Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Platelets and the immune continuum

Key Points

  • Platelets have a plethora of soluble and cell-associated immunomodulatory molecules that can enhance and in some instances inhibit immune responses in a variety of diverse settings.

  • Platelets are naturally adhesive and can interact with various cells of the innate and adaptive immune system.

  • Platelets store preformed and synthesized immunomodulatory molecules that can markedly affect immune responses. These molecules include transforming growth factor-β, interleukin-1, platelet-derived growth factor and CC-chemokine ligand 5 (also known as RANTES).

  • Platelets express and secrete CD40 and CD154 and are the largest source of soluble CD154, which can affect both dendritic cell maturation and T cell activation.

  • Platelets express Toll-like receptors and actively bind to microorganisms, and in some instances can be directly cytopathic against bacteria. This, together with their large numbers within the circulation, makes them the ultimate bacterial sentinels in the bloodstream.

  • Platelets have been shown to have a central role in the pathogenesis of a diverse array of immune-mediated and infectious diseases, such as atherosclerosis, sepsis-induced lung damage, rheumatoid arthritis and malaria.


Platelets are anucleate cells that are crucial mediators of haemostasis. Most immunologists probably don't think about platelets every day, and may even consider these cells to be 'nuisances' in certain in vitro studies. However, it is becoming increasingly clear that platelets have inflammatory functions and can influence both innate and adaptive immune responses. Here, we discuss the mechanisms by which platelets contribute to immunity: these small cells are more immunologically savvy than we once thought.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Platelet functions in haemostasis.
Figure 2: The structure of a platelet.
Figure 3: Three typical examples of how activated platelets can mediate cell–cell interactions and affect innate immune responses.
Figure 4: TLR4+ platelets mediate pulmonary neutrophil activation during sepsis.
Figure 5: Platelet-derived CD154 has an integral role in atherogenic plaque production.


  1. 1

    Bizzozero, G. Sur un nouvel èlèment morphologique du sang chez les mammiferes et son importance dans la thrombose et dans la coagulation. Arch. Ital. Biol. 1, 1–5 (1882).

    Google Scholar 

  2. 2

    Gawaz, M. et al. Platelets in inflammation and atherogenesis. J. Clin. Invest. 115, 3378–3384 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Nieswandt, B. et al. Integrins in platelet activation. J. Thromb. Haemost. 7 (Suppl. 1), 206–209 (2009).

    CAS  Google Scholar 

  4. 4

    Smyth, S. S. et al. Platelet functions beyond hemostasis. J. Thromb. Haemost. 7, 1759–1766 (2009).

    CAS  Google Scholar 

  5. 5

    Kaushansky, K. Lineage-specific hematopoietic growth factors. N. Engl. J. Med. 354, 2034–2045 (2006).

    CAS  Google Scholar 

  6. 6

    Italiano, J. E. Jr & Hartwig, J. H. in Platelets 2nd edn (eds Michelson, A. D. & Coller, B. S.) 23–44 (Elsevier, Amsterdam, 2007).

    Google Scholar 

  7. 7

    Levin, J. in Platelets 2nd edn (eds Michelson, A. D. & Coller, B. S.) 3–22 (Elsevier, Amsterdam, 2007).

    Google Scholar 

  8. 8

    Hose, J. E., Martin, G. G. & Gerard, A. S. A decapod hemocyte classification scheme integrating morphology, cytochemistry, and function. Biol. Bull. 178, 33–45 (1990).

    CAS  Google Scholar 

  9. 9

    Götz, P. & Boman, H. G. in Comprehensive Insect Physiology, Biochemistry and Pharmacology (eds Kerkut, G. A. & Gilbert, L. I.) 453–485 (Pergamon, Oxford, 1985).

    Google Scholar 

  10. 10

    Thon, J. N. & Italiano, J. E. Jr. Platelet formation. Semin. Hematol. 47, 220–226 (2010).

    CAS  Google Scholar 

  11. 11

    Patel, S. R. et al. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood. 106, 4076–4085 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Thon, J. N. et al. Cytoskeletal mechanics of proplatelet maturation and platelet release. J. Cell Biol. 191, 861–874 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Hartwig, J. Mechanisms of actin rearrangements mediating platelet activation. J. Cell Biol. 118, 1421–1442 (1992).

    CAS  Google Scholar 

  14. 14

    Diacovo, T. G., Puri, K. D., Warnock, R. A., Springer, T. A. & von Andrian, U. H. Platelet-mediated lymphocyte delivery to high endothelial venules. Science 273, 252–255 (1996).

    CAS  Google Scholar 

  15. 15

    Italiano, J. E. Jr et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released. Blood. 111, 1227–1233 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Sehgal, S. & Storrie, B. Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J. Thromb. Haemost. 5, 2009–2016 (2007).

    CAS  Google Scholar 

  17. 17

    White, G. C. & Rompietti, R. Platelet secretion: indiscriminately spewed forth or highly orchestrated? J. Thromb. Haemost. 5, 2006–2008 (2007).

    CAS  Google Scholar 

  18. 18

    Wicki, A. N. et al. Isolation and characterization of human blood platelet mRNA and construction of a cDNA library in λgt11. Confirmation of the platelet derivation by identification of GPIb coding mRNA and cloning of a GPIb coding cDNA insert. Thromb. Haemost. 61, 448–453 (1989).

    CAS  Google Scholar 

  19. 19

    Shashkin, P. N., Brown, G. T., Ghosh, A., Marathe, G. K. & McIntyre, T. M. Lipopolysaccharide is a direct agonist for platelet RNA splicing. J. Immunol. 181, 3495–3502 (2008).

    CAS  Google Scholar 

  20. 20

    Lindemann, S. & Gawaz, M. The active platelet: translation and protein synthesis in an anucleate cell. Semin. Thromb. Hemost. 33, 144–150 (2007).

    CAS  Google Scholar 

  21. 21

    Denis, M. M. et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122, 379–391 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Coppinger, J. A. Moderation of the platelet releasate response by aspirin. Blood 109, 4786–4792 (2007).

    CAS  Google Scholar 

  23. 23

    Mazzucco, L., Borzini, P. & Gope, R. Platelet-derived factors involved in tissue repair — from signal to function. Transfus. Med. Rev. 24, 218–234 (2010).

    Google Scholar 

  24. 24

    Assoian, R. K., Komoriya, A., Meyers, C. A., Miller, D. M. & Sporn, M. B. Transforming growth factor-β in human platelets: identification of a major storage site, purification, and characterization. J. Biol. Chem. 258, 7155–7160 (1983).

    CAS  Google Scholar 

  25. 25

    Andersson, P. O., Stockelberg, D., Jacobsson, S. & Wadenvik, H. A transforming growth factor-β1-mediated bystander immune suppression could be associated with remission of chronic idiopathic thrombocytopenic purpura. Ann. Hematol. 79, 507–513 (2000).

    CAS  Google Scholar 

  26. 26

    Andersson, P. O., Olsson, A. & Wadenvik, H. Reduced transforming growth factor-β1 production by mononuclear cells from patients with active chronic idiopathic thrombocytopenic purpura. Br. J. Haematol. 116, 862–867 (2002).

    CAS  Google Scholar 

  27. 27

    Ling, Y., Cao, X., Yu, Z. & Ruan, C. Circulating dendritic cells subsets and CD4+Foxp3+ regulatory T cells in adult patients with chronic ITP before and after treatment with high-dose dexamethasome. Eur. J. Haematol. 79, 310–316 (2007).

    CAS  Google Scholar 

  28. 28

    Liu, B. et al. Abnormality of CD4+CD25+ regulatory T cells in idiopathic thrombocytopenic purpura. Eur. J. Haematol. 78, 139–143 (2007).

    CAS  Google Scholar 

  29. 29

    Stasi, R. et al. Analysis of regulatory T cell changes in patients with idiopathic thrombocytopenic purpura receiving B-cell depleting therapy with rituximab. Blood 112, 1147–1150 (2008).

    CAS  Google Scholar 

  30. 30

    Olsson, B., Ridell, B., Carlsson, L., Jacobsson, S. & Wadenvik, H. Recruitment of T cells into bone marrow of ITP patients possibly due to elevated expression of VLA-4 and CX3CR1. Blood 12, 1078–1084 (2008).

    Google Scholar 

  31. 31

    Yu, J. et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood 112, 1325–1328 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Grewal, I. S. & Flavell, R. A. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998).

    CAS  Google Scholar 

  33. 33

    Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    CAS  Google Scholar 

  34. 34

    Andre, P., Nannizzi-Alaimo, L., Prasad, S. K. & Phillips, D. R. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 106, 896–899 (2002).

    Google Scholar 

  35. 35

    Hammwöhner, M. et al. Platelet expression of CD40/CD40 ligand and its relation to inflammatory markers and adhesion molecules in patients with atrial fibrillation. Exp. Biol. Med. 232, 581–589 (2007).

    Google Scholar 

  36. 36

    Anand, S. X., Viles-Gonzalez, J. F. & Badimon, J. J. Membrane-associated CD40L and sCD40L in atherothrombotic disease. Thromb. Haemost. 90, 377–384 (2003).

    CAS  Google Scholar 

  37. 37

    Henn, V., Steinbach, S., Büchner, K., Presek, P. & Kroczek, R. A. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 98, 1047–1054 (2001).

    CAS  Google Scholar 

  38. 38

    von Hundelshausen, P. & Weber, C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ. Res. 100, 27–40 (2007).

    CAS  PubMed  Google Scholar 

  39. 39

    Elzey, B. D. et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 19, 9–19 (2003).

    CAS  Google Scholar 

  40. 40

    Sprague, D. L. et al. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 111, 5028–5036 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Elzey, B. D. et al. Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 111, 3684–3691 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Iannacone, M. et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nature Med. 11, 1167–1169 (2005).

    CAS  Google Scholar 

  43. 43

    Kissel, K. et al. Human platelets target dendritic cell differentiation and production of proinflammatory cytokines. Transfusion 46, 818–827 (2006).

    CAS  Google Scholar 

  44. 44

    Janeway, C. A. Jr. The immune system evolved to discriminate infectious non-self from non-infectious self. Immunol. Today 13, 11–15 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Scott, T. & Owens, M. D. Thrombocytes respond to lipopolysaccharide through Toll-like receptor-4, and MAP kinase and NF-κB pathways leading to expression of interleukin-6 and cyclooxygenase-2 with production of prostaglandin E2. Mol. Immunol. 45, 1001–1008 (2008).

    CAS  Google Scholar 

  47. 47

    Kuckleburg, C. J., Tiwari, R. & Czuprynski, C. J. Endothelial cell apoptosis induced by bacteria-activated platelets requires caspase-8 and -9 and generation of reactive oxygen species. Thromb. Haemost. 99, 363–372 (2008).

    CAS  Google Scholar 

  48. 48

    Kuckleburg, C. J., McClenahan, D. J. & Czuprynski, C. J. Platelet activation by Histophilus somni and its lipooligosaccharide induces endothelial cell proinflammatory responses and platelet internalization. Shock 29, 189–196 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Aslam, R., Freedman, J. & Semple, J. W. Murine platelets express Toll-like receptor 2: a potential regulator of innate and adaptive immunity. Platelets 15, 267–269 (2004).

    Google Scholar 

  50. 50

    Shiraki, R. et al. Expression of Toll-like receptors on human platelets. Thromb. Res. 113, 379–385 (2004).

    CAS  Google Scholar 

  51. 51

    Andonegui, G. et al. Platelets express functional Toll-like receptor-4. Blood 106, 2417–2423 (2005).

    CAS  Google Scholar 

  52. 52

    Cognasse, F. et al. Evidence of Toll-like receptor molecules on human platelets. Immunol. Cell Biol. 88, 196–198 (2005).

    Google Scholar 

  53. 53

    Aslam, R. et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo. Blood 107, 637–641 (2006).

    CAS  Google Scholar 

  54. 54

    Semple, J. W., Aslam, R., Kim, M., Speck, E. R. & Freedman, J. Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG opsonized platelets. Blood 109, 4803–4805 (2007).

    CAS  Google Scholar 

  55. 55

    Patrignani, P. et al. Reduced thromboxane biosynthesis in carriers of Toll-like receptor 4 polymorphisms in vivo. Blood 107, 3572–3574 (2006).

    CAS  Google Scholar 

  56. 56

    Ståhl, A. L. et al. Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets via TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood 108, 167–176 (2006).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Zhang, G. et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J. Immunol. 182, 7997–8004 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Welbourn, C. R. & Young, Y. Endotoxin, septic shock and acute lung injury: neutrophils, macrophages and inflammatory mediators. Br. J. Surg. 79, 998–1003 (1992).

    CAS  Google Scholar 

  59. 59

    McClenahan, D. J., Evanson, O. A., Walcheck, B. K. & Weiss, D. J. Association among filamentous actin content, CD11b expression, and membrane deformability in stimulated and unstimulated bovine neutrophils. Amer. J. Vet. Res. 61, 380–386 (2000).

    CAS  Google Scholar 

  60. 60

    Ma, A. C. & Kubes, P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J. Thromb. Haemost. 6, 415–420 (2008).

    CAS  Google Scholar 

  61. 61

    Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med. 13, 463–469 (2007). This elegant study provided evidence that platelets act as sensors of bacterial infection by demonstrating that activation of platelet TLR4 stimulates the binding of activated platelets to neutrophils, leading to the release of NETs to catch and kill bacteria.

    CAS  Google Scholar 

  62. 62

    Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  Google Scholar 

  63. 63

    Klesney-Tait, J., Turnbull, I. R. & Colonna, M. The TREM receptor family and signal integration. Nature Immunol. 7, 1266–1273 (2006).

    CAS  Google Scholar 

  64. 64

    Haselmayer, P., Grosse-Hovest, L., von Landenberg, P., Schild, H. & Radsak, M. P. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 110, 1029–1035 (2007). In this article, the authors demonstrated that platelets express the ligand for TREM1, and showed that the binding of this molecule to neutrophil TREM1 augments LPS-induced neutrophil activation, and ultimately the innate inflammatory response.

    CAS  Google Scholar 

  65. 65

    Washington, A. V. et al. TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans. J. Clin. Invest. 119, 1489–1501 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Ross, R. Atherosclerosis: an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    CAS  PubMed  Google Scholar 

  67. 67

    Dong, Z. M., Brown, A. A. & Wagner, D. D. Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation 101, 2290–2295 (2000).

    CAS  Google Scholar 

  68. 68

    Burger, P. C. & Wagner, D. D. Platelet P-selectin facilitates atherosclerotic lesion development. Blood 101, 2661–2666 (2003).

    CAS  Google Scholar 

  69. 69

    Lindemann, S. et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1β synthesis. J. Cell Biol. 154, 485–490 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Langer, H. F. & Gawaz, M. P. Platelet-vessel wall interactions in atherosclerotic disease. Thromb. Haemost. 99, 480–486 (2008).

    CAS  Google Scholar 

  71. 71

    Davi, G. & Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med. 357, 2482–2494 (2007).

    CAS  Google Scholar 

  72. 72

    Langer, H. F. et al. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler. Thromb. Vasc. Biol. 27, 1463–1470 (2007).

    CAS  Google Scholar 

  73. 73

    Lievens, D. et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 116, 4317–4327 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Langer, H. F., Baughman, R. P., Lower, E. E., Flessa, H. C. & Tollerud, D. J. Thrombocytopenia in the intensive care unit. Chest 104, 1243–1247 (1993).

    Google Scholar 

  75. 75

    Gawaz, M., Dickfeld, T., Bogner, C., Fateh-Moghadam, S. & Neumann, F. J. Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med. 23, 379–385 (1997).

    CAS  Google Scholar 

  76. 76

    Jacoby, R. C. et al. Platelet activation and function after trauma. J. Trauma 51, 639–647 (2001).

    CAS  Google Scholar 

  77. 77

    Ogura, H. et al. Activated platelets enhance microparticle formation and platelet–leukocyte interaction in severe trauma and sepsis. J. Trauma 50, 801–809 (2001).

    CAS  Google Scholar 

  78. 78

    Mause, S. F., von Hundelshausen, P., Zernecke, A., Koenen, R. R. & Weber, C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler. Thromb. Vasc. Biol. 25, 1512–1518 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Boman, H. G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61–92 (1995).

    CAS  Google Scholar 

  80. 80

    Yeaman, M. R., Puentes, S. M., Norman, D. C. & Bayer, A. S. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect. Immun. 60, 1202–1209 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Krijgsveld, J. et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J. Biol. Chem. 275, 20374–20381 (2000).

    CAS  Google Scholar 

  82. 82

    Cox, D. & McConkey, S. The role of platelets in the pathogenesis of cerebral malaria. Cell. Mol. Life Sci. 67, 557–568 (2010).

    CAS  Google Scholar 

  83. 83

    McMorran, B. J. et al. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science 323, 797–800 (2009). This elegant study demonstrated that platelets can kill parasites in vitro and in mice, and found that platelet-deficient mice are more likely to die from malaria than mice with normal platelet counts. In addition, it showed that a single dose of aspirin may interfere with platelets sufficiently to prevent their killing power.

    CAS  Google Scholar 

  84. 84

    Choy, E. H. & Panayi, G. S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 344, 907–916 (2001).

    CAS  Google Scholar 

  85. 85

    Knijff-Dutmer, E. A., Koerts, J., Nieuwland, R., Kalsbeek-Batenburg, E. M. & van de Laar, M. A. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 46, 1498–1503 (2002).

    CAS  Google Scholar 

  86. 86

    Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327, 580–583 (2010). This interesting study described an essential role for platelet-derived microparticles in the development of the autoimmune disease rheumatoid arthritis, and identified the collagen receptor glycoprotein VI as a key stimulator of microparticle generation.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Looney, M. R., Gropper, M. A. & Matthay, M. A. Transfusion-related acute lung injury: a review. Chest 126, 249–258 (2004).

    Google Scholar 

  88. 88

    Cognasse, F., Lafarge, S., Chavarin, P., Acquart, S. & Garraud, O. Lipopolysaccharide induces sCD40L release through human platelets TLR4, but not TLR2 and TLR9. Intensive Care Med. 33, 382–384 (2007).

    Google Scholar 

  89. 89

    Khan, S. Y. et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood 108, 2455–2462 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Cines, D. B., Bussel, J. B., Liebman, H. A. & Luning Prak, E. T. The ITP syndrome: pathogenic and clinical diversity. Blood 113, 6511–6521 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Semple, J. W., Provan, D., Garvey, M. B. & Freedman, J. Recent progress in understanding the pathogenesis of immune thrombocytopenia (ITP). Curr. Opin. Haematol. 17, 590–595 (2010).

    CAS  Google Scholar 

  92. 92

    Semple, J. W. Infections, antigen presenting cells, T cells and immune tolerance: their role in the pathogenesis of immune thrombocytopenia (ITP). Hematol. Oncol. Clin. North Am. 23, 1177–1192 (2009).

    Google Scholar 

  93. 93

    Harrington, W. J., Minnich, V., Hollingsworth, J. W. & Moore, C. V. Demonstration of a thrombocytopenic factor in the blood of patients with thrombocytopenic purpura. J. Lab. Clin. Med. 38, 1–10 (1951).

    CAS  Google Scholar 

  94. 94

    Evans, R. S., Takahashi, K., Duane, R. T., Payne, R. & Liu, C. Primary thrombocytopenic purpura and acquired hemolytic anemia; evidence for a common etiology. Arch. Intern. Med. 87, 48–65 (1951).

    CAS  Google Scholar 

  95. 95

    Nardi, M., Tomlinson, S., Greco, M. & Karpatkin, S. Complement-independent, peroxide-induced antibody lysis of platelets in HIV-1-related immune thrombocytopenia. Cell 106, 551–561 (2000).

    Google Scholar 

  96. 96

    Olsson, B. et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nature Med. 9, 1123–1124 (2003).

    CAS  Google Scholar 

  97. 97

    Delaflor-Weiss, E. & Mintz, P. D. The evaluation and management of platelet refractoriness and alloimmunization. Transfus. Med. Rev. 14, 180–196 (2000).

    CAS  Google Scholar 

  98. 98

    Landau, M. & Rosenberg, N. Molecular insight into human platelet antigens: structural and evolutionary conservation analyses offer new perspective to immunogenic disorders. Transfusion 51, 558–569 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Kaplan C. Neonatal alloimmune thrombocytopenia: a 50-year story. Immunohematology 23, 9–13 (2007).

    CAS  Google Scholar 

  100. 100

    Shtalrid, M. et al. Post-transfusion purpura: a challenging diagnosis. Isr. Med. Assoc. J. 8, 672–674 (2006).

    Google Scholar 

  101. 101

    Kao, K. J., Cook, D. J. & Scornik, J. C. Quantitative analysis of platelet surface HLA by W6/32 anti-HLA monoclonal antibody. Blood 68, 627–632 (1986).

    CAS  Google Scholar 

  102. 102

    Gouttefangeas, C. et al. Thrombocyte HLA molecules retain nonrenewable endogenous peptides of megakaryocyte lineage and do not stimulate direct allocytotoxicity in vitro. Blood 95, 3168–3175 (2000).

    CAS  Google Scholar 

  103. 103

    Aslam, R., Speck, E. R., Kim, M., Freedman, J. & Semple, J. W. Transfusion-related immunomodulation (TRIM) by platelets is dependent on their expression of MHC class I molecules and is independent of leukocytes. Transfusion 48, 1778–1786 (2008).

    Google Scholar 

  104. 104

    Chow, L. et al. A novel mouse model demonstrating both antibody- and T cell-mediated thrombocytopenia: differential response to therapy. Blood 115, 1247–1253 (2010).

    CAS  Google Scholar 

  105. 105

    Weyrich, A. S. & Zimmerman, G. A. Platelets: signaling cells in the immune continuum. Trends Immunol. 25, 489–495 (2004).

    CAS  Google Scholar 

Download references


The authors thank A. H. Lazarus, H. Ni and V. Leytin for their helpful discussions and advice.

Author information



Corresponding author

Correspondence to John W. Semple.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


John W. Semple's homepage



A giant multinucleated cell of the bone marrow that gives rise to platelets.


Any disorder in which there is an abnormally low number of platelets (below 150,000 platelets per microlitre of blood). Thrombocytopenia is caused either by increased breakdown of platelets (in the blood, spleen or liver) or by low production of platelets.

Immune thrombocytopenia

An abnormal drop in platelet numbers caused by the presence of platelet-specific antibodies. Platelet production may be normal or impaired, as the disorder can also be caused by antibodies directed against megakaryocytes. The term includes autoimmune, alloimmune and certain drug-induced thrombocytopenias.

Toll-like receptors

A family of pattern recognition receptors that have essential roles in innate immunity. They are a class of single-membrane-spanning receptors that have the ability to recognize structurally conserved molecules from bacteria. Engagement of Toll-like receptors activates the immune response.

Tissue factor

The major cellular initiator of clot formation. It is essential for generating thrombin from the zymogen prothrombin.

Neutrophil extracellular traps

Networks of extracellular fibres, produced by neutrophils, that catch and help kill pathogens. The extracellular fibril matrix is composed of decondensed chromatin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Semple, J., Italiano, J. & Freedman, J. Platelets and the immune continuum. Nat Rev Immunol 11, 264–274 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing