubMed  Google Scholar 

  48. 48

    James, M. T. et al. Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study. Lancet 376, 2096–2103 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Triverio, P. A. et al. Long-term prognosis after acute kidney injury requiring renal replacement therapy. Nephrol. Dial. Transplant. 24, 2186–2189 (2009).

    Article  Google Scholar 

  50. 50

    Coca, S. G., Yusuf, B., Shlipak, M. G., Garg, A. X. & Parikh, C. R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 53, 961–973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Glassock, R. J. & Winearls, C. Diagnosing chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 19, 123–128 (2010).

    Article  PubMed  Google Scholar 

  52. 52

    Levey, A. S. et al. The definition, classification and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. doi:10.1038/ki.2010.483.

  53. 53

    Drey, N., Roderick, P., Mullee, M. & Rogerson, M. A population-based study of the incidence and outcomes of diagnosed chronic kidney disease. Am. J. Kidney Dis. 42, 677–684 (2003).

    Article  PubMed  Google Scholar 

  54. 54

    Keith, D. S., Nichols, G. A., Gullion, C. M., Brown, J. B. & Smith, D. H. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch. Intern. Med. 164, 659–663 (2004).

    Article  Google Scholar 

  55. 55

    Hemmelgarn, B. R. et al. Progression of kidney dysfunction in the community-dwelling elderly. Kidney Int. 69, 2155–2161 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Orlando, L. A., Owen, W. F. & Matchar, D. B. Relationship between nephrologist care and progression of chronic kidney disease. N. C. Med. J. 68, 9–16 (2007).

    PubMed  Google Scholar 

  57. 57

    Levin, A. et al. Cardiovascular disease in patients with chronic kidney disease: getting to the heart of the matter. Am. J. Kidney Dis. 38, 1398–1407 (2001).

    Article  CAS  Google Scholar 

  58. 58

    Evans, M. et al. The natural history of chronic renal failure: results from an unselected, population-based, inception cohort in Sweden. Am. J. Kidney Dis. 46, 863–870 (2005).

    Article  PubMed  Google Scholar 

  59. 59

    Eriksen, B. O. & Ingebretsen, O. C. The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age. Kidney Int. 69, 375–382 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Hoefield, R. A. et al. Factors associated with kidney disease progression and mortality in a referred CKD population. Am. J. Kidney Dis. 56, 1072–1081 (2010).

    Article  PubMed  Google Scholar 

  61. 61

    Rossing, K. et al. Progression of nephropathy in type 2 diabetic patients. Kidney Int. 66, 1596–1605 (2004).

    Article  PubMed  Google Scholar 

  62. 62

    Tseng, C. L. et al. Survival benefit of nephrologic care in patients with diabetes mellitus and chronic kidney disease. Arch. Intern. Med. 168, 55–62 (2008).

    Article  PubMed  Google Scholar 

  63. 63

    Garg, A. X., Mamdani, M., Juurlink, D. N. & van Walraven, C. for the Network of Eastern Ontario Medical Laboratories (NEO-MeL). Identifying individuals with a reduced GFR using ambulatory laboratory database surveillance. J. Am. Soc. Nephrol. 16, 1433–1439 (2005).

    Article  PubMed  Google Scholar 

  64. 64

    Aghaie-Jaladerany, H., Cowell, D. & Geddes, C. C. The early impact of the United Kingdom Chronic Kidney Disease (CKD) guidelines on the number of new attendances at renal clinics. Scott. Med. J. 52, 28–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Jain, A. K. et al. When laboratories report estimated glomerular filtration rates in addition to serum creatinines, nephrology consults increase. Kidney Int. 76, 318–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Hemmelgarn, B. R. et al. Nephrology visits and health care resource use before and after reporting estimated glomerular filtration rate. JAMA 303, 1151–1158 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Samaniego, M. D. Promoting pre-emptive or early kidney transplantation. Nephrol. News Issues 23, 54–55 (2009).

    PubMed  Google Scholar 

  68. 68

    James, M. T., Hemmelgarn, B. R. & Tonelli, M. Early recognition and prevention of chronic kidney disease. Lancet 375, 1296–1309 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Kramer, A. et al. An update on renal replacement therapy in Europe: ERA-EDTA Registry data from 1997 to 2006. Nephrol. Dial. Transplant. 24, 3557–3566 (2009).

    Article  PubMed  Google Scholar 

  70. 70

    Udayaraj, U. P. et al. Socio-economic status, ethnicity and geographical variations in acceptance rates for renal replacement therapy in England and Wales: an ecological study. J. Epidemiol. Community Health 64, 535–541 (2010).

    Article  PubMed  Google Scholar 

  71. 71

    United States Renal Data System. 2010 Annual Data Report: Volume two: Atlas of End Stage Renal Disease: Chapter 12: International Comparisons [online], (2010).

  72. 72

    Donovan, K., Ford D, van Schalkwyk, D. & Ansell, D. Chapter 16 of the 12th Annual Report of the UK Renal Registry: International Comparisons with the UK RRT Programme [online], (2009).

    Google Scholar 

  73. 73

    Hou, S. H., Bushinsky, D. A., Wish, J. B., Cohen, J. J. & Harrington, J. T. Hospital-acquired renal insufficiency: a prospective study. Am. J. Med. 74, 243–248 (1983).

    Article  CAS  Google Scholar 

  74. 74

    Hoste, E. A. et al. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. J. Am. Soc. Nephrol. 14, 1022–1030 (2003).

    Article  Google Scholar 

  75. 75

    Leblanc, M. et al. Risk factors for acute renal failure: inherent and modifiable risks. Curr. Opin. Crit. Care 11, 533–536 (2005).

    Article  PubMed  Google Scholar 

  76. 76

    Uchino, S. et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294, 813–818, (2005).

  77. 77

    Mittalhenkle, A. et al. Cardiovascular risk factors and incident acute renal failure in older adults: the cardiovascular health study. Clin. J. Am. Soc. Nephrol. 3, 450–456 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    Hsu, C. Y. et al. The risk of acute renal failure in patients with chronic kidney disease. Kidney Int. 74, 101–107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Okusa, M. D., Chertow, G. M., Portilla, D. for the Acute Kidney Advisory Group of the American Society of Nephrology. The nexus of acute kidney injury, chronic cidney disease, and World Kidney Day 2009. Clin. J. Am. Soc. Nephrol. 4, 520–522 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Lafrance, J. P., Djurdjev, O. & Levin, A. Incidence and outcomes of acute kidney injury in a referred chronic kidney disease cohort. Nephrol. Dial. Transplant. 25, 2203–2209 (2010).

    Article  PubMed  Google Scholar 

  82. 82

    Grams, M. E. et al. Albuminuria and estimated glomerular filtration rate independently associate with acute kidney injury. J. Am. Soc. Nephrol. 21, 1757–1764 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Huerta, C., Castellsague, J., Varas-Lorenzo, C. & García Rodríguez, L. A. Nonsteroidal anti-inflammatory drugs and risk of ARF in the general population. Am. J. Kidney Dis. 45, 531–539 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Drueke, T. B. & Massy, Z. A. Atherosclerosis in CKD: differences from the general population. Nat. Rev. Nephrol. 6, 723–735 (2010).

    Article  PubMed  Google Scholar 

  85. 85

    Kidney Disease Improving Global Outcomes. KDIGO Controversies Conference: cardiovascular disease in chronic kidney disease [online], (2010).

  86. 86

    Das, M., Aronow, W. S., McClung, J. A. & Belkin, R. N. Increased prevalence of coronary artery disease, silent myocardial ischemia, complex ventricular arrhythmias, atrial fibrillation, left ventricular hypertrophy, mitral annular calcium, and aortic valve calcium in patients with chronic renal insufficiency. Cardiol. Rev. 14, 14–17 (2006).

    Article  PubMed  Google Scholar 

  87. 87

    Mann, J. F., Gerstein, H. C., Pogue, J., Bosch, J. & Yusuf S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann. Intern. Med. 134, 629–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Anavekar, N. S. et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N. Engl. J. Med. 351, 1285–1295 (2004).

    Article  CAS  Google Scholar 

  90. 90

    Tonelli, M. et al. Cardiac risk factors and the use of cardioprotective medications in patients with chronic renal insufficiency. Am. J. Kidney Dis. 37, 484–489 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Shlipak, M. G. et al. Association of renal insufficiency with treatment and outcomes after myocardial infarction in elderly patients. Ann. Intern. Med. 137, 555–562 (2002).

    Article  Google Scholar 

  92. 92

    Wright, R. S. et al. Acute myocardial infarction and renal dysfunction: a high-risk combination. Ann. Intern. Med. 137, 563–570 (2002).

    Article  Google Scholar 

  93. 93

    Al Suwaidi, J. et al. Prognostic implications of abnormalities in renal function in patients with acute coronary syndromes. Circulation 106, 974–980 (2002).

    Article  Google Scholar 

  94. 94

    Gibson, C. M. et al. Association of creatinine and creatinine clearance on presentation in acute myocardial infarction with subsequent mortality. J. Am. Coll. Cardiol. 42, 1535–1543 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Ezekowitz, J. et al. The association among renal insufficiency, pharmacotherapy, and outcomes in 6,427 patients with heart failure and coronary artery disease. J. Am. Coll. Cardiol. 44, 1587–1592 (2004).

    Article  PubMed  Google Scholar 

  96. 96

    Keough-Ryan, T. M. et al. Outcomes of acute coronary syndrome in a large Canadian cohort: impact of chronic renal insufficiency, cardiac interventions, and anemia. Am. J. Kidney Dis. 46, 845–855 (2005).

    Article  PubMed  Google Scholar 

  97. 97

    Li, S., Foley, R. N. & Collins, A. J. Anemia and cardiovascular disease, hospitalization, end stage renal disease, and death in older patients with chronic kidney disease. Int. Urol. Nephrol. 37, 395–402 (2005).

    Article  PubMed  Google Scholar 

  98. 98

    Parikh, N. I. et al. Cardiovascular disease risk factors in chronic kidney disease: overall burden and rates of treatment and control. Arch. Intern. Med. 166, 1884–1891 (2006).

    Article  PubMed  Google Scholar 

  99. 99

    Rakhit, D. J. et al. Effect of aggressive risk factor modification on cardiac events and myocardial ischaemia in patients with chronic kidney disease. Heart 92, 1402–1408 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Isbel, N. M. et al. Increased targeting of cardiovascular risk factors in patients with chronic kidney disease does not improve atheroma burden or cardiovascular function. Am. Heart J. 151, 745–753 (2006).

    Article  PubMed  Google Scholar 

  101. 101

    Ahmed, A. et al. Chronic kidney disease associated mortality in diastolic versus systolic heart failure: a propensity matched study. Am. J. Cardiol. 99, 393–398 (2007).

    Article  PubMed  Google Scholar 

  102. 102

    Berger, A. K., Duval, S. & Krumholz, H. M. Aspirin, beta-blocker, and angiotensin-converting enzyme inhibitor therapy in patients with end-stage renal disease and an acute myocardial infarction. J. Am. Coll. Cardiol. 42, 201–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Chertow, G. M., Normand, S. L. & McNeil, B. J. “Renalism”: inappropriately low rates of coronary angiography in elderly individuals with renal insufficiency. J. Am. Soc. Nephrol. 15, 2462–2468 (2004).

    Article  Google Scholar 

  104. 104

    Winkelmayer, W. C. et al. Kidney function and use of recommended medications after myocardial infarction in elderly patients. Clin. J. Am. Soc. Nephrol. 1, 796–801 (2006).

    Article  PubMed  Google Scholar 

  105. 105

    Winkelmayer, W. C., Charytan, D. M., Levin, R. & Avorn, J. Poor short-term survival and low use of cardiovascular medications in elderly dialysis patients after acute myocardial infarction. Am. J. Kidney Dis. 47, 301–308 (2006).

    Article  PubMed  Google Scholar 

  106. 106

    Erdmann, E., Lechat, P., Verkenne, P. & Wiemann, H. Results from post-hoc analyses of the CIBIS II trial: effect of bisoprolol in high-risk patient groups with chronic heart failure. Eur. J. Heart Fail. 3, 469–479 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Aoki, J. et al. Five year clinical effect of coronary stenting and coronary artery bypass grafting in renal insufficient patients with multivessel coronary artery disease: insights from ARTS trial. Eur. Heart J. 26, 1488–1493 (2005).

    Article  PubMed  Google Scholar 

  108. 108

    Ix, J. H. et al. Association of chronic kidney disease with clinical outcomes after coronary revascularization: the Arterial Revascularization Therapies Study (ARTS). Am. Heart J. 149, 512–519 (2005).

    Article  PubMed  Google Scholar 

  109. 109

    Coca, S. G., Krumholz, H. M., Garg, A. X. & Parikh, C. R. Underrepresentation of renal disease in randomized controlled trials of cardiovascular disease. JAMA 296, 1377–1384 (2006).

    Article  CAS  Google Scholar 

  110. 110

    Ronco, C. et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur. Heart J. 31, 703–711 (2010).

    Article  PubMed  Google Scholar 

  111. 111

    Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet doi: 10.1016/S0140-6736(11)60739-3

  112. 112

    Szummer, K. et al. Influence of renal function on the effects of early revascularization in non-ST-elevation myocardial infarction: data from the Swedish Web-System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART). Circulation 120, 851–858 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Hoy, W., Baker, P. R., Kelly, A. M. & Wang, Z. Reducing premature death and renal failure in Australian aboriginals. a community-based cardiovascular and renal protective program. Med. J. Aust. 172, 473–478 (2000).

    CAS  PubMed  Google Scholar 

  114. 114

    Iseki, K. Screening for renal disease—what can be learned from Okinawa experience. Nephrol. Dial. Transplant. 21, 839–843 (2006).

    Article  PubMed  Google Scholar 

  115. 115

    Iseki, K., Ikemiya, Y. & Fukiyama, K. Risk factors of end-stage renal disease and serum creatinine in a community-based mass screening. Kidney Int. 51, 850–854 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Yamagata, K. et al. Chronic kidney disease perspectives in Japan and the importance of urinalysis screening. Clin. Exp. Nephrol. 12, 1–8 (2008).

    Article  PubMed  Google Scholar 

  117. 117

    Tobe, S. W. et al. Effect of nurse-directed hypertension treatment among First Nations people with existing hypertension and diabetes mellitus: the Diabetes Risk Evaluation and Microalbuminuria (DREAM 3) randomized controlled trial. CMAJ 174, 1267–1271 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Pylypchuk, G. et al. Diabetes risk evaluation and microalbuminuria (DREAM) studies: ten years of participatory research with a First Nation's home and community model for type 2 diabetes care in Northern Saskatchewan. Int. J. Circumpolar Health 67, 190–202 (2008).

    Article  PubMed  Google Scholar 

  119. 119

    Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Drueke, T. B. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. 121

    Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney diease. N. Engl. J. Med. 355, 2085–2098 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Pfeffer, M. A. et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).

    Article  PubMed  Google Scholar 

  123. 123

    Fellström, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A. Levin and P. E. Stevens are co-Chairs of the Working Group for the Development of Chronic Kidney Disease Guidelines, which is sponsored by Kidney Disease: Improving Global Outcomes (KDIGO).

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Adeera Levin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Levin, A., Stevens, P. Early detection of CKD: the benefits, limitations and effects on prognosis. Nat Rev Nephrol 7, 446–457 (2011). https://doi.org/10.1038/nrneph.2011.86

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing