Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Monoclonal antibodies for podocytopathies: rationale and clinical responses

Abstract

The podocytopathies, including minimal-change nephropathy, focal segmental glomerulosclerosis, collapsing glomerulopathy, and diffuse mesangial sclerosis, involve diverse types of injury to podocytes. These injuries can have genetic causes, or can be caused by viral infection, mechanical stress, medication or—probably—immunologic injury. Several lines of evidence—including the immunosuppressive effects of standard therapies—suggest a role for immunologic injury in some cases, but the precise pathologic mechanisms are far from clear. Despite this uncertainty, newly available biologic therapies that target immune cells and cytokines have been used to treat a number of patients with different podocytopathies. Of these therapies, the greatest experience has been gained with rituximab. The data on all such therapies remain too fragmentary to provide firm conclusions, but further clinical research with such agents might help to define pathogenetic pathways and could potentially contribute to new therapies.

Key Points

  • The immunopathogenesis of idiopathic podocyte disease remains uncertain

  • Current immunosuppressive treatments for podocytopathies are nonspecific and potentially toxic

  • Monoclonal antibodies might help to elucidate the pathogenesis of podocytopathies and might also be useful for treatment of these diseases

  • At present, the use of monoclonal antibodies other than rituximab to treat podocytopathies has been very limited

  • Rituximab therapy has been associated with remission in cases of minimal-change nephropathy and focal segmental glomerulosclerosis

  • Occasional reports have shown remission of idiopathic nephrotic syndrome following treatment with tumor necrosis factor antagonists

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biologic therapies and the immune system.

Similar content being viewed by others

References

  1. Mundel, P. & Shankland, S. J. Podocyte biology and response to injury. J. Am. Soc. Nephrol. 13, 3005–3015 (2002).

    Article  PubMed  Google Scholar 

  2. Pavenstädt, H., Kriz, W. & Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev. 83, 253–307 (2003).

    Article  PubMed  Google Scholar 

  3. Schnaper, H. et al. Nephrotic syndrome: minimal change disease, focal segmental glomerulosclerosis, and collapsing glomerulopathy, in Disease of the Kidney and Urinary Tract, 8th edn (Lippincott Williams & Wilkins, Philadelphia, 2006).

    Google Scholar 

  4. Barisoni, L., Schnaper, H. W. & Kopp, J. B. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin. J. Am. Soc. Nephrol. 2, 529–542 (2007).

    Article  PubMed  Google Scholar 

  5. Shalhoub, R. J. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 2, 556–560 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. Koenecke, C., Ukena, S. N., Ganser, A. & Franzke, A. Regulatory T cells as therapeutic target in Hodgkin's lymphoma. Expert Opin. Ther. Targets 12, 769–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Mathieson, P. W. Minimal change nephropathy and focal segmental glomerulosclerosis. Semin. Immunopathol. 29, 415–426 (2007).

    Article  PubMed  Google Scholar 

  8. Reiser, J. et al. Induction of B7–1 in podocytes is associated with nephrotic syndrome. J. Clin. Invest. 113, 1390–1397 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamada, A., Salama, A. D. & Sayegh, M. H. The role of novel T cell costimulatory pathways in autoimmunity and transplantation. J. Am. Soc. Nephrol. 13, 559–575 (2002).

    CAS  PubMed  Google Scholar 

  10. Lai, K. W. et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J. Am. Soc. Nephrol. 18, 1476–1485 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Karras, A. et al. Renal and thymic pathology in thymoma-associated nephropathy: report of 21 cases and review of the literature. Nephrol. Dial. Transplant. 20, 1075–1082 (2005).

    Article  PubMed  Google Scholar 

  12. Ronco, P. & Debiec, H. Pathophysiological lessons from rare associations of immunological disorders. Pediatr. Nephrol. 24, 3–8 (2008).

    Article  PubMed  Google Scholar 

  13. Lapillonne, H. et al. Stem cell mobilization in idiopathic steroid-sensitive nephrotic syndrome. Pediatr. Nephrol. 23, 1251–1256 (2008).

    Article  PubMed  Google Scholar 

  14. Araya, C. E. et al. A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome. Pediatr. Nephrol. 21, 603–610 (2006).

    Article  PubMed  Google Scholar 

  15. Sharma, M., Sharma, R., Reddy, S. R., McCarthy, E. T. & Savin, V. J. Proteinuria after injection of human focal segmental glomerulosclerosis factor. Transplantation 73, 366–372 (2002).

    Article  PubMed  Google Scholar 

  16. Zimmerman, S. W. Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin. Nephrol. 22, 32–38 (1984).

    CAS  PubMed  Google Scholar 

  17. Koyama, A., Fujisaki, M., Kobayashi, M., Igarashi, M. & Narita, M. A glomerular permeability factor produced by human T cell hybridomas. Kidney Int. 40, 453–460 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Dantal, J. et al. Effect of plasma protein adsorption on protein excretion in kidney-transplant recipients with recurrent nephrotic syndrome. N. Engl. J. Med. 330, 7–14 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Le Berre, L. et al. Extrarenal effects on the pathogenesis and relapse of idiopathic nephrotic syndrome in Buffalo/Mna rats. J. Clin. Invest. 109, 491–498 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Le Berre, L. et al. Renal macrophage activation and TH2 polarization precedes the development of nephrotic syndrome in Buffalo/Mna rats. Kidney Int. 68, 2079–2090 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Ali, A. A. et al. Minimal-change glomerular nephritis. Normal kidneys in an abnormal environment? Transplantation 58, 849–852 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Savin, V. J. et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N. Engl. J. Med. 334, 878–883 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Ghiggeri, G. M., Carraro, M. & Vincenti, F. Recurrent focal glomerulosclerosis in the era of genetics of podocyte proteins: theory and therapy. Nephrol. Dial. Transplant. 19, 1036–1040 (2004).

    Article  PubMed  Google Scholar 

  24. Carraro, M. et al. Nephrotic urine prevents increased rat glomerular albumin permeability induced by serum from the same patient with idiopathic nephrotic syndrome. Nephrol. Dial. Transplant. 18, 689–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Sharma, R., Sharma, M., McCarthy, E. T., Ge, X. L. & Savin, V. J. Components of normal serum block the focal segmental glomerulosclerosis factor activity in vitro. Kidney Int. 58, 1973–1979 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kemper, M. J., Wolf, G. & Müller-Wiefel, D. E. Transmission of glomerular permeability factor from a mother to her child. N. Engl. J. Med. 344, 386–387 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Kemper, M. J., Meyer-Jark, T., Lilova, M. & Müller-Wiefel, D. E. Combined T- and B-cell activation in childhood steroid-sensitive nephrotic syndrome. Clin. Nephrol. 60, 242–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Daniel, V., Trautmann, Y., Konrad, M., Nayir, A. & Schärer, K. T-lymphocyte populations, cytokines and other growth factors in serum and urine of children with idiopathic nephrotic syndrome. Clin. Nephrol. 47, 289–297 (1997).

    CAS  PubMed  Google Scholar 

  30. Bagga, A., Vasudev, A. S., Moudgil, A. & Srivastava, R. N. Peripheral blood lymphocyte subsets in idiopathic nephrotic syndrome of childhood. Indian J. Med. Res. 104, 292–295 (1996).

    CAS  PubMed  Google Scholar 

  31. Pawluczyk, I. Z. & Harris, K. P. Macrophages promote prosclerotic responses in cultured rat mesangial cells: a mechanism for the initiation of glomerulosclerosis. J. Am. Soc. Nephrol. 8, 1525–1536 (1997).

    CAS  PubMed  Google Scholar 

  32. Lin, C. Y. & Chien, J. W. Increased interleukin-12 release from peripheral blood mononuclear cells in nephrotic phase of minimal change nephrotic syndrome. Acta Paediatr. Taiwan 45, 77–80 (2004).

    PubMed  Google Scholar 

  33. Nishimura, M. et al. Focal segmental glomerular sclerosis, a type of intractable chronic glomerulonephritis, is a stem cell disorder. J. Exp. Med. 179, 1053–1058 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida, F., Matsuo, S., Fujishima, H., Kim, H. K. & Tomita, T. Renal lesions of the FGS strain of mice: a spontaneous animal model of progressive glomerulosclerosis. Nephron 66, 317–325 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Humphreys, B. D., Vanguri, V. K., Henderson, J. & Antin, J. H. Minimal-change nephrotic syndrome in a hematopoietic stem-cell transplant recipient. Nat. Clin. Pract. Nephrol. 2, 535–539 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Heras, M. et al. Nephrotic syndrome resulting from focal segmental glomerulosclerosis in a peripheral blood stem cell transplant patient. J. Nephrol. 20, 495–498 (2007).

    PubMed  Google Scholar 

  37. Colombo, A. A. et al. Nephrotic syndrome after allogeneic hematopoietic stem cell transplantation as a late complication of chronic graft-versus-host disease. Transplantation 81, 1087–1092 (2006).

    Article  PubMed  Google Scholar 

  38. Sellier-Leclerc, A. L. et al. A humanized mouse model of idiopathic nephrotic syndrome suggests a pathogenic role for immature cells. J. Am. Soc. Nephrol. 18, 2732–2739 (2007).

    Article  PubMed  Google Scholar 

  39. FDA Approved Drug Products [online].

  40. World Health Organization International Nonproprietary Names program [online].

  41. Hudson, P. J. & Souriau, C. Engineered antibodies. Nat. Med. 9, 129–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Mottershead, M. & Neuberger, J. Daclizumab. Expert Opin. Biol. Ther. 7, 1583–1596 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Church, A. C. Clinical advances in therapies targeting the interleukin-2 receptor. QJM 96, 91–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Francois, H., Daugas, E., Bensman, A. & Ronco, P. Unexpected efficacy of rituximab in multirelapsing minimal change nephrotic syndrome in the adult: first case report and pathophysiological considerations. Am. J. Kidney Dis. 49, 158–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Park, S. S., Hahn, W. H., Kim, S. D. & Cho B. S. Remission of refractory minimal change nephrotic syndrome after basiliximab therapy. Pediatric. Nephrol. doi:10.1007/S00467-009-1145-6.

    Article  PubMed  Google Scholar 

  46. Salama, A. D. & Pusey, C. D. Drug insight: rituximab in renal disease and transplantation. Nat. Clin. Pract. Nephrol. 2, 221–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Ruggenenti, P. et al. Rituximab in idiopathic membranous nephropathy: a one-year prospective study. J. Am. Soc. Nephrol. 14, 1851–1857 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Pescovitz, M. D., Book, B. K. & Sidner, R. A. Resolution of recurrent focal segmental glomerulosclerosis proteinuria after rituximab treatment. N. Engl. J. Med. 354, 1961–1963 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kamar, N. et al. Treatment of focal segmental glomerular sclerosis with rituximab: 2 case reports. Clin. Nephrol. 67, 250–254 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Gossmann, J. et al. Abrogation of nephrotic proteinuria by rituximab treatment in a renal transplant patient with relapsed focal segmental glomerulosclerosis. Transpl. Int. 20, 558–562 (2007).

    Article  PubMed  Google Scholar 

  51. Hristea, D. et al. Successful treatment of recurrent focal segmental glomerulosclerosis after kidney transplantation by plasmapheresis and rituximab. Transpl. Int. 20, 102–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Meyer, T. N., Thaiss, F. & Stahl, R. A. Immunoadsorbtion and rituximab therapy in a second living-related kidney transplant patient with recurrent focal segmental glomerulosclerosis. Transpl. Int. 20, 1066–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Apeland, T. & Hartmann, A. Rituximab therapy in early recurrent focal segmental sclerosis after renal transplantation. Nephrol. Dial. Transplant. 23, 2091–2094 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Bayrakci, U. S., Baskin, E., Sakalli, H., Karakayali, H. & Haberal, M. Rituximab for posttransplant recurrences of FSGS. Pediatr. Transplant. 13, 240–243 (2008).

    Article  PubMed  Google Scholar 

  55. Yabu, J. M., Ho, B., Scandling, J. D. & Vincenti, F. Rituximab failed to improve nephrotic syndrome in renal transplant patients with recurrent focal segmental glomerulosclerosis. Am. J. Transplant. 8, 222–227 (2008).

    CAS  PubMed  Google Scholar 

  56. Marks, S. D. & McGraw, M. Does rituximab treat recurrent focal segmental glomerulosclerosis postrenal transplantation? Pediatr. Nephrol. 22, 158–160 (2007).

    Article  PubMed  Google Scholar 

  57. El-Firjani, A. et al. Post-transplant focal segmental glomerulosclerosis refractory to plasmapheresis and rituximab therapy. Nephrol. Dial. Transplant. 23, 425 (2008).

    Article  PubMed  Google Scholar 

  58. Nozu, K. et al. Rituximab treatment for posttransplant lymphoproliferative disorder (PTLD) induces complete remission of recurrent nephrotic syndrome. Pediatr. Nephrol. 20, 1660–1663 (2005).

    Article  PubMed  Google Scholar 

  59. Guigonis, V. et al. Rituximab treatment for severe steroid- or cyclosporine-dependent nephrotic syndrome: a multicentric series of 22 cases. Pediatr. Nephrol. 23, 1269–1279 (2008).

    Article  PubMed  Google Scholar 

  60. Bagga, A., Sinha, A. & Moudgil, A. Rituximab in patients with the steroid-resistant nephrotic syndrome. N. Engl. J. Med. 356, 2751–2752 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Nakayama, M. et al. Rituximab for refractory focal segmental glomerulosclerosis. Pediatr. Nephrol. 23, 481–485 (2008).

    Article  PubMed  Google Scholar 

  62. Benz, K. et al. Change of the course of steroid-dependent nephrotic syndrome after rituximab therapy. Pediatr. Nephrol. 19, 794–797 (2004).

    Article  PubMed  Google Scholar 

  63. Gilbert, R. D., Dötsch, J., Rascher, W. & Stachel, D. Rituximab therapy for steroid-dependent minimal change nephrotic syndrome. Pediatr. Nephrol. 21, 1698–1700 (2006).

    Article  PubMed  Google Scholar 

  64. Hofstra, J. M., Deegens, J. K. & Wetzels, J. F. Rituximab: effective treatment for severe steroid-dependent minimal change nephrotic syndrome? Nephrol. Dial. Transplant. 22, 2100–2102 (2007).

    Article  PubMed  Google Scholar 

  65. Smith, G. C. Is there a role for rituximab in the treatment of idiopathic childhood nephrotic syndrome? Pediatr. Nephrol. 22, 893–898 (2007).

    Article  PubMed  Google Scholar 

  66. Suri, M., Tran, K., Sharma, A. P., Filler, G. & Grimmer, J. Remission of steroid-resistant nephrotic syndrome due to focal and segmental glomerulosclerosis using rituximab. Int. Urol. Nephrol. 40, 807–810 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, T., Nast, C. C., Vo, A. & Jordan, S. C. Rapid remission of steroid and mycophenolate mofetil (MMF)-resistant minimal change nephrotic syndrome after rituximab therapy. Nephrol. Dial. Transplant. 23, 377–380 (2008).

    Article  PubMed  Google Scholar 

  68. Gray, M., Miles, K., Salter, D., Gray, D. & Savill, J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc. Natl Acad. Sci. USA 104, 14080–14085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Taube, D., Brown, Z. & Williams, D. G. Impaired lymphocyte and suppressor cell function in minimal change nephropathy, membranous nephropathy and focal glomerulosclerosis. Clin. Nephrol. 22, 176–182 (1984).

    CAS  PubMed  Google Scholar 

  71. Calabrese, L. H. & Molloy, E. S. Progressive multifocal leucoencephalopathy in the rheumatic diseases: assessing the risks of biological immunosuppressive therapies. Ann. Rheum. Dis. 67 (Suppl. 3), iii64–iii65 (2008).

    PubMed  Google Scholar 

  72. Waldmann, H. & Hale, G. CAMPATH: from concept to clinic. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 1707–1711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Buttmann, M. & Rieckmann, P. Treating multiple sclerosis with monoclonal antibodies. Expert Rev. Neurother. 8, 433–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Pascual, J. et al. Alemtuzumab induction and recurrence of glomerular disease after kidney transplantation. Transplantation 83, 1429–1434 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Ciancio, G. & Burke, G. W. 3rd. Alemtuzumab (Campath-1H) in kidney transplantation. Am. J. Transplant. 8, 15–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Noris, M. et al. Regulatory T cells and T cell depletion: role of immunosuppressive drugs. J. Am. Soc. Nephrol. 18, 1007–1018 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Clatworthy, M. R. et al. Anti-glomerular basement membrane disease after alemtuzumab. N. Engl. J. Med. 359, 768–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Walsh, M., Wallin, E. F. & Jayne, D. R. Long-term follow-up of relapsing/refractory ANCA associated vasculitis treated with the lymphocyte depleting antibody alemtuzumab (CAMPATH-1H) [abstract]. J. Am. Soc. Nephrol. 18, 48A (2007).

    Google Scholar 

  79. Vincenti, F. Costimulation blockade in autoimmunity and transplantation. J. Allergy Clin. Immunol. 121, 299–306 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Kitching, A. R., Huang, X. R., Ruth, A. J., Tipping, P. G. & Holdsworth, S. R. Effects of CTLA4-Fc on glomerular injury in humorally mediated glomerulonephritis in BALB/c mice. Clin. Exp. Immunol. 128, 429–435 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reynolds, J. et al. CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J. Clin. Invest. 105, 643–651 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G. & Tak, P. P. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol. Ther. 117, 244–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Rigby, W. F. Drug insight: different mechanisms of action of tumor necrosis factor antagonists—passive-aggressive behavior? Nat. Clin. Pract. Rheumatol. 3, 227–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Suranyi, M. G., Guasch, A., Hall, B. M. & Myers, B. D. Elevated levels of tumor necrosis factor-α in the nephrotic syndrome in humans. Am. J. Kidney Dis. 21, 251–259 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Raveh, D., Shemesh, O., Ashkenazi, Y. J., Winkler, R. & Barak, V. Tumor necrosis factor-α blocking agent as a treatment for nephrotic syndrome. Pediatr. Nephrol. 19, 1281–1284 (2004).

    Article  PubMed  Google Scholar 

  87. Leroy, S. et al. Tumor necrosis factor-α blocking agent as a treatment for steroid resistant nephrotic syndrome [abstract]. J. Am. Soc. Nephrol. 18, 565A (2007).

    Google Scholar 

  88. Ricklin, D. & Lambris, J. D. Complement-targeted therapeutics. Nat. Biotechnol. 25, 1265–1275 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cunningham, P. N. & Quigg, R. J. Contrasting roles of complement activation and its regulation in membranous nephropathy. J. Am. Soc. Nephrol. 16, 1214–1222 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Appel, G. et al. Eculizumab (C5 complement inhibitor) in the treatment of idiopathic membranous nephropathy: preliminary baseline and pharmacokinetic (PK)/pharmacodynamic (PD) data [abstract]. J. Am. Soc. Nephrol. 13, 668A (2002).

    Google Scholar 

  91. Turnberg, D. et al. Complement activation contributes to both glomerular and tubulointerstitial damage in adriamycin nephropathy in mice. J. Immunol. 177, 4094–4102 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Rangan, G. K., Pippin, J. W. & Couser, W. G. C5b-9 regulates peritubular myofibroblast accumulation in experimental focal segmental glomerulosclerosis. Kidney Int. 66, 1838–1848 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Abbate, M. et al. Complement-mediated dysfunction of glomerular filtration barrier accelerates progressive renal injury. J. Am. Soc. Nephrol. 19, 1158–1167 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morita, Y. et al. Complement activation products in the urine from proteinuric patients. J. Am. Soc. Nephrol. 11, 700–707 (2000).

    CAS  PubMed  Google Scholar 

  95. Gagliardini, E. & Benigni, A. Therapeutic potential of TGF-β inhibition in chronic renal failure. Expert Opin. Biol. Ther. 7, 293–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Wahab, N. A. & Mason, R. M. A critical look at growth factors and epithelial-to-mesenchymal transition in the adult kidney. Interrelationships between growth factors that regulate EMT in the adult kidney. Nephron Exp. Nephrol. 104, e129–e134 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Abbate, M. et al. Transforming growth factor-β1 is up-regulated by podocytes in response to excess intraglomerular passage of proteins: a central pathway in progressive glomerulosclerosis. Am. J. Pathol. 161, 2179–2193 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ma, L. J. et al. Divergent effects of low versus high dose anti-TGF-β antibody in puromycin aminonucleoside nephropathy in rats. Kidney Int. 65, 106–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Kasuga, H. et al. Effects of anti-TGF-β type II receptor antibody on experimental glomerulonephritis. Kidney Int. 60, 1745–1755 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Dornhöfer, N. et al. Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 66, 5816–5827 (2006).

    Article  PubMed  Google Scholar 

  101. Ikawa, Y. et al. Neutralizing monoclonal antibody to human connective tissue growth factor ameliorates transforming growth factor-β-induced mouse fibrosis. J. Cell. Physiol. 216, 680–687 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Paolo Cravedi and Dr. Meryl Waldman for critical reading of the manuscript. Our work is supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey B. Kopp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marasà, M., Kopp, J. Monoclonal antibodies for podocytopathies: rationale and clinical responses. Nat Rev Nephrol 5, 337–348 (2009). https://doi.org/10.1038/nrneph.2009.70

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing