Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apoptosis and caspases regulate death and inflammation in sepsis

Key Points

  • Sepsis is the systemic inflammatory response that occurs following severe infections and is characterized by a range of features, which might include fever, hypotension, altered mental status and shortness of breath.

  • Although the predominant theory has been that the death of patients with sepsis was due to an over-exuberant inflammatory response, it is now apparent that many deaths are due to failure of the host to mount an effective immunological response. As the sepsis progresses, patients develop a state of immunoparalysis, marked by an inability of the host to eradicate the invading pathogen and predisposition to secondary infections.

  • A major cause of the immunoparalysis of sepsis is the loss of key immune effector cells, including dendritic cells and lymphocytes. These cells die owing to sepsis-induced apoptosis.

  • Uptake of apoptotic cells by professional scavenging cells induces a T helper 2 (TH2) phenotype or anergy in these phagocytic cells, thereby contributing to the immune suppression.

  • Blockade of sepsis-induced apoptosis by a number of methods, including overexpression of B-cell lymphoma 2 (BCL-2) or AKT results in improved survival. This finding suggests that apoptosis is an important process in the pathophysiology of the disorder.

  • It is now clear that caspases have other functions in the immune system in addition to their role as cell-death proteases. Caspases might also regulate inflammation, cellular activation and cellular proliferation.

  • Strategies to block sepsis-induced apoptosis might represent a novel therapy of this highly lethal disorder.

Abstract

Although the prevailing concept has been that mortality in sepsis results from an unbridled hyper-inflammatory cytokine-mediated response, the failure of more than 30 clinical trials to treat sepsis by controlling this cytokine response requires a 'rethink' of the molecular mechanism underpinning the development of sepsis. As we discuss here, remarkable new studies indicate that most deaths from sepsis are actually the result of a substantially impaired immune response that is due to extensive death of immune effector cells. Rectification of this apoptotic–inflammatory imbalance using modulators of caspases and other components of the cell-death pathway have shown striking efficacy in stringent animal models of sepsis, indicating an entirely novel path forward for the clinical treatment of human sepsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune response and death in sepsis.
Figure 2: Sepsis-induced loss of immune effector cells.
Figure 3: Impact of apoptosis on immune function.
Figure 4: Cross-talk between the two pathways of apoptotic cell death.

Similar content being viewed by others

References

  1. Bone, R. C. et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101, 1644–1655 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Angus, D. C. et al. Epidemiology of severe sepsis in the United States. Crit. Care Med. 29, 1303–1310 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Murphy, S. L. Deaths: final data for 1998. Natl Vital Stat. Rep. 48, 1–105 (1998).

    Google Scholar 

  4. Deitch, E. A. Animal models of sepsis and shock: a review and lessons learned. Shock 9, 1–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. O'Reilly, M., Newcomb, D. E. & Remick, D. Endotoxin, sepsis, and the primrose path. Shock 12, 411–420 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Fisher, C. J. et al. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. N. Engl. J. Med. 334, 1697–1702 (1996). Shows that blocking TNF using a receptor fusion protein in patients with septic shock did not reduce mortality and at higher doses seems to worsen the outcome.

    Article  CAS  PubMed  Google Scholar 

  7. Zeni, F., Freeman, B. & Natanson, C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit. Care Med. 25, 1095–1100 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Oberholzer, A., Oberholzer, C. & Moldawer, L. L. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock 16, 83–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Ertel, W. et al. Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood 85, 1341–1347 (1995).

    CAS  PubMed  Google Scholar 

  10. Docke, W. D. et al. Monocyte deactivation in septic patients: restoration by IFN-γ treatment. Nature Med. 3, 678–681 (1997). Describes the first successful therapy of a subset of patients with sepsis using a pro-inflammatory cytokine (IFNγ).

    Article  CAS  PubMed  Google Scholar 

  11. Monneret, G. How to identify systemic sepsis-induced immunoparalysis. Adv. Sepsis 4, 42–49 (2005).

    Google Scholar 

  12. Hotchkiss, R. S. & Karl, I. E. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348, 138–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Hotchkiss, R. S. et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med. 27, 1230–1251 (1999). This is the first study to document that apoptosis is an important mechanism of cell death and immune-cell depletion in patients with sepsis.

    Article  CAS  PubMed  Google Scholar 

  14. Hiramatsu, M., Hotchkiss, R. S., Karl, I. E. & Buchman, T. G. Cecal ligation and puncture (CLP) induces apoptosis in thymus, spleen, lung, and gut by an endotoxin and TNF-independent pathway. Shock 7, 247–253 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Chung, C. S., Xu, Y. X., Wang, W., Chaudry, I. H. & Ayala, A. Is Fas ligand or endotoxin responsible for mucosal lymphocyte apoptosis in sepsis? Arch. Surg. 133, 1213–1220 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Oberholzer, C. et al. Targeted adenovirus-induced expression of IL-10 decreases thymic apoptosis and improves survival in murine sepsis. Proc. Natl Acad. Sci. USA 98, 11503–11508 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hotchkiss, R. S. et al. Apoptosis in lymphoid and parenchymal cells during sepsis: findings in normal and T- and B-cell-deficient mice. Crit. Care Med. 25, 1298–1307 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Oberholzer, C., Oberholzer, A., Clare-Salzler, M. & Moldawer, L. L. Apoptosis in sepsis: a new target for therapeutic exploration. FASEB J. 15, 879–892 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Coopersmith, C. et al. Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis. JAMA 287, 1716–1721 (2002).

    Article  PubMed  Google Scholar 

  20. Kinloch, R. A., Treherne, J. M., Furness, L. M. & Hajimohamadreza, I. The pharmacology of apoptosis. Trends Pharmacol. Sci. 20, 35–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Hotchkiss, R. S. et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol. 166, 6952–6963 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Hotchkiss, R. S. et al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J. Immunol. 168, 2493–2500 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Felmet, K. A., Hall, M. W., Clark, R. S., Jaffe, R. & Carcillo, J. A. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J. Immunol. 174, 3765–3772 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Toti, P. et al. Spleen depletion in neonatal sepsis and chorioamnionitis. Am. J. Clin. Pathol. 122, 765–771 (2004).

    Article  PubMed  Google Scholar 

  25. Le Tulzo, Y. et al. Early circulating lymphocyte apoptosis in human septic shock is associated with poor outcome. Shock 18, 487–494 (2002).

    Article  PubMed  Google Scholar 

  26. Hotchkiss, R. S. et al. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. J. Immunol. 174, 5110–5118 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Fearon, D. T. & Locksley, R. M. The instructive role of innate immunity in the acquired immune response. Science 272, 50–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Lederer, J. A., Rodrick, M. L. & Mannick, J. A. The effects of injury on the adaptive immune response. Shock 11, 153–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Oberholzer, A., Oberholzer, C. & Moldawer, L. L. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock 16, 83–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Griffith, T. S., Yu, X., Herndon, J. M., Green, D. R. & Ferguson, T. A. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 5, 7–16 (1996). The first paper to show that apoptotic cells induce an immunological tolerant state in vivo.

    Article  CAS  PubMed  Google Scholar 

  31. Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Green, D. R. & Beere, H. M. Gone but not forgotten. Nature 405, 28–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Albert, M. L. Death-defying immunity: do apoptotic cells influence antigen processing and presentation? Nature Rev. Immunol. 4, 223–231 (2004).

    Article  CAS  Google Scholar 

  35. Gogos, C. A., Drosou, E., Bassaris, H. P. & Skoutelis, A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis. 181, 176–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. van Dissel, J. T., van Langevelde, P., Westendorp, R. G., Kwappenberg, K. & Frolich, M. Anti-inflammatory cytokine profile and mortality in febrile patients. Lancet 351, 950–953 (1998). A large study of patients admitted with fever, which shows that a high ratio of IL-10 to TNF was associated with a fatal outcome. The authors warned against a widespread use of pro-inflammatory cytokine-inhibition in patients with sepsis.

    Article  CAS  PubMed  Google Scholar 

  37. Monneret, G. et al. The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunol. Lett. 95, 193–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Hotchkiss, R. S. et al. Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis. Proc. Natl Acad. Sci. USA 100, 6724–6729 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roy, S. & Nicholson, D. W. Cross-talk in cell death signalling. J. Expl. Med. 192, F21–F25 (2000).

    Article  CAS  Google Scholar 

  40. Marsden, V. S. & Strasser, A. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu. Rev. Immunol. 21, 71–105 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Strasser, A. The role of BH3-only proteins in the immune system. Nature Rev. Immunol. 5, 189–200 (2005).

    Article  CAS  Google Scholar 

  42. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Gupta, S. Molecular mechanisms of apoptosis in the cells of the immune system in human aging. Immunol. Rev. 205, 114–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hotchkiss, R. S. et al. Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J. Immunol. 162, 4148–4156 (1999). The first study to show that blocking apoptosis improves survival in sepsis.

    CAS  PubMed  Google Scholar 

  45. Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Creagh, E. M. & Martin, S. J. Caspases: cellular demolition experts. Biochem. Soc. Trans. 29, 696–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Perfettini, J. L. & Kroemer, G. Caspase activation is not death. Nature Immunol. 4, 308–310 (2003).

    Article  CAS  Google Scholar 

  48. Newton, K. & Strasser, A. Caspases signal not only apoptosis but also antigen-induced activation in cells of the immune system. Genes Dev. 17, 819–825 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Creagh, E. M., Conroy, H. & Martin, S. J. Caspase-activation pathways in apoptosis and immunity. Immunol. Rev. 193, 10–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Chung, C. S. et al. Inhibition of Fas signaling prevents hepatic injury and improves organ blood flow during sepsis. Surgery 130, 339–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Chung, C. S. et al. Inhibition of Fas/Fas ligand signaling improves septic survival: differential effects on macrophage apoptotic and functional capacity. J. Leukoc. Biol. 74, 344–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Wesche-Soldato, D. E. et al. In vivo delivery of caspase 8 or Fas siRNA improves the survival of septic mice. Blood 106, 2295–2301 (2005). This study shows that anti-apoptotic therapy that is based on siRNA improves survival in sepsis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chang, K. C. et al. Multiple triggers of cell death in sepsis — death receptor and mitochondrial-mediated apoptosis. FASEB J. (in the press).

  54. Efron, P. A. et al. Increased lymphoid tissue apoptosis in baboons with bacteremic shock. Shock 21, 566–571 (2004).

    Article  PubMed  Google Scholar 

  55. Nicholson, D. W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995). This study identifies the mammalian caspase-3, showed that it was related to IL-1β-converting enzyme inhibitor, and shows that it was essential for mammalian apoptosis. The authors also developed potent peptide aldehyde inhibitors that prevented apoptosis.

    Article  CAS  PubMed  Google Scholar 

  56. Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028–1042 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Martin, S. J. & Green, D. R. Protease activation during apoptosis: death by a thousand cuts? Cell 82, 349–352 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Lancel, S. et al. Ventricular myocyte caspases are directly responsible for endotoxin-induced cardiac dysfunction. Circulation 111, 2596–2604 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Carlson, D. L., Willis, M. S., White, D. J., Horton, J. W. & Giroir, B. P. Tumor necrosis factor-α-induced caspase activation mediates endotoxin-related cardiac dysfunction. Crit. Care Med. 33, 1021–1028 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Parrillo, J. E. Pathogenetic mechanisms of septic shock. N. Engl. J. Med. 328, 1471–1477 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Neviere, R., Fauvel, H., Chopin, C., Formstecher, P. & Marchetti, P. Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am. J. Respir. Crit. Care Med. 163, 218–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Kawasaki, M. et al. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am. J. Pathol. 157, 597–603 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guo, R., Wang, Y., Minto, A. W., Quigg, R. J. & Cunningham, P. N. Acute renal failure in endotoxemia is dependent on caspase activation. J. Am. Soc. Nephrol. 15, 3093–3102 (2004).

    Article  PubMed  Google Scholar 

  65. Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T. & Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277, 34287–34294 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Saleh, M. et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429, 75–79 (2004). Shows that polymorphisms in human caspase-12 regulate the intensity of the inflammatory response and might explain differences in the morbidity and mortality in selected populations with sepsis.

    Article  CAS  PubMed  Google Scholar 

  68. Saleh, M. et al. Enhanced bacterial clearance and sepsis resistance in caspase-12 deficient mice. Nature 440, 1064–1068. (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Iwata, A. et al. Over-expression of Bcl-2 provides protection in septic mice by a trans effect. J. Immunol. 171, 3136–3141 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Haendeler, J., Messmer, U. K., Brune, B., Neugebauer, E. & Dimmeler, S. Endotoxic shock leads to apoptosis in vivo and reduces Bcl-2. Shock 6, 405–409 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Bilbault, P. et al. Transient Bcl-2 gene down-expression in circulating mononuclear cells of severe sepsis patients who died despite appropriate intensive care. Intensive Care Med. 30, 408–415 (2004).

    Article  PubMed  Google Scholar 

  72. Bommhardt, U. et al. Akt decreases lymphocyte apoptosis and improves survival in sepsis. J. Immunol. 172, 7583–7591 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Wesche, D. E., Lomas-Neira, J. L., Perl, M., Chung, C. S. & Ayala, A. Leukocyte apoptosis and its significance in sepsis and shock. J. Leukoc. Biol. 78, 325–337 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Braun, J. S. et al. Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nature Med. 5, 298–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Hotchkiss, R. S. et al. Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc. Natl Acad. Sci. USA 96, 14541–14546 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hotchkiss, R. S. et al. Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nature Immunol. 1, 496–501 (2000).

    Article  CAS  Google Scholar 

  77. Methot, N. et al. Differential efficacy of caspase inhibitors on apoptosis markers during sepsis in rats and implication for fractional inhibition requirements for therapeutics. J. Exp. Med. 199, 199–207 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chun, H. J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Kang, T. B. et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J. Immunol. 173, 2976–2984 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Sordet, O. et al. Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 100, 4446–4453 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Olson, N. E., Graves, J. D., Shu, G. L., Ryan, E. J. & Clark, E. A. Caspase activity is required for stimulated B lymphocytes to enter the cell cycle. J. Immunol. 170, 6065–6072 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Opferman, J. T. & Korsmeyer, S. J. Apoptosis in the development and maintenance of the immune system. Nature Immunol. 4, 410–415 (2003).

    Article  CAS  Google Scholar 

  83. Su, H. et al. Requirement for caspase-8 in NF-κB activation by antigen receptor. Science 307, 1465–1468 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Wong, S. H., Santambrogio, L. & Strominger, J. L. Caspases and nitric oxide broadly regulate dendritic cell maturation and surface expression of class II MHC proteins. Proc. Natl Acad. Sci. USA 101, 17783–17788 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cauwels, A., Janssen, B., Waeytens, A., Cuvelier, C. & Brouckaert, P. Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nature Immunol. 4, 387–393 (2003).

    Article  CAS  Google Scholar 

  86. Kroemer, G. & Martin, S. J. Caspase-independent cell death. Nature Med. 11, 725–730 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Jaattela, M. & Tschopp, J. Caspase-independent cell death in T lymphocytes. Nature Immunol. 4, 416–423 (2003).

    Article  CAS  Google Scholar 

  88. Chipuk, J. E. & Green, D. R. Do inducers of apoptosis trigger caspase-independent cell death? Nature Rev. Mol. Cell Biol. 6, 268–275 (2005).

    Article  CAS  Google Scholar 

  89. Green, D. R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science 305, 626–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Cregan, S. P. et al. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J. Cell Biol. 158, 507–517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leist, M. & Jaattela, M. Four deaths and a funeral: from caspases to alternative mechanisms. Nature Rev. Mol. Cell Biol. 2, 589–598 (2001).

    Article  CAS  Google Scholar 

  92. Phenix, B. N., Cooper, C., Owen, C. & Badley, A. D. Modulation of apoptosis by HIV protease inhibitors. Apoptosis 7, 295–312 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Estaquier, J. et al. Effects of antiretroviral drugs on human immunodeficiency virus type 1-induced CD4+ T-cell death. J. Virol. 76, 5966–5973 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Phenix, B. N., Lum, J. J., Nie, Z., Sanchez-Dardon, J. & Badley, A. D. Antiapoptotic mechanism of HIV protease inhibitors: preventing mitochondrial transmembrane potential loss. Blood 98, 1078–1085 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Weaver, J. G., Rouse, M. S., Steckelberg, J. M. & Badley, A. D. Improved survival in experimental sepsis with an orally administered inhibitor of apoptosis. FASEB J. 18, 1185–1191 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Weaver, J. G. et al. Inhibition of adenine nucleotide translocator pore function and protection against apoptosis in vivo by an HIV protease inhibitor. J. Clin. Invest. 115, 1828–1838 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schwab, B. L. et al. Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ. 9, 818–831 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Kim, R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103, 1551–1560 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Jaattela, M. Programmed cell death: many ways for cells to die decently. Ann. Med. 34, 480–488 (2002).

    Article  PubMed  Google Scholar 

  100. Cheng, T. et al. Activated protein C blocks p53-mediated apoptosis in ischemic brain endothelium and is neuroprotective. Nature Med. 9, 258–260 (2003).

    Article  CAS  Google Scholar 

  101. Nicholson, D. W. From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Akira, A, Uematsu, S. & Takeuchi O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Conte, D. et al. Inhibitor of apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage survival. Mol. Cell. Biol. 26, 699–708 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schwarze, S. R., Ho, A., Vocero-Akbani, A. & Dowdy, S. F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999). The first study to show that large macromolecular cargoes could be delivered intracellularly if conjugated to permeation peptides that are derived from the Tat-basic domain.

    Article  CAS  PubMed  Google Scholar 

  105. Kilic, E., Dietz, G. P., Hermann, D. M. & Bahr, M. Intravenous TAT–Bcl-Xl is protective after middle cerebral artery occlusion in mice. Ann. Neurol. 52, 617–622 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Cao, G. et al. In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci. 22, 5423–5431 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sugioka, R. et al. BH4-domain peptide from Bcl-xL exerts anti-apoptotic activity in vivo. Oncogene 22, 8432–8440 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Denicourt, C. & Dowdy, S. F. Protein transduction technology offers novel therapeutic approach for brain ischemia. Trends Pharmacol. Sci. 24, 216–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Hotchkiss, R. S., et al. TAT–BH4 and TAT–Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. J. Immunol. 176, 5471–5477 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work from the Hotchkiss laboratory was supported by grants from the US National Institutes of Health, and the Alan A. and Edith L. Wolff Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald W. Nicholson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Endotoxin

Endotoxin is the lipopolysaccharide component that constitutes the cell wall of Gram-negative bacteria. It is a potent activator of many cells including monocytes, macrophages and B cells. During sepsis induced by Gram-negative bacteria, endotoxin is released into the bloodstream thereby resulting in many of the clinical signs and symptoms of sepsis.

Apoptosis

Apoptosis involves cell shrinkage, chromatin condensation in the periphery of the nucleus, cell-membrane blebbing and DNA fragmentation into multiples of ∼180 base pairs. Eventually, the cell breaks up into many membrane-bound apoptotic bodies, which are phagocytosed by neighbouring cells.

Caspases

A family of cysteine proteinases that are involved in the initiation and effector stages of apoptosis.

Follicular dendritic cells

(FDCs). Cells with a dendritic morphology that are present in the B-cell areas of spleen and lymph nodes. FDCs have intact antigens on their surface that are held in immune complexes, and B cells present in the lymph node can interact with these antigen-presenting cells. FDCs are of non-haematopoietic origin and are not related to other types of dendritic cell.

Interdigitating dendritic cells

A potent antigen-presenting cell that is rich in MHC class II molecules. Interdigitating dendritic cells take up antigen in the periphery and migrate to the paracortical region of lymph nodes and spleen where they interact with T cells.

Septic shock

Sepsis is the host response that occurs owing to the presence of bacteria and/or their products within the bloodstream. Patients with a severe life-threatening form of sepsis in which there is evidence of inadequate organ perfusion (for example, shock, decreased renal function and depressed mental state) are stated to be in septic shock.

Lymphopaenia

A deficiency of lymphocytes in the blood circulation.

T helper 2 (TH2)-cell

The definition of a CD4+ T cell that has differentiated into a cell that produces the cytokines interleukin-4 (IL-4), IL-5 and IL-13.

Necrotic cells

Cells that are exposed to the high concentrations of purified perforin that are typically delivered by cytolytic cells, such as natural killer cells and cytotoxic T lymphocytes, and usually die by osmotic lysis, a form of necrotic death.

T helper 1 (TH1)-cell

The definition of a CD4+ T cell that has differentiated into a cell that produces the cytokines interferon-γ and tumour-necrosis factor.

Annexin-V

Binds to phosphatidyl serine, which is normally located on the inner leaflet of the plasma membrane, but which flips to the outer layer during apoptosis. Annexin-V staining is often used as an indicator of apoptosis.

TUNEL

An in situ method for detecting the 3′-OH ends of DNA that are exposed during the internucleosomal cleavage that occurs during apoptosis.

Small interfering RNAs

Synthetic double-stranded RNA molecules of 19–23 nucleotides, which are used to 'knock down' (silence the expression of) a specific gene. This is known as RNA interference (RNAi) and is mediated by the sequence-specific degradation of mRNA.

Myocardial depression

Patients with sepsis often have significantly decreased heart contractility that might be manifested by decreased blood pressure or shock. This decrease in heart function during sepsis is termed myocardial depression and is thought to be due, in part, to high circulating concentrations of pro-inflammatory cytokines, including tumour-necrosis factor.

AKT

(Also known as protein kinase B). A key component of the phosphatidylinositol 3-kinase signalling pathway. AKT has potent anti-apoptotic activity, and T cells that overexpress AKT are resistant to sepsis-induced apoptosis.

Cecal ligation and puncture

(CLP). CLP is a standard animal model used to induce sepsis. In the CLP model, the cecum, a large sac-like structure that is located at the junction of the small and large intestine, is occluded by suture ligation and punctured with a needle. During the subsequent time period, the animal develops intra-abdominal polymicrobial infection. The CLP model reproduces many of the signs and symptoms of sepsis that occur in patients.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotchkiss, R., Nicholson, D. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 6, 813–822 (2006). https://doi.org/10.1038/nri1943

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1943

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing