Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The anatomical and cellular basis of immune surveillance in the central nervous system

Key Points

  • Immune privilege of the central nervous system (CNS) is explained by the absence of dendritic cells or other resident antigen-presenting cells (APCs) that are capable of leaving the CNS parenchyma and conveying antigen to nearby lymph nodes. This feature makes the CNS virtually resistant to generating immune reactions to antigens locally deposited in the CNS parenchyma.

  • However, if antigen is instilled in the CNS parenchyma with subsequent peripheral immunization, a brisk immune reaction ensues. This observation implies that a mechanism for immune surveillance exists. Central memory T cells are found in abundance in human cerebrospinal fluid (CSF), suggesting that they provide a cellular basis for immune surveillance.

  • Extensive studies using neuroinflammation models, such as experimental autoimmune encephalomyelitis (EAE) and viral encephalitis, support this concept of CNS immune surveillance. In the EAE model, most lesions form in the subpial tissue of the spinal cord. Examination of biopsy material from the cerebral cortex of individuals with early-stage multiple sclerosis and remote from the target of biopsy also showed subpial lesions that were topographically related to meningeal inflammatory aggregates, affirming the relevance of the animal model studies.

  • Anatomical features of the CNS, including its vasculature and lining membranes, as well as the formation and circulation of CSF, help to clarify the mechanisms underpinning CNS immune–inflammatory reactions. These attributes are presented in the current Review, which integrates experimental and clinical findings to provide an account of immune surveillance of the CNS and the initiation of inflammatory demyelinating lesions.

Abstract

The central nervous system (CNS) comprises the brain, spinal cord, optic nerves and retina, and contains post-mitotic, delicate cells. As the rigid coverings of the CNS render swelling dangerous and destructive, inflammatory reactions must be carefully controlled in CNS tissues. Nevertheless, effector immune responses that protect the host during CNS infection still occur in the CNS. Here, we describe the anatomical and cellular basis of immune surveillance in the CNS, and explain how this shapes the unique immunology of these tissues. The Review focuses principally on insights gained from the study of autoimmune responses in the CNS and to a lesser extent on models of infectious disease. Furthermore, we propose a new model to explain how antigen-specific T cell responses occur in the CNS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CSF-mediated drainage of interstitial fluid and CNS antigens to deep cervical lymph nodes.
Figure 2: Pathogenic cascade in the periphery and CNS during experimental autoimmune encephalomyelitis.
Figure 3: Immune surveillance of the central nervous system: T cell–APC interactions and checkpoints for autoimmunity.

Similar content being viewed by others

References

  1. Weller, R. O., Engelhardt, B. & Phillips, M. J. Lymphocyte targeting of the CNS. A review of afferent and efferent CNS immune pathways. Brain Pathol. 6, 275–288 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Walter, B. A., Valera, V. A., Takahashi, S., Matsuno, K. & Ushiki, T. Evidence of antibody production in the rat cervical lymph nodes after antigen administration into the cerebrospinal fluid. Arch. Histol. Cytol. 69, 37–47 (2006).

    Article  PubMed  Google Scholar 

  3. Prodinger, C. et al. CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol. 121, 445–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Bulloch, K. et al. CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J. Comp. Neurol. 508, 687–710 (2008).

    Article  PubMed  Google Scholar 

  5. Karman, J., Ling, C., Sandor, M. & Fabry, Z. Initiation of immune responses in brain is promoted by local dendritic cells. J. Immunol. 173, 2353–2361 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. D'Agostino, P. M. et al. Viral-induced encephalitis initiates distinct and functional CD103+ CD11b+ brain dendritic cell populations within the olfactory bulb. Proc. Natl Acad. Sci. USA 109, 6175–6180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller, S. D., McMahon, E. J., Schreiner, B. & Bailey, S. L. Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis. Ann. NY Acad. Sci. 1103, 179–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. McMahon, E. J., Bailey, S. L. & Miller, S. D. CNS dendritic cells: critical participants in CNS inflammation? Neurochem. Int. 49, 195–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. McMahon, E. J., Bailey, S. L., Castenada, C. V., Waldner, H. & Miller, S. D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nature Med. 11, 335–339 (2005). This study shows that T cells recognize antigen and proliferate in the CNS during EAE, and demonstrates that APCs do not leave the CNS with antigen cargo and access lymphoid organs.

    Article  CAS  PubMed  Google Scholar 

  10. Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011). These authors document early subpial demyelination during the course of EAE. Demyelinated lesions are closely associated with foci of meningeal inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camelo, S., Kezic, J. & McMenamin, P. G. Anterior chamber-associated immune deviation: a review of the anatomical evidence for the afferent arm of this unusual experimental model of ocular immune responses. Clin. Experiment. Ophthalmol. 33, 426–432 (2005).

    Article  PubMed  Google Scholar 

  12. Weller, R. O. Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J. Neuropathol. Exp. Neurol. 57, 885–894 (1998). A seminal discussion of the role of CSF as the lymphatic drainage equivalent for the CNS, along with a highly lucid account of the different interstitial fluid flow pathways for grey matter and white matter.

    Article  CAS  PubMed  Google Scholar 

  13. Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007). A bracing and indispensible consideration of CNS immune privilege in historical context, rescuing the concept from all the accretions of decades of misunderstanding.

    Article  CAS  PubMed  Google Scholar 

  14. Brabb, T. et al. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J. Exp. Med. 192, 871–880 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ling, E. A., Kaur, C. & Lu, J. Origin, nature, and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc. Res. Tech. 41, 43–56 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Fitzner, D. et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 124, 447–458 (2011). This study documents how microglia in the healthy CNS ingest myelin antigens and explains why these antigens are enriched in meningeal macrophages of the inflamed CNS, even before myelin is damaged.

    Article  CAS  PubMed  Google Scholar 

  17. Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. & Begley, D. J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Lindahl, P., Johansson, B. R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  Google Scholar 

  22. Allt, G. & Lawrenson, J. G. Is the pial microvessel a good model for blood-brain barrier studies? Brain Res. Brain Res. Rev. 24, 67–76 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Barkalow, F. J., Goodman, M. J., Gerritsen, M. E. & Mayadas, T. N. Brain endothelium lack one of two pathways of P-selectin-mediated neutrophil adhesion. Blood. 88, 4585–4593 (1996).

    CAS  PubMed  Google Scholar 

  24. Yong, T., Zheng, M. Q. & Linthicum, D. S. Nicotine induces leukocyte rolling and adhesion in the cerebral microcirculation of the mouse. J. Neuroimmunol. 80, 158–164 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nature Neurosci. 14, 1142–1149 (2011). This study uses a clever variant of the parabiosis technique to study the invasion of the CNS by myeloid cells and to clarify the fate of both monocytes and microglia during and after disease. Monocytes do not durably engraft the CNS. Further studies show that only haematopoietic stem cells can persist as myeloid microglia-like cells in the CNS parenchyma.

    Article  CAS  PubMed  Google Scholar 

  27. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neurosci. 10, 1538–1543 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Ransohoff, R. M. & Perry, V. H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Ransohoff, R. M. & Cardona, A. E. The myeloid cells of the central nervous system parenchyma. Nature 468, 253–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Ransohoff, R. M. Microglia and monocytes: 'tis plain the twain meet in the brain. Nature Neurosci. 14, 1098–1100 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Ransohoff, R. M. Microgliosis: the questions shape the answers. Nature Neurosci. 10, 1507–1509 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neurosci. 10, 1387–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Trebst, C. et al. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am. J. Pathol. 159, 1701–1710 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pashenkov, M. et al. Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections. J. Neuroimmunol. 122, 106–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Kivisakk, P. et al. Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann. Neurol. 55, 627–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Kivisakk, P. et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl Acad. Sci. USA 100, 8389–8394 (2003). A demonstration that the vast majority of cells in CSF of healthy individuals are central memory T cells, suggesting that they might have a role in CNS immune surveillance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stuve, O. et al. Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch. Neurol. 63, 1383–1387 (2006). This study shows that α4 integrins are required for T cells to enter the CSF of humans.

    Article  PubMed  Google Scholar 

  38. Stuve, O. et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann. Neurol. 59, 743–747 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Giunti, D. et al. Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J. Leukoc. Biol. 73, 584–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Noppen, M. et al. Volume and cellular content of normal pleural fluid in humans examined by pleural lavage. Am. J. Respir. Crit. Care Med. 162, 1023–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Trampuz, A. et al. Synovial fluid leukocyte count and differential for the diagnosis of prosthetic knee infection. Am. J. Med. 117, 556–562 (2004).

    Article  PubMed  Google Scholar 

  42. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999). The first report of two classes of memory T cells: T CM cells and T EM cells.

    Article  CAS  PubMed  Google Scholar 

  43. Ransohoff, R. M., Kivisakk, P. & Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nature Rev. Immunol. 3, 569–581 (2003).

    Article  CAS  Google Scholar 

  44. Kivisakk, P., Tucky, B., Wei, T., Campbell, J. J. & Ransohoff, R. M. Human cerebrospinal fluid contains CD4+ memory T cells expressing gut- or skin-specific trafficking determinants: relevance for immunotherapy. BMC. Immunol. 7, 8389–8394 (2006).

    Article  CAS  Google Scholar 

  45. Provencio, J. J., Kivisakk, P., Tucky, B. H., Luciano, M. G. & Ransohoff, R. M. Comparison of ventricular and lumbar cerebrospinal fluid T cells in non-inflammatory neurological disorder (NIND) patients. J. Neuroimmunol. 163, 179–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Reboldi, A. et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nature Immunol. 10, 514–523 (2009). This study documents a need for CCR6+ T H 17 cells that cross the choroid plexus in the early phase of EAE, and discriminates requirements for migrating across the blood–CSF barrier and the BBB.

    Article  CAS  Google Scholar 

  47. Villares, R. et al. CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T-cell recruitment to target tissues. Eur. J. Immunol. 39, 1671–1681 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Goldmann, J. et al. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J. Leukoc. Biol. 80, 797–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Furtado, G. C. et al. Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis. J. Immunol. 181, 4648–4655 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Glabinski, A. R., Tani, M., Tuohy, V. K. & Ransohoff, R. M. Murine experimental autoimmune encephalomyelitis: a model of immune-mediated inflammation and multiple sclerosis. Methods Enzymol. 288, 182–190 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Odoardi, F. et al. T cells become licensed in the lung to enter the central nervous system. Nature 30 Aug 2012 (doi:10.1038/nature11337)

    Article  CAS  PubMed  Google Scholar 

  52. Chang, T. T. et al. Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7-1/B7-2-deficient mice. Eur. J. Immunol. 33, 2022–2032 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Kawakami, N. et al. The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J. Exp. Med. 199, 185–197 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nature Med. 11, 328–334 (2005). This study shows that mice depleted of most lymphoid tissue can manifest EAE. Within the CNS, bone marrow-derived perivascular CD11c+ APCs rather than microglial cells suffice for re-stimulating adoptively transferred T cells and the development of EAE.

    Article  CAS  PubMed  Google Scholar 

  55. Hickey, W. F., Hsu, B. L. & Kimura, H. T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28, 254–260 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Hickey, W. F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988). A landmark demonstration of the significance of perivascular cells for APC function during EAE.

    Article  CAS  PubMed  Google Scholar 

  57. Kivisakk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009). Two-photon microscopy illuminates the remarkable acrobatics of myelin-specific T cells immediately before and after they exit the vasculature. The importance of perivascular APCs is again emphasized because they can stimulate non-neuroantigen-specific T cells to invade the parenchyma.

    Article  PubMed  CAS  Google Scholar 

  59. Schreiber, T., Shinder, V., Cain, D., Alon, R. & Sackstein, R. Shear flow-dependent integration of apical and subendothelial chemokines in T cell transmigration: implications for locomotion and the “multi-step paradigm”. Blood 109, 1381–1386 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ransohoff, R. M., Man, S. & Ubogu, E. E. . “Doing the locomotion” with the multistep paradigm. Blood 109, 1342–1343 (2007).

    Article  CAS  Google Scholar 

  61. Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature Med. 11, 146–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Bergmann, C. C., Lane, T. E. & Stohlman, S. A. Coronavirus infection of the central nervous system: host-virus stand-off. Nature Rev. Microbiol. 4, 121–132 (2006).

    Article  CAS  Google Scholar 

  63. MacNamara, K. C., Bender, S. J., Chua, M. M., Watson, R. & Weiss, S. R. Priming of CD8+ T cells during central nervous system infection with a murine coronavirus is strain dependent. J. Virol. 82, 6150–6160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. MacNamara, K. C. & Weiss, S. R. CD8+ T-cell priming during a central nervous system infection with mouse hepatitis virus. Adv. Exp. Med. Biol. 581, 385–390 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, J. V., Kang, S. S., Dustin, M. L. & McGavern, D. B. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457, 191–195 (2009). This study demonstrates that CD8+ T cells carry out antiviral immune surveillance in the subarachnoid space.

    Article  CAS  PubMed  Google Scholar 

  66. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010). This paper extends the concept of tissue-resident memory cells to the CNS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wensky, A. K. et al. IFN-γ determines distinct clinical outcomes in autoimmune encephalomyelitis. J. Immunol. 174, 1416–1423 (2005). This study shows that signature cytokines of polarized T cells (such as IFNγ) help to shape the regional distribution of inflammatory cells in EAE lesions.

    Article  CAS  PubMed  Google Scholar 

  68. Stromnes, I. M., Cerretti, L. M., Liggitt, D., Harris, R. A. & Goverman, J. M. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nature Med. 14, 337–342 (2008). This milestone paper extends reference 67 by showing quantitatively that T H 1/T H 17 cell ratios affect the sites of maximal inflammation during EAE.

    Article  CAS  PubMed  Google Scholar 

  69. Lees, J. R., Golumbek, P. T., Sim, J., Dorsey, D. & Russell, J. H. Regional CNS responses to IFN-γ determine lesion localization patterns during EAE pathogenesis. J. Exp. Med. 205, 2633–2642 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Carrithers, M. D., Visintin, I., Kang, S. J. & Janeway, C. A. Jr. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 123, 1092–1101 (2000).

    Article  PubMed  Google Scholar 

  71. von Andrian, U. H. & Engelhardt, B. α4 integrins as therapeutic targets in autoimmune disease. N. Engl. J. Med. 348, 68–72 (2003).

    Article  PubMed  Google Scholar 

  72. Vajkoczy, P., Laschinger, M. & Engelhardt, B. α4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J. Clin. Invest. 108, 557–565 (2001). This paper used spinal cord intravital microscopy to show that cerebral microvasculature can use varied molecular pathways to mediate inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356, 63–66 (1992). These authors show that an antibody to one (but not several other) leukocyte adhesion molecules could suppress EAE. These experiments led directly to novel medications, showing formally that leukocyte trafficking is a relevant therapeutic target for multiple sclerosis.

    Article  CAS  PubMed  Google Scholar 

  74. Engelhardt, B. Molecular mechanisms involved in T cell migration across the blood-brain barrier. J. Neural Transm. 113, 477–485 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Khatri, B. O. et al. Effect of plasma exchange in accelerating natalizumab clearance and restoring leukocyte function. Neurology 72, 402–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Man, S. et al. α4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. J. Neuroimmunol. 210, 92–99 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Coisne, C., Mao, W. & Engelhardt, B. Cutting edge: natalizumab blocks adhesion but not initial contact of human T cells to the blood-brain barrier in vivo in an animal model of multiple sclerosis. J. Immunol. 182, 5909–5913 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Engelhardt, B. & Briskin, M. J. Therapeutic targeting of α4-integrins in chronic inflammatory diseases: tipping the scales of risk towards benefit? Eur. J. Immunol. 35, 2268–2273 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Hou, J. & Major, E. O. Progressive multifocal leukoencephalopathy: JC virus induced demyelination in the immune compromised host. J. Neurovirol. 6, S98–S100 (2000).

    PubMed  Google Scholar 

  80. Ransohoff, R. M. Natalizumab and PML. Nature Neurosci. 8, 1275 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Schwab, N. et al. Fatal PML associated with efalizumab therapy: insights into integrin αLβ2 in JC virus control. Neurology 78, 458–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ransohoff, R. M. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity 31, 711–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brown, D. A. & Sawchenko, P. E. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J. Comp. Neurol. 502, 236–260 (2007). This report provided the scientific basis for understanding how meningeal inflammation can be coupled to parenchymal perivascular 'cuffing' and deep tissue injury.

    Article  PubMed  Google Scholar 

  84. Yoshimura, T. et al. Chronic experimental allergic encephalomyelitis in guinea pigs induced by proteolipid protein. J. Neurol. Sci. 69, 47–58 (1985).

    Article  CAS  PubMed  Google Scholar 

  85. Shin, T. & Matsumoto, Y. A quantitative analysis of CD45Rlow CD4+ T cells in the subarachnoid space of Lewis rats with autoimmune encephalomyelitis. Immunol. Invest. 30, 57–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Shin, T., Kojima, T., Tanuma, N., Ishihara, Y. & Matsumoto, Y. The subarachnoid space as a site for precursor T cell proliferation and effector T cell selection in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 56, 171–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Peterson, J. W., Bo, L., Mork, S., Chang, A. & Trapp, B. D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Kidd, D. et al. Cortical lesions in multiple sclerosis. Brain 122, 17–26 (1999).

    Article  PubMed  Google Scholar 

  89. Bo, L., Vedeler, C., Nyland, H., Trapp, B. & Mork, S. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol. 62, 723–732 (2003).

    Article  PubMed  Google Scholar 

  90. Pomeroy, I. M., Matthews, P. M., Frank, J. A., Jordan, E. K. & Esiri, M. M. Demyelinated neocortical lesions in marmoset autoimmune encephalomyelitis mimic those in multiple sclerosis. Brain. 128, 2713–2721 (2005).

    Article  PubMed  Google Scholar 

  91. Merkler, D., Ernsting, T., Kerschenstenier, M., Bruck, W. & Stadelmann, C. A new focal EAE model of cortical demyelination: multiple sclerosis lesions with rapid resolution of inflammation and extensive remyelination. Brain 129, 1972–1983 (2006).

    Article  PubMed  Google Scholar 

  92. Fisher, E., Lee, J. C., Nakamura, K. & Rudick, R. A. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann. Neurol. 64, 255–265 (2008).

    Article  PubMed  Google Scholar 

  93. Lucchinetti, C. F. et al. Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis. Brain 131, 1759–1775 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pittock, S. J. et al. Clinical course, pathological correlations, and outcome of biopsy proved inflammatory demyelinating disease. J. Neurol. Neurosurg. Psychiatry 76, 1693–1697 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kivisakk, P. et al. Natalizumab treatment is associated with peripheral sequestration of proinflammatory T cells. Neurology 72, 1922–1930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schwab, N. et al. Immunological and clinical consequences of treating a patient with natalizumab. Mult. Scler. 18, 335–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Ransohoff, R. M. Natalizumab for multiple sclerosis. N. Engl. J. Med. 356, 2622–2629 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Obermeier, B. et al. Related B cell clones that populate the CSF and CNS of patients with multiple sclerosis produce CSF immunoglobulin. J. Neuroimmunol. 233, 245–248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Obermeier, B. et al. Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nature Med. 14, 688–693 (2008). This study showed directly that CSF B cells and plasma cells synthesize oligoclonal immunoglobulins early in multiple sclerosis. The finding essentially proved that functional lymphoid intrathecal tissues are present in the beginning phases of disease.

    Article  CAS  PubMed  Google Scholar 

  100. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    Article  PubMed  Google Scholar 

  101. Engelhardt, B. & Ransohoff, R. M. Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol. (in the press).

Download references

Acknowledgements

Research in the Ransohoff laboratory is supported by the US National Institutes of Health, the National Multiple Sclerosis Society, the Alzheimer's Association, the Williams Family Foundation for MS Research and the Walker family. Research in the Engelhardt laboratory is supported by the Swiss National Science Foundation, the Swiss Multiple Sclerosis Society and the European Union. R.M.R. and B.E. thank their laboratory colleagues for their talent and commitment and are grateful to patients who participate in research programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Ransohoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Richard M. Ransohoff's homepage

Britta Engelhardt's homepage

Glossary

Multiple sclerosis

A neurological disease that is characterized by focal demyelination in the central nervous system with leukocyte infiltration.

Neuromyelitis optica

An autoimmune disease of the central nervous system associated with antibodies to aquaporin 4, the astrocyte water channel.

Deep cervical lymph nodes

(DCLNs). A group of lymph nodes situated around or near the internal jugular vein.

Olfactory rootlets

Afferent input to the olfactory bulb neurons within the central nervous system (CNS) comes from olfactory rootlets, the sensory endings of which lie in the nasal epithelium in the nasal mucosa. These nerves enter the skull across the cribriform plate at the base of the skull below the frontal lobes. Because these rootlets are part of the CNS, they are covered by meninges containing cerebrospinal fluid, which percolates outwards to the nasal mucosa.

Experimental autoimmune encephalomyelitis

(EAE). An experimental model for the human disease multiple sclerosis. Autoimmune disease is induced in experimental animals by immunization with myelin or peptides derived from myelin. The animals develop a paralytic disease with inflammation and demyelination in the brain and spinal cord.

Exosomes

Small lipid-bilayer vesicles that are produced by various cell types and released into the extracellular space following the fusion of multivesicular bodies with the plasma membrane.

Pericytes

Cells embedded in the vascular basement membrane of microvessels that are related to mesenchymal stem cells. They make close cellular contact with endothelial cells, and this interaction is essential for the maintenance of vessel function, as well as for the regulation of angiogenesis and vascular remodelling.

Astrocyte

A type of glial cell that is found in the vertebrate brain and is named on the basis of its characteristic star-like shape. These cells provide both mechanical and metabolic support for neurons, thereby regulating the environment in which neurons function.

Leptomeningeal mesothelial cells

Mesothelial cells constitute the membranes lining body cavities, in this case the arachnoid and pia. These flattened polygonal cells also line the trabecular network in the subarachnoid space. They are capable of solute uptake and can present antigen to CD8+ T cells in an MHC class I-restricted fashion.

Weibel–Palade bodies

Specialized secretory vesicles that are present in resting endothelial cells and sequester molecules such as P-selectin and chemokines that facilitate leukocyte–endothelial cell interaction.

Cribriform plate

A portion of the ethmoid bone that separates the nasal cavity from the brain. The paper-thin cribriform plate is perforated by numerous openings that admit the olfactory rootlets.

Central memory T cells

(TCM cells). Antigen-experienced CD4+ or CD8+ T cells that lack immediate effector functions but are able to mediate rapid recall responses. These cells also rapidly develop the phenotype and function of effector memory T cells after re-stimulation with antigen. TCM cells possess the migratory properties of naive and memory T cells and therefore can circulate through tissues as well as secondary lymphoid organs.

Effector memory T cells

(TEM cells). Terminally differentiated T cells that lack lymph-node-homing receptors but express receptors that enable homing to inflamed tissues. TEM cells can exert immediate effector functions without the need for further differentiation.

Oligodendroglial cells

(Also known as oligodendrocytes). Glial cells that create and maintain the myelin sheath that nourishes and insulates axons as well as improving the speed and reliability of signal transmission by neurons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ransohoff, R., Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12, 623–635 (2012). https://doi.org/10.1038/nri3265

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing