Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Revisiting the role of the granuloma in tuberculosis

Key Points

  • The tuberculous granuloma has long been considered a key host-protective immunological structure that restricts mycobacteria even under circumstances in which it fails to eradicate them. It was thought historically to be a relatively static structure and to require interactions between mycobacteria and the host adaptive immune system for its formation.

  • Recent advances, particularly in live imaging technology, reveal that the granuloma is a highly dynamic structure, with cells moving in and out of it and throughout the structure. These cellular dynamics resemble in some ways the movement of lymphocytes in lymph nodes, and indeed granulomas can contain tertiary lymphoid structures.

  • Bona fide granulomas can form in the sole context of innate immunity and, rather than being mycobacterium-restricting structures, early granulomas actually expand the infection by promoting the phagocytosis of apoptotic infected macrophages by multiple newly arriving macrophages. The bacterial secreted protein ESAT6 induces host production of matrix metalloproteinase 9 (MMP9) by epithelial cells surrounding the nascent granuloma to induce the chemotaxis of these new macrophages.

  • The granuloma also disseminates infection through the egress of infected macrophages to new sites. Granuloma expansion and dissemination can occur during effective antibiotic treatment through the participation of macrophages containing drug-tolerant bacteria.

  • The onset of adaptive immunity a few weeks after infection can thwart bacterial proliferation in the granuloma but often fails to eradicate infection. Its failure to sterilize infection is attributed to multiple complex mechanisms that result in the delayed arrival and activation of effector T cells.

  • An understanding of the host pathways that are exploited by mycobacteria to first expand and disseminate infection in the granuloma and to then prevent adaptive immune mechanisms from eradicating infection could provide new host-targeting therapies for tuberculosis. These might be useful not only to shorten the long treatment required for drug-sensitive tuberculosis but also to provide much-needed therapies against drug-resistant tuberculosis. Finally, this understanding might suggest entirely new ways to think about tuberculosis vaccines.

Abstract

The granuloma, which is a compact aggregate of immune cells, is the hallmark structure of tuberculosis. It is historically regarded as a host-protective structure that 'walls off' the infecting mycobacteria. This Review discusses surprising new discoveries — from imaging studies coupled with genetic manipulations — that implicate the innate immune mechanisms of the tuberculous granuloma in the expansion and dissemination of infection. It also covers why the granuloma can fail to eradicate infection even after adaptive immunity develops. An understanding of the mechanisms and impact of tuberculous granuloma formation can guide the development of therapies to modulate granuloma formation. Such therapies might be effective for tuberculosis as well as for other granulomatous diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure and cellular constituents of the tuberculous granuloma.
Figure 2: Proliferation and dissemination of bacteria through granulomas.
Figure 3: Mechanism of cell recruitment to granulomas through MMP9 induction in epithelial cells.
Figure 4: Macrophage necrosis promotes more bacterial growth than macrophage apoptosis.

References

  1. 1

    Boros, D. L. (ed.) Granulomatous Infections and Inflammations: Cellular and Molecular Mechanisms (ASM Press, 2003).

    Google Scholar 

  2. 2

    Sylvius, F. Opera Medica (A. Wolfgang, 1679).

    Google Scholar 

  3. 3

    Koch, R. The Aetiology of Tuberculosis (eds Pinner, D. M. & Pinner, M.) (National Tuberculosis Association, 1882).

    Google Scholar 

  4. 4

    Keers, R. Richard Morton (1637–98) and his Phthisiologia. Thorax 37, 26–31 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Myers, J. Development of knowledge of unity of tuberculosis and of the portals of entry of tubercle bacilli. J. Hist. Med. Allied Sci. 29, 213–228 (1974).

    CAS  Google Scholar 

  6. 6

    Sakula, A. Robert Koch: centenary of the discovery of the tubercle bacillus, 1882. Thorax 37, 246–251 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Adams, D. O. The granulomatous inflammatory response. A review. Am. J. Pathol. 84, 164–192 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Spector, W. G. The granulomatous inflammatory exudate. Int. Rev. Exp. Pathol. 8, 1–55 (1969).

    CAS  Google Scholar 

  9. 9

    Williams, G. T. & Williams, W. J. Granulomatous inflammation — a review. J. Clin. Pathol. 36, 723–733 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Adams, D. O. The structure of mononuclear phagocytes differentiating in vivo. I. Sequential fine and histologic studies of the effect of Bacillus Calmette-Guerin (BCG). Am. J. Pathol. 76, 17–48 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Cohn, Z. A. The structure and function of monocytes and macrophages. Adv. Immunol. 9, 163–214 (1968).

    CAS  Google Scholar 

  12. 12

    Dannenberg, A. M. Jr. Cellular hypersensitivity and cellular immunity in the pathogensis of tuberculosis: specificity, systemic and local nature, and associated macrophage enzymes. Bacteriol. Rev. 32, 85–102 (1968).

    PubMed  PubMed Central  Google Scholar 

  13. 13

    Bouley, D. M., Ghori, N., Mercer, K. L., Falkow, S. & Ramakrishnan, L. Dynamic nature of host–pathogen interactions in Mycobacterium marinum granulomas. Infect. Immun. 69, 7820–7831 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Helming, L. & Gordon, S. The molecular basis of macrophage fusion. Immunobiology 212, 785–793 (2007).

    CAS  Google Scholar 

  15. 15

    Russell, D. G., Cardona, P. J., Kim, M. J., Allain, S. & Altare, F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nature Immunol. 10, 943–948 (2009).

    CAS  Google Scholar 

  16. 16

    Trogan, E. et al. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc. Natl Acad. Sci. USA 103, 3781–3786 (2006).

    CAS  Google Scholar 

  17. 17

    Weber, C., Zernecke, A. & Libby, P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nature Rev. Immunol. 8, 802–815 (2008).

    CAS  Google Scholar 

  18. 18

    Peyron, P. et al. Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 4, e1000204 (2008).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Canetti, G. The Tubercle Bacillus in the Pulmonary Lesion of Man: Histobacteriology and its Bearing on the Therapy of Pulmonary Tuberculosis (Springer, 1955).

    Google Scholar 

  20. 20

    Hunter, R. L. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis 91, 497–509 (2011).

    Google Scholar 

  21. 21

    Kumar, V., Abbas, A. K. & Fausto, N. Robbins and Cotran Pathological Basis of Disease 7th edn (Elsevier Saunders, 2005).

    Google Scholar 

  22. 22

    Rich, A. R. The Pathogenesis of Tuberculosis (C. C. Thomas, 1946).

    Google Scholar 

  23. 23

    Volkman, H. E. et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327, 466–469 (2010).

    CAS  Google Scholar 

  24. 24

    Cosma, C. L., Sherman, D. R. & Ramakrishnan, L. The secret lives of the pathogenic mycobacteria. Annu. Rev. Microbiol. 57, 641–676 (2003).

    CAS  Google Scholar 

  25. 25

    Feldman, W. H. & Baggenstoss, A. H. The residual infectivity of the primary complex of tuberculosis. Am. J. Pathol. 14, 473–490 (1938).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Opie, E. L. & Aronson, J. D. Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions. Arch. Pathol. Lab. Med. 4, 1–21 (1927).

    Google Scholar 

  27. 27

    Lawn, S. D. & Zumla, A. I. Tuberculosis. Lancet 378, 57–72 (2011).

    Google Scholar 

  28. 28

    Rubin, E. J. The granuloma in tuberculosis — friend or foe? N. Engl. J. Med. 360, 2471–2473 (2009).

    CAS  Google Scholar 

  29. 29

    Bold, T. D. & Ernst, J. D. Who benefits from granulomas, mycobacteria or host? Cell 136, 17–19 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Ulrichs, T. & Kaufmann, S. H. New insights into the function of granulomas in human tuberculosis. J. Pathol. 208, 261–269 (2006).

    CAS  Google Scholar 

  31. 31

    Murphy, K., Travers, P. & Walport, M. Janeway's Immunobiology 7th edn (Garland Science, 2008).

    Google Scholar 

  32. 32

    Mandell, G. L., Bennett, J. E. & Dolin, R. (eds) Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases 7th edn (Churchill Livingstone, 2010).

    Google Scholar 

  33. 33

    Schaff, H. & Zumla, A. (eds) Tuberculosis (Saunders Elsevier, 2009).

    Google Scholar 

  34. 34

    Longo, D. L. et al. (eds) Harrison's Principles of Internal Medicine (McGraw-Hill, 2012).

    Google Scholar 

  35. 35

    Rohde, K., Yates, R. M., Purdy, G. E. & Russell, D. G. Mycobacterium tuberculosis and the environment within the phagosome. Immunol. Rev. 219, 37–54 (2007).

    CAS  PubMed  Google Scholar 

  36. 36

    Flynn, J. L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    CAS  Google Scholar 

  37. 37

    Kaufmann, S. H. Is the development of a new tuberculosis vaccine possible? Nature Med. 6, 955–960 (2000).

    CAS  Google Scholar 

  38. 38

    Lawn, S. D., Butera, S. T. & Shinnick, T. M. Tuberculosis unleashed: the impact of human immunodeficiency virus infection on the host granulomatous response to Mycobacterium tuberculosis. Microbes Infect. 4, 635–646 (2002).

    CAS  Google Scholar 

  39. 39

    North, R. J. & Izzo, A. A. Granuloma formation in severe combined immunodeficient (SCID) mice in response to progressive BCG infection. Tendency not to form granulomas in the lung is associated with faster bacterial growth in this organ. Am. J. Pathol. 142, 1959–1966 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Cooper, A. M. et al. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

    CAS  Google Scholar 

  41. 41

    Cooper, A. M., Magram, J., Ferrante, J. & Orme, I. M. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J. Exp. Med. 186, 39–45 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Flynn, J. L. et al. An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    CAS  Google Scholar 

  43. 43

    Fremond, C. M. et al. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 179, 1178–1189 (2007).

    CAS  Google Scholar 

  44. 44

    Fremond, C. M. et al. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J. Clin. Invest. 114, 1790–1799 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Juffermans, N. P. et al. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J. Infect. Dis. 182, 902–908 (2000).

    CAS  Google Scholar 

  46. 46

    Scanga, C. A. et al. MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect. Immun. 72, 2400–2404 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Sugawara, I., Yamada, H. & Mizuno, S. Relative importance of STAT4 in murine tuberculosis. J. Med. Microbiol. 52, 29–34 (2003).

    CAS  Google Scholar 

  48. 48

    Clay, H., Volkman, H. E. & Ramakrishnan, L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29, 283–294 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Algood, H. M., Lin, P. L. & Flynn, J. L. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin. Infect. Dis. 41, S189–S193 (2005).

    CAS  Google Scholar 

  50. 50

    Bean, A. G. et al. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J. Immunol. 162, 3504–3511 (1999).

    CAS  Google Scholar 

  51. 51

    Chakravarty, S. D. et al. Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect. Immun. 76, 916–926 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Flynn, J. L. et al. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2, 561–572 (1995).

    CAS  Google Scholar 

  53. 53

    Kindler, V., Sappino, A. P., Grau, G. E., Piguet, P. F. & Vassalli, P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56, 731–740 (1989).

    CAS  Google Scholar 

  54. 54

    Roach, D. R. et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol. 168, 4620–4627 (2002).

    CAS  Google Scholar 

  55. 55

    Stenger, S. Immunological control of tuberculosis: role of tumour necrosis factor and more. Ann. Rheum. Dis. 64, iv24–iv28 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Dannenberg, A. M. Jr. Immunopathogenesis of pulmonary tuberculosis. Hosp. Pract. 28, 51–58 (1993).

    Google Scholar 

  57. 57

    Wolf, A. J. et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol. 179, 2509–2519 (2007). This study presents a comprehensive temporal analysis of the immune cells arriving at the site of granuloma formation in the lungs of M. tuberculosis -infected mice.

    CAS  Google Scholar 

  58. 58

    Wolf, A. J. et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med. 205, 105–115 (2008). This study implicates delayed migration of DCs to the draining lymph nodes, where effective antigen responses are generated, in the unchecked mycobacterial proliferation that occurs in the forming granuloma.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Ramakrishnan, L. Images in clinical medicine. Mycobacterium marinum infection of the hand. N. Engl. J. Med. 337, 612 (1997).

    CAS  Google Scholar 

  60. 60

    North, R. J. & Jung, Y. J. Immunity to tuberculosis. Annu. Rev. Immunol. 22, 599–623 (2004).

    CAS  Google Scholar 

  61. 61

    Swaim, L. E. et al. Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect. Immun. 74, 6108–6117 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Andersen, P. Host responses and antigens involved in protective immunity to Mycobacterium tuberculosis. Scand. J. Immunol. 45, 115–131 (1997).

    CAS  Google Scholar 

  63. 63

    Saunders, B. M. & Cooper, A. M. Restraining mycobacteria: role of granulomas in mycobacterial infections. Immunol. Cell Biol. 78, 334–341 (2000).

    CAS  Google Scholar 

  64. 64

    Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009). This study shows how the early tuberculous granuloma expands infection and disseminates it within the host.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Volkman, H. E. et al. Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol. 2, e367 (2004). References 23 and 65 together show that the mycobacterial protein ESAT6, which is secreted through ESX-1, enhances macrophage migration to granulomas through the induction of MMP9 in surrounding epithelial cells. This provides a mechanistic understanding of the clinical findings in references 92–95.

    PubMed  PubMed Central  Google Scholar 

  66. 66

    Davis, J. M. et al. Real-time visualization of mycobacterium–macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17, 693–702 (2002). This study shows that tuberculous granuloma formation can occur in the sole context of innate immunity.

    CAS  Google Scholar 

  67. 67

    Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell–dendritic cell interaction. Nature 440, 890–895 (2006).

    CAS  Google Scholar 

  68. 68

    Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    PubMed  PubMed Central  Google Scholar 

  69. 69

    Kahnert, A. et al. Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J. Infect. Dis. 195, 46–54 (2007).

    CAS  Google Scholar 

  70. 70

    Ulrichs, T. et al. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J. Pathol. 204, 217–228 (2004). References 69 and 70 describe tertiary lymphoid structures in human and mouse tuberculous granulomas.

    Google Scholar 

  71. 71

    Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Google Scholar 

  72. 72

    Egen, J. G. et al. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28, 271–284 (2008). This study reveals the dynamic nature of mouse tuberculous granulomas through three-dimensional time-lapse microscopy and shows activated T cells entering and moving throughout the granuloma.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Egen, J. G. et al. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34, 807–819 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Sherman, D. R. et al. Mycobacterium tuberculosis H37Rv:ΔRD1 is more virulent than M. bovis bacille Calmette-Guerin in long-term murine infection. J. Infect. Dis. 190, 123–126 (2004).

    PubMed  PubMed Central  Google Scholar 

  75. 75

    Cosma, C. L., Humbert, O. & Ramakrishnan, L. Superinfecting mycobacteria home to established tuberculous granulomas. Nature Immunol. 5, 828–835 (2004).

    CAS  Google Scholar 

  76. 76

    Dannenberg, A. M. Jr. Macrophage turnover, division and activation within developing, peak and “healed” tuberculous lesions produced in rabbits by BCG. Tuberculosis 83, 251–260 (2003). References 75 and 76 show that the mature tuberculous granuloma, including its necrotic centre, is not secluded but is continuously populated by both infected and uninfected macrophages.

    Google Scholar 

  77. 77

    Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    CAS  Google Scholar 

  78. 78

    Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nature Rev. Mol. Cell Biol. 9, 231–241 (2008).

    CAS  Google Scholar 

  79. 79

    Clay, H. et al. Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2, 29–39 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Ray, J. C., Flynn, J. L. & Kirschner, D. E. Synergy between individual TNF-dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection. J. Immunol. 182, 3706–3717 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Lin, P. L. et al. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum. 62, 340–350 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Garcia Vidal, C. et al. Paradoxical response to antituberculous therapy in infliximab-treated patients with disseminated tuberculosis. Clin. Infect. Dis. 40, 756–759 (2005).

    Google Scholar 

  83. 83

    Iliopoulos, A., Psathakis, K., Aslanidis, S., Skagias, L. & Sfikakis, P. P. Tuberculosis and granuloma formation in patients receiving anti-TNF therapy. Int. J. Tuberc. Lung Dis. 10, 588–590 (2006).

    CAS  Google Scholar 

  84. 84

    Van den Steen, P. E. et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit. Rev. Biochem. Mol. Biol. 37, 375–536 (2002).

    CAS  Google Scholar 

  85. 85

    Banaiee, N., Kincaid, E. Z., Buchwald, U., Jacobs, W. R. Jr & Ernst, J. D. Potent inhibition of macrophage responses to IFN-γ by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. J. Immunol. 176, 3019–3027 (2006).

    CAS  Google Scholar 

  86. 86

    Fortune, S. M. et al. Mycobacterium tuberculosis inhibits macrophage responses to IFN-γ through myeloid differentiation factor 88-dependent and -independent mechanisms. J. Immunol. 172, 6272–6280 (2004).

    CAS  Google Scholar 

  87. 87

    Kincaid, E. Z. & Ernst, J. D. Mycobacterium tuberculosis exerts gene-selective inhibition of transcriptional responses to IFN-γ without inhibiting STAT1 function. J. Immunol. 171, 2042–2049 (2003).

    CAS  Google Scholar 

  88. 88

    Ting, L. M., Kim, A. C., Cattamanchi, A. & Ernst, J. D. Mycobacterium tuberculosis inhibits IFN-γ transcriptional responses without inhibiting activation of STAT1. J. Immunol. 163, 3898–3906 (1999).

    CAS  Google Scholar 

  89. 89

    Stockhammer, O. W., Zakrzewska, A., Hegedus, Z., Spaink, H. P. & Meijer, A. H. Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J. Immunol. 182, 5641–5653 (2009).

    CAS  Google Scholar 

  90. 90

    Tobin, D. M. et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140, 717–730 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Taylor, J. L. et al. Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infect. Immun. 74, 6135–6144 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Park, K. J. et al. Expression of matrix metalloproteinase-9 in pleural effusions of tuberculosis and lung cancer. Respiration 72, 166–175 (2005).

    CAS  Google Scholar 

  93. 93

    Price, N. M. et al. Identification of a matrix-degrading phenotype in human tuberculosis in vitro and in vivo. J. Immunol. 166, 4223–4230 (2001).

    CAS  Google Scholar 

  94. 94

    Sheen, P. et al. High MMP-9 activity characterises pleural tuberculosis correlating with granuloma formation. Eur. Respir. J. 33, 134–141 (2009).

    CAS  Google Scholar 

  95. 95

    Elkington, P. T. et al. Synergistic up-regulation of epithelial cell matrix metalloproteinase-9 secretion in tuberculosis. Am. J. Respir. Cell Mol. Biol. 37, 431–437 (2007).

    CAS  Google Scholar 

  96. 96

    Adams, K. N. et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145, 39–53 (2011). This study reveals that granulomas can increase the number of infected macrophages containing antibiotic-tolerant bacteria during chemotherapy and can also promote the dissemination of these macrophages. This provides an explanation for the clinical observations in references 103 and 104 that lesions containing genetically drug-sensitive bacteria appear in new locations during tuberculosis treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Hernandez-Pando, R. et al. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356, 2133–2138 (2000).

    CAS  Google Scholar 

  98. 98

    Balasubramanian, V., Wiegeshaus, E. H., Taylor, B. T. & Smith, D. W. Pathogenesis of tuberculosis: pathway to apical localization. Tuber. Lung Dis. 75, 168–178 (1994).

    CAS  Google Scholar 

  99. 99

    Chackerian, A. A., Alt, J. M., Perera, T. V., Dascher, C. C. & Behar, S. M. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun. 70, 4501–4509 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Schreiber, H. A. et al. Inflammatory dendritic cells migrate in and out of transplanted chronic mycobacterial granulomas in mice. J. Clin. Invest. 121, 3902–3913 (2011). This study complements reference 64 and shows that inflammatory DCs exit mouse tuberculous granulomas to disseminate widely and prime immune responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Welsh, K. J., Risin, S. A., Actor, J. K. & Hunter, R. L. Immunopathology of postprimary tuberculosis: increased T-regulatory cells and DEC-205-positive foamy macrophages in cavitary lesions. Clin. Dev. Immunol. 2011, 307631 (2011).

    Google Scholar 

  102. 102

    Akira, M., Sakatani, M. & Ishikawa, H. Transient radiographic progression during initial treatment of pulmonary tuberculosis: CT findings. J. Comput. Assist. Tomogr. 24, 426–431 (2000).

    CAS  Google Scholar 

  103. 103

    Bobrowitz, I. D. Reversible roentgenographic progression in the initial treatment of pulmonary tuberculosis. Am. Rev. Respir. Dis. 121, 735–742 (1980).

    CAS  Google Scholar 

  104. 104

    Cree, I. A., Nurbhai, S., Milne, G. & Beck, J. S. Cell death in granulomata: the role of apoptosis. J. Clin. Pathol. 40, 1314–1319 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Keane, J. et al. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect. Immun. 65, 298–304 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Fayyazi, A. et al. Apoptosis of macrophages and T cells in tuberculosis associated caseous necrosis. J. Pathol. 191, 417–425 (2000).

    CAS  Google Scholar 

  107. 107

    Tobin, D. et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148, 434–446 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Chen, M. et al. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med. 205, 2791–2801 (2008). References 90, 107 and 108 together show that virulent mycobacteria induce the production of host lipoxins, which are anti-inflammatory eicosanoids that induce the necrosis of granuloma macrophages through TNF suppression.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Behar, S. M. et al. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol. 4, 279–287 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Fratazzi, C., Arbeit, R. D., Carini, C. & Remold, H. G. Programmed cell death of Mycobacterium avium serovar 4-infected human macrophages prevents the mycobacteria from spreading and induces mycobacterial growth inhibition by freshly added, uninfected macrophages. J. Immunol. 158, 4320–4327 (1997).

    CAS  Google Scholar 

  111. 111

    Gan, H. et al. Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nature Immunol. 9, 1189–1197 (2008).

    CAS  Google Scholar 

  112. 112

    Keane, J., Shurtleff, B. & Kornfeld, H. TNF-dependent BALB/c murine macrophage apoptosis following Mycobacterium tuberculosis infection inhibits bacillary growth in an IFN-γ independent manner. Tuberculosis 82, 55–61 (2002).

    CAS  Google Scholar 

  113. 113

    Oddo, M. et al. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J. Immunol. 160, 5448–5454 (1998).

    CAS  Google Scholar 

  114. 114

    Gao, L. Y. et al. A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol. Microbiol. 53, 1677–1693 (2004).

    CAS  Google Scholar 

  115. 115

    Guinn, K. M. et al. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol. Microbiol. 51, 359–370 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Choi, H. H. et al. Endoplasmic reticulum stress response is involved in Mycobacterium tuberculosis protein ESAT-6-mediated apoptosis. FEBS Lett. 584, 2445–2454 (2010).

    CAS  Google Scholar 

  117. 117

    Derrick, S. C. & Morris, S. L. The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression. Cell. Microbiol. 9, 1547–1555 (2007).

    CAS  Google Scholar 

  118. 118

    Mishra, B. B. et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell. Microbiol. 12, 1046–1063 (2010).

    CAS  Google Scholar 

  119. 119

    Molloy, A., Laochumroonvorapong, P. & Kaplan, G. Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin. J. Exp. Med. 180, 1499–1509 (1994).

    CAS  Google Scholar 

  120. 120

    Lammas, D. A. et al. ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7, 433–444 (1997).

    CAS  Google Scholar 

  121. 121

    Briken, V. & Miller, J. L. Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis. Future Microbiol. 3, 415–422 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Hinchey, J. et al. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J. Clin. Invest. 117, 2279–2288 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Jayakumar, D., Jacobs, W. R. Jr & Narayanan, S. Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection. Cell. Microbiol. 10, 365–374 (2008).

    CAS  Google Scholar 

  124. 124

    Velmurugan, K. et al. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog. 3, e110 (2007).

    PubMed  PubMed Central  Google Scholar 

  125. 125

    Miller, J. L., Velmurugan, K., Cowan, M. J. & Briken, V. The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis. PLoS Pathog. 6, e1000864 (2010).

    PubMed  PubMed Central  Google Scholar 

  126. 126

    Divangahi, M., Desjardins, D., Nunes-Alves, C., Remold, H. G. & Behar, S. M. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nature Immunol. 11, 751–758 (2010).

    CAS  Google Scholar 

  127. 127

    Divangahi, M. et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nature Immunol. 10, 899–906 (2009).

    CAS  Google Scholar 

  128. 128

    Saunders, B. M., Frank, A. A., Orme, I. M. & Cooper, A. M. CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell. Immunol. 216, 65–72 (2002).

    CAS  Google Scholar 

  129. 129

    Cooper, A. M. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 27, 393–422 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    van Rie, A. et al. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. New Engl. J. Med. 341, 1174–1179 (1999).

    CAS  Google Scholar 

  131. 131

    Verver, S. et al. Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am. J. Respir. Crit. Care Med. 171, 1430–1435 (2005).

    Google Scholar 

  132. 132

    Caminero, J. A. et al. Exogenous reinfection with tuberculosis on a European island with a moderate incidence of disease. Am. J. Respir. Crit. Care Med. 163, 717–720 (2001).

    CAS  Google Scholar 

  133. 133

    Kaufmann, S. H. How can immunology contribute to the control of tuberculosis? Nature Rev. Immunol. 1, 20–30 (2001).

    CAS  Google Scholar 

  134. 134

    Cosma, C. L., Humbert, O., Sherman, D. R. & Ramakrishnan, L. Trafficking of superinfecting Mycobacterium organisms into established granulomas occurs in mammals and is independent of the Erp and ESX-1 mycobacterial virulence loci. J. Infect. Dis. 198, 1851–1855 (2008).

    PubMed  PubMed Central  Google Scholar 

  135. 135

    Gallegos, A. M., Pamer, E. G. & Glickman, M. S. Delayed protection by ESAT-6-specific effector CD4+ T cells after airborne M. tuberculosis infection. J. Exp. Med. 205, 2359–2368 (2008). This study highlights the poor responsiveness of infected macrophages to T cell help that should ordinarily be expected to increase their microbicidal capacity.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Gill, W. P. et al. A replication clock for Mycobacterium tuberculosis. Nature Med. 15, 211–214 (2009).

    CAS  PubMed  Google Scholar 

  137. 137

    Shafiani, S., Tucker-Heard, G., Kariyone, A., Takatsu, K. & Urdahl, K. B. Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J. Exp. Med. 207, 1409–1420 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Khader, S. A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunol. 8, 369–377 (2007).

    CAS  Google Scholar 

  139. 139

    Scott-Browne, J. P. et al. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J. Exp. Med. 204, 2159–2169 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Kursar, M. et al. Cutting edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J. Immunol. 178, 2661–2665 (2007). References 137, 139 and 140 together document the detrimental effect of T Reg cells present in lymphoid areas of lung tuberculous granulomas. These cells delay the arrival of specific effector T cells to the granuloma.

    CAS  Google Scholar 

  141. 141

    Redford, P. S. et al. Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. Eur. J. Immunol. 40, 2200–2210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Pancholi, P., Mirza, A., Bhardwaj, N. & Steinman, R. M. Sequestration from immune CD4+ T cells of mycobacteria growing in human macrophages. Science 260, 984–986 (1993).

    CAS  Google Scholar 

  143. 143

    Bold, T. D., Banaei, N., Wolf, A. J. & Ernst, J. D. Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of M. tuberculosis in vivo. PLoS Pathog. 7, e1002063 (2011). References 73 and 143 together show that there is limited activation of and antigen recognition by T cells in tuberculous granulomas.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Nagabhushanam, V. et al. Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-γ. J. Immunol. 171, 4750–4757 (2003).

    CAS  Google Scholar 

  145. 145

    Beatty, W. L. et al. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1, 235–247 (2000).

    CAS  Google Scholar 

  146. 146

    Desvignes, L. & Ernst, J. D. Interferon-γ-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31, 974–985 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    MacMicking, J. D., Taylor, G. A. & McKinney, J. D. Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302, 654–659 (2003).

    CAS  Google Scholar 

  148. 148

    MacMicking, J. D. et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl Acad. Sci. USA 94, 5243–5248 (1997).

    CAS  Google Scholar 

  149. 149

    Nandi, B. & Behar, S. M. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J. Exp. Med. 208, 2251–2262 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Narui, K. et al. Anti-infectious activity of tryptophan metabolites in the L-tryptophan–L-kynurenine pathway. Biol. Pharm. Bull. 32, 41–44 (2009).

    CAS  Google Scholar 

  151. 151

    Munn, D. H. & Mellor, A. L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 117, 1147–1154 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Schneider, B. E. et al. A role for IL-18 in protective immunity against Mycobacterium tuberculosis. Eur. J. Immunol. 40, 396–405 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Cruz, A. et al. Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. J. Exp. Med. 207, 1609–1616 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Dorhoi, A. et al. The adaptor molecule CARD9 is essential for tuberculosis control. J. Exp. Med. 207, 777–792 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Russell, D. G. Who puts the tubercle in tuberculosis? Nature Rev. Microbiol. 5, 39–47 (2007).

    CAS  Google Scholar 

  156. 156

    Brunet, L. R., Finkelman, F. D., Cheever, A. W., Kopf, M. A. & Pearce, E. J. IL-4 protects against TNF-α-mediated cachexia and death during acute schistosomiasis. J. Immunol. 159, 777–785 (1997).

    CAS  Google Scholar 

  157. 157

    Fallon, P. G. & Dunne, D. W. Tolerization of mice to Schistosoma mansoni egg antigens causes elevated type 1 and diminished type 2 cytokine responses and increased mortality in acute infection. J. Immunol. 162, 4122–4132 (1999).

    CAS  Google Scholar 

  158. 158

    Fallon, P. G., Richardson, E. J., Smith, P. & Dunne, D. W. Elevated type 1, diminished type 2 cytokines and impaired antibody response are associated with hepatotoxicity and mortalities during Schistosoma mansoni infection of CD4-depleted mice. Eur. J. Immunol. 30, 470–480 (2000).

    CAS  Google Scholar 

  159. 159

    Amiri, P. et al. Tumour necrosis factor α restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature 356, 604–607 (1992).

    CAS  Google Scholar 

  160. 160

    Bjerkeli, V. et al. Expression of matrix metalloproteinases in patients with Wegener's granulomatosis. Ann. Rheum. Dis. 63, 1659–1663 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Fireman, E., Kraiem, Z., Sade, O., Greif, J. & Fireman, Z. Induced sputum-retrieved matrix metalloproteinase 9 and tissue metalloproteinase inhibitor 1 in granulomatous diseases. Clin. Exp. Immunol. 130, 331–337 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Piotrowski, W., Górski, P., Pietras, T., Fendler, W. & Szemraj, J. The selected genetic polymorphisms of metalloproteinases MMP2, 7, 9 and MMP inhibitor TIMP2 in sarcoidosis. Med. Sci. Monit. 10, CR598–CR607 (2011).

    Google Scholar 

  163. 163

    Relman, D. A., Schmidt, T. M., MacDermott, R. P. & Falkow, S. Identification of the uncultured bacillus of Whipple's disease. N. Engl. J. Med. 327, 293–301 (1992).

    CAS  Google Scholar 

  164. 164

    Dolan, M. J. et al. Syndrome of Rochalimaea henselae adenitis suggesting cat scratch disease. Ann. Intern. Med. 118, 331–336 (1993).

    CAS  Google Scholar 

  165. 165

    Villemin, J. A. Etudes Sur La Tuberculosis (J.-B. Balliere et fils, 1868).

    Google Scholar 

  166. 166

    Flynn, J. L. Lessons from experimental Mycobacterium tuberculosis infections. Microbes Infect. 8, 1179–1188 (2006).

    CAS  Google Scholar 

  167. 167

    Pichugin, A. V., Yan, B. S., Sloutsky, A., Kobzik, L. & Kramnik, I. Dominant role of the sst1 locus in pathogenesis of necrotizing lung granulomas during chronic tuberculosis infection and reactivation in genetically resistant hosts. Am. J. Pathol. 174, 2190–2201 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Tobin, D. M. & Ramakrishnan, L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell. Microbiol. 10, 1027–1039 (2008).

    CAS  Google Scholar 

  169. 169

    Ramakrishnan, L., Federspiel, N. A. & Falkow, S. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

I thank K. Urdahl for discussion and critical review of the manuscript; F. Chu, J. Szumowski, D. Tobin and M. Troll for editorial comments; and F. Roca for help with figure design. I thank my students and colleagues in my research group whose development of the zebrafish model and discoveries using it over the past decade have formulated a revised view of the granuloma. In particular, I am grateful to J. M. Davis, H. Volkman, D. Beery, T. Pozos, C. Cosma, H. Clay, D. Tobin, O. Humbert and K. Takaki for the insights their research has provided. I thank D. Sherman for starting us on the exploration of RD1 in zebrafish and M. Troll for help with granuloma modelling studies. This work was supported by grants from the US National Institutes of Health, including the Director's Pioneer Award.

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Glossary

Necrosis

A common form of cell death that frequently results from toxic injury, hypoxia or stress. Necrosis involves cell swelling, dysregulation of cell-membrane ion and water fluxes, mitochondrial swelling and the eventual release of cell contents into the interstitium. This form of cell death usually occurs together with inflammation. Recent evidence suggests that necrosis can also represent a form of programmed cell death, in which case it is often referred to as programmed necrosis or necroptosis.

Caseum

Necrotic material that has a cheesy white appearance on gross examination. Areas of caseum are a hallmark feature of human tuberculous granulomas that result from a distinctive type of necrotic breakdown known as caseous necrosis. Caseous necrosis seems to be a specialized form of coagulative necrosis in which cellular degradation (rather than rapid enzymatic digestion) dominates. On microscopic examination, caseum contains fragmented cells and their amorphous debris. Caseum can be hard or soft on gross examination; hard caseum is generally bacterium poor, whereas soft caseum is often laden with bacteria.

RD1 locus

In virulent mycobacteria, this region encodes a type VII secretion system, namely ESX-1, an important substrate of which is early secreted antigen 6 (ESAT6). ESX-1-mediated secretion and ESAT6 are essential for mycobacterial virulence and have been implicated in phagosomal escape, cytolysis and pore formation, the induction of apoptosis and the recruitment of macrophages. The deletion of RD1 is thought to be the primary mutation responsible for attenuation of the Mycobacterium bovis vaccine strain bacillus Calmette–Guérin (BCG).

Tertiary lymphoid structures

Ectopic lymphoid aggregates that are generated during the process of chronic immune stimulation and that have the structural characteristics of secondary lymphoid organs.

Apoptosis

A common form of cell death that is also known as intrinsic or programmed cell death. Apoptosis involves cell shrinkage, chromatin condensation in the periphery of the nucleus, cell-membrane blebbing and DNA fragmentation into multiples of 180 base pairs. Eventually, the cell breaks up into many membrane-bound apoptotic bodies, which are phagocytosed by neighbouring cells.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12, 352–366 (2012). https://doi.org/10.1038/nri3211

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing