Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The future of antigen-specific immunotherapy of allergy

Abstract

More than 25% of the population in industrialized countries suffers from immunoglobulin-E-mediated allergies. The antigen-specific immunotherapy that is in use at present involves the administration of allergen extracts to patients with the aim to cure allergic symptoms. However, the risk of therapy-induced side effects limits its broad application. Recent work indicates that the epitope complexity of natural allergen extracts can be recreated using recombinant allergens, and hypoallergenic derivatives of these can be engineered to increase treatment safety. It is proposed that these modified molecules will improve the current practice of specific immunotherapy and form a basis for prophylactic vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How allergens induce and maintain allergy.
Figure 2: Assembling complete panels of hypoallergenic allergen derivatives for prophylactic vaccination against allergy.
Figure 3: Proposed action of prophylactic allergy vaccines.

Similar content being viewed by others

References

  1. Noon, L. Prophylactic inoculation against hay fever. Lancet 1, 1572–1573 (1911).

    Google Scholar 

  2. Wills-Karp, M., Santeliz, J. & Karp, C. L. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nature Rev. Immunol. 1, 69–75 (2001).

    Article  CAS  Google Scholar 

  3. Prausnitz, C. & Küstner, H. Studien über die Überempfindlichkeit. Centralbl. f. Bakteriol. 86, 160–169 (1921).

    CAS  Google Scholar 

  4. Valenta, R. & Kraft, D. Recombinant allergen molecules: tools to study effector-cell activation. Immunol. Rev. 179, 119–127 (2001).

    CAS  PubMed  Google Scholar 

  5. Daniels, S. E. et al. A genome-wide search for quantitative trait loci underlying asthma. Nature 383, 247–250 (1996).

    CAS  PubMed  Google Scholar 

  6. Lonjou, C. et al. A first trial of retrospective collaboration for positional cloning in complex inheritance: assay of the cytokine region on chromosome 5 by the consortium on asthma genetics (COAG). Proc. Natl Acad. Sci. USA 97, 10942–10947 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, Y. A. et al. A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nature Genet. 26, 470–473 (2000).

    CAS  PubMed  Google Scholar 

  8. Wahn, U. et al. Indoor allergen exposure is a risk factor for sensitization during the first three years of life. J. Allergy Clin. Immunol. 99, 763–769 (1997).

    CAS  PubMed  Google Scholar 

  9. Kulig, M. et al. Natural course of sensitization to food and inhalant allergens during the first six years of life. J. Allergy Clin. Immunol. 103, 1173–1179 (1999).

    CAS  PubMed  Google Scholar 

  10. Niederberger, V., Niggemann, B., Kraft, D., Spitzauer, S. & Valenta, R. Evolution of IgM, IgE and IgG1–4 antibody responses in early childhood monitored with recombinant allergen components: implications for class-switch mechanisms. Eur. J. Immunol. 32, 576–584 (2002).

    CAS  PubMed  Google Scholar 

  11. Constant, S. L., Lee, K. S. & Bottomly, K. Site of antigen delivery can influence T-cell priming: pulmonary environment promotes preferential TH2-type differentiation. Eur. J. Immunol. 30, 840–847 (2000).

    CAS  PubMed  Google Scholar 

  12. Lambrecht, B. N. The dendritic cell in allergic airway diseases: a new player to the game. Clin. Exp. Allergy 31, 206–218 (2001).

    CAS  PubMed  Google Scholar 

  13. Masten, B. J. & Lipscomb, M. F. Comparison of lung dendritic cells and B cells in stimulating naive antigen-specific T cells. J. Immunol. 162, 1310–1317 (1999).

    CAS  PubMed  Google Scholar 

  14. Grunewald, S. M. et al. An antagonistic IL-4 mutant prevents type I allergy in the mouse: inhibition of the IL-4/IL-13 receptor system completely abrogates humoral immune responses to allergen and development of allergic symptoms in vivo. J. Immunol. 160, 4004–4009 (1998).

    CAS  PubMed  Google Scholar 

  15. Borish, L. C. et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J. Allergy Clin. Immunol. 107, 963–970 (2001).

    CAS  PubMed  Google Scholar 

  16. Akdis, C. A., Blesken, T., Wymann, D., Akdis, M. & Blaser, K. Differential regulation of human T-cell cytokine patterns and IgE and IgG4 responses by conformational antigen variants. Eur. J. Immunol. 28, 914–925 (1998).

    CAS  PubMed  Google Scholar 

  17. Tanaka, H., Demeure, C. E., Rubio, M., Delespesse, G. & Sarfati, M. Human monocyte-derived dendritic cells induce naive T-cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. J. Exp. Med. 192, 405–412 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Constant, S., Pfeiffer, C., Woodard, A., Pasqualini, T. & Bottomly, K. Extent of T-cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J. Exp. Med. 182, 1591–1596 (1995).

    CAS  PubMed  Google Scholar 

  19. Jahnsen, F. L. et al. Experimentally induced recruitment of plasmacytoid (CD123high) dendritic cells in human nasal allergy. J. Immunol. 165, 4062–4068 (2000).

    CAS  PubMed  Google Scholar 

  20. Mazzoni, A., Young, H. A., Spitzer, J. H., Visintin, A. & Segal, D. M. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T-cell polarization. J. Clin. Invest. 108, 1865–1873 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chakir, J., Laviolette, M., Turcotte, H., Boutet, M. & Boulet, L. P. Cytokine expression in the lower airways of nonasthmatic subjects with allergic rhinitis: influence of natural allergen exposure. J. Allergy Clin. Immunol. 106, 904–910 (2000).

    CAS  PubMed  Google Scholar 

  22. Van Reijsen, F. C., Bruijnzeel-Koomen, C. A., de Weger, R. A. & Mudde, G. C. Retention of long-lived, allergen-specific T cells in atopic dermatitis skin. J. Invest. Dermatol. 108, 530 (1997).

    CAS  PubMed  Google Scholar 

  23. Bohle, B. et al. Long-lived Th2 clones specific for seasonal and perennial allergens can be detected in blood and skin by their TCR hypervariable regions. J. Immunol. 160, 2022–2027 (1998).

    CAS  PubMed  Google Scholar 

  24. Durham, S. R. et al. Expression of ɛ germ-line gene transcripts and mRNA for the ɛ heavy chain of IgE in nasal B cells and the effects of topical corticosteroid. Eur. J. Immunol. 27, 2899–2906 (1997).

    CAS  PubMed  Google Scholar 

  25. Ying, S. et al. Local expression of ɛ germline gene transcripts and RNA for the ɛ heavy chain of IgE in the bronchial mucosa in atopic and nonatopic asthma. J. Allergy Clin. Immunol. 107, 686–692 (2001).

    CAS  PubMed  Google Scholar 

  26. Smurthwaite, L. et al. Persistent IgE synthesis in the nasal mucosa of hay-fever patients. Eur. J. Immunol. 31, 3422–3431 (2001).

    CAS  PubMed  Google Scholar 

  27. Steinberger, P. et al. Allergen-specific IgE production of commited B cells from allergic patients in vitro. J. Allergy Clin. Immunol. 96, 209–218 (1995).

    CAS  PubMed  Google Scholar 

  28. Dolecek, C. et al. Effects of IL-4 and IL-13 on total and allergen-specific IgE production by cultured PBMC from allergic patients determined with recombinant pollen allergens. Clin. Exp. Allergy 25, 879–889 (1995).

    CAS  PubMed  Google Scholar 

  29. Steinberger, P., Kraft, D. & Valenta, R. Construction of a combinatorial IgE library from an allergic patient: isolation and characterization of human IgE Fabs with specificity for the major timothy grass-pollen allergen, Phl p 5. J. Biol. Chem. 271, 10967–10972 (1996).

    CAS  PubMed  Google Scholar 

  30. Henderson, L. L., Larson, J. B. & Gleich, G. J. Maximal rise in IgE antibody following ragweed pollination season. J. Allergy Clin. Immunol. 55, 10–15 (1975).

    CAS  PubMed  Google Scholar 

  31. Naclerio, R. M. et al. Nasal provocation with allergen induces a secondary serum IgE antibody response. J. Allergy Clin. Immunol. 100, 505–510 (1997).

    CAS  PubMed  Google Scholar 

  32. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    CAS  PubMed  Google Scholar 

  33. Thornton, A. E. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T-cell activation in vitro by inhibiting interleukin-2 production. J. Exp. Med. 188, 287–296 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Akbari, O., DeKruyff, R. H. & Umetsu, D. T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunol. 2, 725–731 (2001).

    CAS  Google Scholar 

  35. Turner, H. & Kinet, J. P. Signalling through the high-affinity IgE receptor FcɛRI. Nature 402, B24–B30 (1999).

    CAS  PubMed  Google Scholar 

  36. Yamaguchi, M. et al. IgE enhances Fcɛ receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fcɛ receptor I expression and mediator release. J. Immunol. 162, 5455–5465 (1999).

    CAS  PubMed  Google Scholar 

  37. Saini, S. S. et al. The relationship between serum IgE and surface levels of FcɛR on human leukocytes in various diseases: correlation of expression with FcɛRI on basophils but not on monocytes or eosinophils. J. Allergy Clin. Immunol. 106, 514–520 (2000).

    CAS  PubMed  Google Scholar 

  38. MacGlashan, D. Jr, Xia, H. Z., Schwartz, L. B. & Gong, J. IgE-regulated loss, not IgE-regulated synthesis, controls expression of FcɛRI in human basophils. J. Leukocyte Biol. 70, 207–218 (2001).

    CAS  PubMed  Google Scholar 

  39. Kubo, S. et al. Drastic up-regulation of FcɛRI on mast cells is induced by IgE binding through stabilization and accumulation of FcɛRI on the cell surface. J. Immunol. 167, 3427–3434 (2001).

    CAS  PubMed  Google Scholar 

  40. Asai, K. et al. Regulation of mast-cell survival by IgE. Immunity 14, 791–800 (2001).

    CAS  PubMed  Google Scholar 

  41. Kalesnikoff, J. et al. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14, 801–811 (2001).

    CAS  PubMed  Google Scholar 

  42. Katoh, N., Kraft, S., Wessendorf, J. H. & Bieber, T. The high-affinity IgE receptor (FcɛRI) blocks apoptosis in normal human monocytes. J. Clin. Invest. 105, 183–190 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gounni, A. S. et al. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367, 183–186 (1994).

    CAS  PubMed  Google Scholar 

  44. Kita, H. et al. Does IgE bind to and activate eosinophils from patients with allergy? J. Immunol. 162, 6901–6911 (1999).

    CAS  PubMed  Google Scholar 

  45. Smith, S. J. et al. Blood eosinophils from atopic donors express messenger RNA for the α-, β- and γ-subunits of the high-affinity IgE receptor (FcɛRI) and intracellular, but not cell surface, α-subunit protein. J. Allergy Clin. Immunol. 105, 309–317 (2000).

    CAS  PubMed  Google Scholar 

  46. Campbell, A. M. et al. Expression of the high-affinity receptor for IgE on bronchial epithelial cells of asthmatics. Am. J. Respir. Cell Mol. Biol. 19, 92–97 (1998).

    CAS  PubMed  Google Scholar 

  47. Hasegawa, S. et al. Functional expression of the high-affinity receptor for IgE (FcɛRI) in human platelets and its intracellular expression in human megakaryocytes. Blood 93, 2543–2551 (1999).

    CAS  PubMed  Google Scholar 

  48. Gounni, A. S. et al. Human neutrophils express the high-affinity receptor for immunoglobulin E (FcɛRI): role in asthma. FASEB J. 15, 940–949 (2001).

    CAS  PubMed  Google Scholar 

  49. Treter, S. & Luqman, M. Antigen-specific T-cell tolerance down-regulates mast-cell responses in vivo. Cell. Immunol. 206, 116–124 (2000).

    CAS  PubMed  Google Scholar 

  50. Jutel, M. et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413, 420–425 (2001).

    CAS  PubMed  Google Scholar 

  51. Mudde, G. C. et al. Allergen presentation by epidermal Langerhans cells from patients with atopic dermatitis is mediated by IgE. Immunology 69, 335–341 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Maurer, D. et al. Peripheral-blood dendritic cells express FcɛRI as a complex composed of FcɛRIα- and FcɛRIγ-chains, and can use this receptor for IgE-mediated allergen presentation. J. Immunol. 157, 607–616 (1996).

    CAS  PubMed  Google Scholar 

  53. Kraft, S., Wessendorf, J. H., Hanau, D. & Bieber, T. Regulation of the high-affinity receptor for IgE on human epidermal Langerhans cells. J. Immunol. 161, 1000–1006 (1998).

    CAS  PubMed  Google Scholar 

  54. van der Heijden, F. L., Joost van Neerven, R. J., van Katwijk, M., Bos, J. D. & Kapsenberg, M. L. Serum IgE-facilitated allergen presentation in atopic disease. J. Immunol. 150, 3643–3650 (1993).

    CAS  PubMed  Google Scholar 

  55. Haselden, B. M., Kay, A. B. & Larché, M. Immunoglobulin-E-independent major histocompatibility complex-restricted T-cell peptide epitope-induced late asthmatic reactions. J. Exp. Med. 189, 1885–1894 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stumbles, P. A. et al. Resting respiratory-tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J. Exp. Med. 188, 2019–2031 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lambrecht, B. N. et al. Dendritic cells induce Th2 responses to inhaled antigen leading to eosinophilic airway inflammation. J. Clin. Invest. 106, 551–559 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cieslewicz, G. et al. The late, but not early, asthmatic response is dependent on IL-5 and correlates with eosinophil infiltration. J. Clin. Invest. 104, 301–308 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dombrowicz, D. & Capron, M. Eosinophils, allergy and parasites. Curr. Opin. Immunol. 13, 716–720 (2001).

    CAS  PubMed  Google Scholar 

  60. Wu, W. et al. Eosinophils generate brominating oxidants in allergen-induced asthma. J. Clin. Invest. 105, 1455–1463 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bryan, S. A. et al. Effects of recombinant human interleukin-12 on eosinophils, airway hyperresponsiveness and the late asthmatic response. Lancet 356, 2149–2153 (2000).

    CAS  PubMed  Google Scholar 

  62. Leckie, M. J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyperresponsiveness and the late asthmatic response. Lancet 356, 2144–2148 (2000).

    CAS  PubMed  Google Scholar 

  63. Secrist, H., DeKruyff, R. H. & Umetsu, D. T. Interleukin-4 production by CD4+ T cells from allergic individuals is modulated by antigen concentration and antigen-presenting cell type. J. Exp. Med. 181, 1081–1089 (1995).

    CAS  PubMed  Google Scholar 

  64. Ball, T. et al. B-cell epitopes of the major timothy grass-pollen allergen, Phl p 1, revealed by gene fragmentation as candidates for immunotherapy. FASEB J. 13, 1277–1290 (1999).

    CAS  PubMed  Google Scholar 

  65. Bousquet, J., Lockey, R. & Malling, HJ . Allergen immunotherapy: therapeutic vaccines for allergic diseases. A WHO position paper. J Allergy Clin Immunol 102, 558–562 (1998).

    CAS  PubMed  Google Scholar 

  66. Durham, S. R. & Till, S. J. Immunologic changes associated with allergen immunotherapy. J. Allergy Clin. Immunol. 102, 157–164 (1998).

    CAS  PubMed  Google Scholar 

  67. Cooke, R. A., Barnard, J. H., Hebald, S. & Stull, A. Serological evidence of immunity with coexisting sensitization in a type of human allergy (hay fever). J. Exp. Med. 62, 733–750 (1935).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Loveless, M. H. Immunological studies of pollinosis. I. The presence of two antibodies related to the same pollen antigen in the serum of treated hay-fever patients. J. Immunol. 38, 25–50 (1940).

    CAS  Google Scholar 

  69. Djurup, R. & Malling, H. J. High IgG4 antibody level is associated with failure of immunotherapy with inhalant allergens. Clin. Allergy 17, 459–468 (1987).

    CAS  PubMed  Google Scholar 

  70. Flicker, S. et al. Conversion of grass pollen allergen-specific human IgE into a protective IgG1 antibody. Eur. J. Immunol. (in the press).

  71. Ball, T. et al. Induction of antibody responses to new B-cell epitopes indicates vaccination character of allergen immunotherapy. Eur. J. Immunol. 29, 2026–2036 (1999).

    CAS  PubMed  Google Scholar 

  72. Van Neerven, R. J. et al. Blocking antibodies induced by specific allergy vaccination prevent the activation of CD4+ T cells by inhibiting serum-IgE-facilitated allergen presentation. J. Immunol. 163, 2944–2952 (1999).

    CAS  PubMed  Google Scholar 

  73. Rocklin, R. E., Sheffer, A., Greineder, D. K. & Melmon, K. L. Generation of antigen-specific suppressor cells during allergy desensitization. N. Engl. J. Med. 302, 1213–1219 (1980).

    CAS  PubMed  Google Scholar 

  74. Secrist, H., Chelen, C. J., Wen, Y., Marshall, J. D. & Umetsu, D. T. Allergen immunotherapy decreases interleukin-4 production in CD4+ T cells from allergic individuals. J. Exp. Med. 178, 2123–2130 (1993).

    CAS  PubMed  Google Scholar 

  75. Jutel, M. et al. Bee-venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-γ secretion in specific allergen-stimulated T-cell cultures. J. Immunol. 154, 4187–4194 (1995).

    CAS  PubMed  Google Scholar 

  76. McHugh, S. M., Deighton, J., Stewart, A. G., Lachmann, P. J. & Ewan, P. W. Bee-venom immunotherapy induces a shift in cytokine responses from a Th2 to a Th1 dominant pattern: comparison of rush and conventional immunotherapy. Clin. Exp. Allergy 25, 828–838 (1995).

    CAS  PubMed  Google Scholar 

  77. Ebner, C. et al. Immunological changes during specific immunotherapy of grass-pollen allergy: reduced lymphoproliferative responses to allergen and shift from Th2 to Th1 in T-cell clones specific for Phl p 1, a major grass-pollen allergen. Clin. Exp. Allergy 27, 1007–1015 (1997).

    CAS  PubMed  Google Scholar 

  78. Akdis, C. A. et al. Epitope-specific T-cell tolerance to phospholipase A2 in bee-venom immunotherapy and recovery by IL-2 and IL-15 in vitro. J. Clin. Invest. 98, 1676–1683 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Akdis, C. A., Joss, A., Akdis, M. & Blaser, K. Mechanism of IL-10-induced T-cell inactivation in allergic inflammation and normal response to allergens. Int. Arch. Allergy Immunol. 124, 180–182 (2001).

    CAS  PubMed  Google Scholar 

  80. Hoyne, G. F., O'Hehir, R. E., Wraith, D. C., Thomas, W. R. & Lamb, J. R. Inhibition of T-cell and antibody responses to house dust mite allergen by inhalation of the dominant T-cell epitope in naive and sensitized mice. J. Exp. Med. 178, 1783–1788 (1993).

    CAS  PubMed  Google Scholar 

  81. Briner, T. J. et al. Peripheral T-cell tolerance induced in naive and primed mice by subcutaneous injection of peptides from the major cat allergen Fel d 1. Proc. Natl Acad. Sci. USA 90, 7608–7612 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pene, J. et al. Immunotherapy with Fel d 1 peptides decreases IL-4 release by peripheral-blood T cells of patients allergic to cats. J. Allergy Clin. Immunol. 102, 571–578 (1998).

    CAS  PubMed  Google Scholar 

  83. Simons, F. E., Imada, M., Li, Y., Watson, W. T. & HayGlass, K. T. Fel d 1 peptides: effect on skin tests and cytokine synthesis in cat-allergic human subjects. Int. Immunol. 8, 1937–1945 (1996).

    CAS  PubMed  Google Scholar 

  84. Oldfield, W. L., Kay, A. B. & Larche, M. Allergen-derived T-cell peptide-induced late asthmatic reactions precede the induction of antigen-specific hyporesponsiveness in atopic allergic asthmatic subjects. J. Immunol. 167, 1734–1739 (2001).

    CAS  PubMed  Google Scholar 

  85. Müller, U. et al. Successful immunotherapy with T-cell epitope peptides of bee-venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J. Allergy Clin. Immunol. 101, 747–754 (1998).

    PubMed  Google Scholar 

  86. Durham, S. et al. Long-term clinical efficacy of grass-pollen immunotherapy. N. Engl. J. Med. 341, 468–475 (1999).

    CAS  PubMed  Google Scholar 

  87. Stull, A. et al. Experimental and clinical studies of fresh and modified pollen extracts. J. Allergy 11, 439–446 (1940).

    CAS  Google Scholar 

  88. Marsh, D. G., Lichtenstein, L. M. & Cambell, D. H. Studies on allergoids prepared from naturally occurring allergens. I. Assay of allergenicity and antigenicity of formalinized rye group I component. Immunology 18, 449–459 (1970).

    Google Scholar 

  89. Lee, W. Y. & Sehon, A. H. Abrogation of reaginic antibodies with modified allergens. Nature 267, 618–619 (1977).

    CAS  PubMed  Google Scholar 

  90. van Ree, R. et al. False-positive skin-prick test responses to commercially available dog-dander extracts caused by contamination with house dust mite (Dermatophagoides pteronyssinus) allergens. J. Allergy Clin. Immunol. 98, 1028–1034 (1996).

    PubMed  Google Scholar 

  91. Valenta, R. et al. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). Clin. Exp. Allergy 29, 896–904 (1999).

    CAS  PubMed  Google Scholar 

  92. Valenta, R. et al. Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science 253, 557–560 (1991).

    CAS  PubMed  Google Scholar 

  93. Movérare, R., Elfman, L., Vesterinen, E., Metso, T. & Haahtela, T. Development of new IgE reactivities to allergenic components in pollen extracts during specific immunotherapy studied with immunoblotting and the Pharmacia CAP system. Allergy 57, 423–430 (2002).

    PubMed  Google Scholar 

  94. Hiller, R. et al. Microarrayed allergen molecules: diagnostic gatekeepers for refined allergy treatment. FASEB J. 2002 Jan 14 (DOI 10.1096/fj.01–0711fje).

  95. Niederberger, V. et al. IgE antibodies to recombinant pollen allergens (Phl p 1, Phl p 2, Phl p 5 and Bet v 2) account for a high percentage of grass pollen-specific IgE. J. Allergy Clin. Immunol. 101, 258–264 (1998).

    CAS  PubMed  Google Scholar 

  96. Niederberger, V. et al. Recombinant birch pollen allergens (rBet v 1, rBet v 2) contain most of the IgE epitopes present in birch, alder, hornbeam, hazel and oak pollen. A quantitative IgE inhibition study using sera from different populations. J. Allergy Clin. Immunol. 102, 579–591 (1998).

    CAS  PubMed  Google Scholar 

  97. Kazemi-Shirazi, L. et al. Quantitative IgE inhibition experiments with purified recombinant allergens indicate pollen-derived allergens as the sensitizing agents responsible for many forms of plant food allergy. J. Allergy Clin. Immunol. 105, 116–125 (2000).

    CAS  PubMed  Google Scholar 

  98. Valenta, R. et al. Genetically engineered and synthetic allergen derivatives: candidates for vaccination against type I allergy. Biol. Chem. 380, 815–824 (1999).

    CAS  PubMed  Google Scholar 

  99. Ball, T. et al. Isolation of an immunodominant IgE hapten from an expression cDNA library. Dissection of the allergic effector reaction. J. Biol. Chem. 269, 28323–28328 (1994).

    CAS  PubMed  Google Scholar 

  100. Smith, A. M. & Chapman, M. D. Reduction in IgE binding to allergen variants generated by site-directed mutagenesis: contribution of disulfide bonds to the antigenic structure of the major house dust mite allergen Der p 2. Mol. Immunol. 33, 399–405 (1996).

    CAS  PubMed  Google Scholar 

  101. Ferreira, F. et al. Dissection of immunoglobulin E and T-lymphocyte reactivity of isoforms of the major birch pollen allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy. J. Exp. Med. 183, 599–609 (1996).

    CAS  PubMed  Google Scholar 

  102. Takai, T. et al. Engineering of the major house dust mite allergen Der f 2 for allergen-specific immunotherapy. Nature Biotechnol. 15, 754–758 (1997).

    CAS  Google Scholar 

  103. Vrtala, S. et al. Conversion of the major birch-pollen allergen, Bet v 1, into two nonanaphylactic T-cell epitope-containing fragments: candidates for a novel form of specific immunotherapy. J. Clin. Invest. 99, 1673–1681 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ferreira, F. et al. Modulation of IgE reactivity of allergens by site-directed mutagenesis: potential use of hypoallergenic variants for immunotherapy. FASEB J. 12, 231–242 (1998).

    CAS  PubMed  Google Scholar 

  105. Schramm, G. et al. Allergen engineering: variants of the timothy grass-pollen allergen Phl p 5b with reduced IgE-binding capacity but conserved T-cell reactivity. J. Immunol. 162, 2406–2414 (1999).

    CAS  PubMed  Google Scholar 

  106. Vrtala, S. et al. Genetic engineering of a hypoallergenic trimer of the major birch-pollen allergen Bet v 1. FASEB J. 15, 2045–2047 (2001).

    CAS  PubMed  Google Scholar 

  107. Focke, M. et al. Nonanaphylactic synthetic peptides derived from B-cell epitopes of the major grass-pollen allergen, Phl p 1, for allergy vaccination. FASEB J. 15, 2042–2044 (2001).

    CAS  PubMed  Google Scholar 

  108. Vrtala, S. et al. T-cell epitope-containing hypoallergenic recombinant fragments of the major birch-pollen allergen, Bet v 1, induce blocking antibodies. J. Immunol. 165, 6653–6659 (2000).

    CAS  PubMed  Google Scholar 

  109. Korematsu, S. et al. C8/119S mutation of major mite allergen Der f 2 leads to degenerate secondary structure and molecular polymerization and induces potent and exclusive Th1-cell differentiation. J. Immunol. 165, 2895–2902 (2000).

    CAS  PubMed  Google Scholar 

  110. Wiedermann, U. et al. Intranasal treatment with a recombinant hypoallergenic derivative of the major birch-pollen allergen Bet v 1 prevents allergic sensitization and airway inflammation in mice. Int. Arch. Allergy Immunol. 126, 68–77 (2001).

    CAS  PubMed  Google Scholar 

  111. Van Hage-Hamsten, M. et al. Skin-test evaluation of genetically engineered hypoallergenic derivatives of the major birch-pollen allergen, Bet v 1. Results obtained with a mix of two recombinant Bet v 1 fragments and rBet v 1 trimer in a Swedish population before the birch-pollen season. J. Allergy Clin. Immunol. 104, 969–977 (1999).

    CAS  PubMed  Google Scholar 

  112. Arquint, O. et al. Reduced in vivo allergenicity of Bet v 1d isoform, a natural component of birch pollen. J. Allergy Clin. Immunol. 104, 1239–1243 (1999).

    CAS  PubMed  Google Scholar 

  113. Pauli, G. et al. Clinical evaluation of genetically engineered hypoallergenic rBet v 1 derivatives by skin prick and intradermal testing: results obtained in a French population. Clin. Exp. Allergy 30, 1076–1084 (2000).

    CAS  PubMed  Google Scholar 

  114. Nopp, A. et al. Comparison of inflammatory responses to genetically engineered hypoallergenic derivatives of the major birch-pollen allergen Bet v 1 and to recombinant Bet v 1 wild type in skin chamber fluids collected from birch-pollen-allergic patients. J. Allergy Clin. Immunol. 106, 101–109 (2000).

    CAS  PubMed  Google Scholar 

  115. van Halteren, A. G. et al. Regulation of antigen-specific IgE, IgG1 and mast-cell responses to ingested allergen by mucosal tolerance induction. J. Immunol. 159, 3009–3015 (1997).

    CAS  PubMed  Google Scholar 

  116. Gabrielsson, S. et al. Specific immunotherapy prevents increased levels of allergen-specific IL-4- and IL-13-producing cells during pollen season. Allergy 56, 293–300 (2001).

    CAS  PubMed  Google Scholar 

  117. Wilson, D. R. et al. Grass-pollen immunotherapy: symptomatic improvement correlates with reductions in eosinophils and IL-5 mRNA expression in the nasal mucosa during the pollen season. J. Allergy Clin. Immunol. 107, 971–976 (2001).

    CAS  PubMed  Google Scholar 

  118. Hakansson, L., Heinrich, C., Rak, S. & Venge, P. Activation of B lymphocytes during grass-pollen season. Effect of immunotherapy. Clin. Exp. Allergy 28, 791–798 (1998).

    CAS  PubMed  Google Scholar 

  119. Pierkes, M. et al. Decreased release of histamine and sulfidoleukotrienes by human peripheral-blood leukocytes after wasp-venom immunotherapy is partially due to induction of IL-10 and IFN-γ production of T cells. J. Allergy Clin. Immunol. 103, 326–332 (1999).

    CAS  PubMed  Google Scholar 

  120. Durham, S. et al. Grass-pollen immunotherapy decreases the number of mast cells in the skin. Clin. Exp. Allergy 29, 1490–1496 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am supported by grants from the Austrian Science Fund (FWF). I thank D. Kraft for being a true mentor, the members of his group for their enthusiastic collaboration and V. Niederberger for help with the illustrations. D. Kraft, K. Roux, C. Ebner and O. Cromwell are acknowledged for their suggestions and critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez

bee-venom phospholipase

Bet v 1

Fel d 1

LocusLink

FcɛRI

FcɛRII

IL-4

IL-5

IL-12

IL-13

OMIM

asthma

atopic dermatitis

FURTHER INFORMATION

Farrp (Food Allergy Research and Resource Program) Allergen Database

Structural Database of Allergenic Proteins, The University of Texas Medical Branch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valenta, R. The future of antigen-specific immunotherapy of allergy. Nat Rev Immunol 2, 446–453 (2002). https://doi.org/10.1038/nri824

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri824

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing