Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The mechanism of hypocalciuria with NaCl cotransporter inhibition

Abstract

Thiazide diuretics are used to prevent the recurrence of calcium-containing kidney stones. The ability of these drugs to reduce urinary calcium excretion has a key role in this process. Although studies have shown a reduction in the recurrence rate of calcium-containing stones in patients treated with thiazides, whether hypocalciuria results from increased calcium reabsorption in the proximal or distal nephron is still unclear. When extracellular fluid volume is considerably reduced, the proximal tubule is likely to have a major role in thiazide-induced hypocalciuria. This process frequently occurs when high doses of thiazides and sodium restriction are prescribed for the treatment of kidney stone disease. The distal tubule is predominantly involved in NaCl cotransporter inhibition-induced hypocalciuria when the extracellular fluid volume is not reduced, a clinical scenario observed in patients with Gitelman syndrome. In this Perspectives article, we discuss the evidence supporting the hypocalciuric effects of NaCl cotransporter inhibition in the proximal and distal nephron.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of calcium reabsorption in the nephron.
Figure 2: Potential mechanisms for thiazide diuretics to decrease reabsorption of calcium in the distal tubule.

Similar content being viewed by others

References

  1. Laerum, E. & Larsen, S. Thiazide prophylaxis of urolithiasis. Acta Med. Scand. 215, 383–389 (1984).

    Article  CAS  Google Scholar 

  2. Wilson, D. R., Strauss, A. L. & Manuel, M. A. Comparison of medical treatment for the prevention of recurrent calcium nephrolithiasis. Urol. Res. 12, 39–40 (1984).

    Google Scholar 

  3. Robertson, W. G., Williams, R. E. & Hargreaves, T. B. in Urolithiasis and Related Clinical Research (eds Schwille, P. O., Smith, L. H., Robertson, W. G. & Vahlensieck, W.) 545–548 (Plenum Press, New York, 1985).

    Book  Google Scholar 

  4. Ettinger, B., Citron, J. T., Livermore, B. & Dolman, L. I. Chlorthalidone reduces calcium oxalate calculous recurrence but magnesium hydroxide does not. J. Urol. 139, 679–684 (1988).

    Article  CAS  Google Scholar 

  5. Ohkawa, M., Tokunaga, S., Nakashima, T., Orito, M. & Hisazumi, H. Thiazide treatment for calcium urolithiasis in patients with idiopathic hypercalciuria. Br. J. Urol. 69, 571–576 (1992).

    Article  CAS  Google Scholar 

  6. Borghi, L., Meschi, T., Guerra, A. & Novarini, A. Randomized prospective study of a nonthiazide diuretic, indapamide, in preventing calcium stone recurrences. J. Cardiovasc. Pharmacol. 22 (Suppl. 6), S78–S86 (1993).

    Article  Google Scholar 

  7. Fernández-Rodríguez, A. et al. The role of thiazides in the prophylaxis of recurrent calcium lithiasis [Spanish]. Actas Urol. Esp. 30, 305–309 (2006).

    Article  Google Scholar 

  8. Reilly, R. F. in Nephrology in Thirty Days (eds Reilly, R. F. & Perazella, M. A.) 142–160 (McGraw Hill, New York, 2005).

    Google Scholar 

  9. Xi, Q., Hoenderop, J. G. & Bindels, R. J. Regulation of magnesium reabsorption in DCT. Pflugers Arch. 458, 89–98 (2009).

    Article  CAS  Google Scholar 

  10. Boros, S., Bindels, R. J. & Hoenderop, J. G. Active Ca2+ reabsorption in the connecting tubule. Pflugers Arch. 458, 99–109 (2009).

    Article  CAS  Google Scholar 

  11. Jørgensen, F. S. Effect of thiazide diuretics upon calcium metabolism. Dan. Med. Bull. 23, 223–230 (1976).

    PubMed  Google Scholar 

  12. Stefíková, K., Spustová, V. & Dzúrik, R. Acute effect of hydrochlorothiazide on renal calcium and magnesium handling in postmenopausal women. Physiol. Res. 48, 327–330 (1999).

    PubMed  Google Scholar 

  13. Suki, W. N., Hull, A. R., Rector, F. C. Jr & Seldin, D. W. Mechanism of the effect of thiazide diuretics on calcium and uric acid. J. Clin. Invest. 46, 1121 (1967).

    Google Scholar 

  14. Brickman, A. S., Massry, S. G. & Coburn, J. W. Changes in serum and urinary calcium during treatment with hydrochlorothiazide: studies on mechanisms. J. Clin. Invest. 51, 945–954 (1972).

    Article  CAS  Google Scholar 

  15. Breslau, N., Moses, A. M. & Weiner, I. M. The role of volume contraction in the hypocalciuric action of chlorothiazide. Kidney Int. 10, 164–170 (1976).

    Article  CAS  Google Scholar 

  16. Nijenhuis, T. et al. Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca2+ transport proteins in kidney. Kidney Int. 64, 555–564 (2003).

    Article  CAS  Google Scholar 

  17. Loffing, J. et al. Thiazide treatment of rats provokes apoptosis in distal tubule cells. Kidney Int. 50, 1180–1190 (1996).

    Article  CAS  Google Scholar 

  18. Nijenhuis, T. et al. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J. Clin. Invest. 115, 1651–1658 (2005).

    Article  CAS  Google Scholar 

  19. Costanzo, L. S. & Windhager, E. E. Calcium and sodium transport by the distal convoluted tubule of the rat. Am. J. Physiol. 235, F492–F506 (1978).

    CAS  PubMed  Google Scholar 

  20. Costanzo, L. S. & Weiner, I. M. On the hypocalciuric action of chlorothiazide. J. Clin. Invest. 54, 628–637 (1974).

    Article  CAS  Google Scholar 

  21. Schultheis, P. J. et al. Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl cotransporter of the distal convoluted tubule. J. Biol. Chem. 273, 29150–29155 (1998).

    Article  CAS  Google Scholar 

  22. Loffing, J. et al. Altered renal distal tubule structure and renal Na+ and Ca2+ handling in a mouse model for Gitelman's syndrome. J. Am. Soc. Nephrol. 15, 2276–2288 (2004).

    Article  CAS  Google Scholar 

  23. Lee, C. T. et al. Effect of thiazide on renal gene expression of apical calcium channels and calbindins. Am. J. Physiol. 287, F1164–F1170 (2004).

    Article  CAS  Google Scholar 

  24. Na, K. Y. et al. Upregulation of Na+ transporter abundances in response to chronic thiazide or loop diuretic treatment in rats. Am. J. Physiol. 284, F133–F143 (2003).

    CAS  Google Scholar 

  25. Morsing, P., Velázquez, H., Wright, F. S. & Ellison, D. H. Adaptation of distal convoluted tubule of rats. II. Effects of chronic thiazide infusion. Am. J. Physiol. 261, F137–F143 (1991).

    CAS  PubMed  Google Scholar 

  26. Belge, H. et al. Renal expression of parvalbumin is critical for NaCl handling and response to diuretics. Proc. Natl Acad. Sci. USA 104, 14849–14854 (2007).

    Article  CAS  Google Scholar 

  27. Yang, S. S. et al. Generation and analysis of the thiazide-sensitive Na+ -Cl cotransporter (Ncc/Slc12a3) Ser707X knockin mouse as a model of Gitelman syndrome. Hum. Mutat. 31, 1304–1315 (2010).

    Article  CAS  Google Scholar 

  28. Cheng, C. J. et al. Hypocalciuria in patients with Gitelman syndrome: role of blood volume. Am. J. Kidney Dis. 49, 693–700 (2007).

    Article  CAS  Google Scholar 

  29. Bindels, R. J. et al. Role of Na+/Ca2+ exchange in transcellular Ca2+ transport across primary cultures of rabbit kidney collecting system. Pflugers Arch. 420, 566–572 (1992).

    Article  CAS  Google Scholar 

  30. Gesek, F. A. & Friedman, P. A. Mechanism of calcium transport stimulated by chlorothiazide in mouse distal convoluted tubule cells. J. Clin. Invest. 90, 429–438 (1992).

    Article  CAS  Google Scholar 

  31. Bindels, R. J. 2009 Homer W. Smith Award. Minerals in motion: from new ion transporters to new concepts. J. Am. Soc. Nephrol. 21, 1263–1269 (2010).

    Article  CAS  Google Scholar 

  32. Lee, J., Sun, T. J. & Huang, C. L. PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J. Gen. Physiol. 126, 439–451 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. F. Reilly and C.-L. Huang contributed equally to discussion of content for the article, researching data to include in the manuscript and reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Robert F. Reilly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reilly, R., Huang, CL. The mechanism of hypocalciuria with NaCl cotransporter inhibition. Nat Rev Nephrol 7, 669–674 (2011). https://doi.org/10.1038/nrneph.2011.138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing