Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

B-cell memory: are subsets necessary?

Abstract

B-cell memory is provided by populations of quiescent memory B cells and long-lived plasma cells. Whereas it is clear that both of these cell populations arise from germinal centres, the signals and circumstances that trigger germinal-centre B cells to enter and then persist in memory compartments are poorly defined. Here, I propose that germinal centres produce memory B cells and plasma cells throughout the immune response and that memory B cells arise by the emigration of B cells that are chosen at random from the pool available in the germinal centre. The ability of such emigrants to survive as memory B cells depends on their germinal-centre 'history', with the persistence of high-affinity B-cell variants being favoured.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The formation of B-cell memory in response to antigen.
Figure 2: A model for the generation of memory B cells and plasma cells in germinal centres during a primary immune response.

Similar content being viewed by others

References

  1. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  Google Scholar 

  2. Zinkernagel, R. M. et al. . On immunological memory. Annu. Rev. Immunol. 14, 333–367 (1996).

    Article  CAS  Google Scholar 

  3. Zinkernagel, R. M. What is missing in immunology to understand immunity? Nature Immunol. 1, 181–185 (2000).

    Article  CAS  Google Scholar 

  4. Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nature Rev. Immunol. 2, 982–987 (2002).

    Article  CAS  Google Scholar 

  5. Manz, R. A. et al. . Maintenance of serum antibody levels. Annu. Rev. Immunol. 23, 367–386 (2005).

    Article  CAS  Google Scholar 

  6. Alugupalli, K. R. et al. . B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21, 379–390 (2004).

    Article  CAS  Google Scholar 

  7. Klein, U. et al. . Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–1689 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  8. Tangye, S. G. et al. . Identification of functional human splenic memory B cells by expression of CD148 and CD27. J. Exp. Med. 188, 1691–1703 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  9. Ehrhardt, G. R. et al. . Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J. Exp. Med. 202, 783–791 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  10. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  11. Dal Porto, J. M. et al. . Very low affinity B cells form germinal centers, become memory B cells, and participate in secondary immune responses when higher affinity competition is reduced. J. Exp. Med. 195, 1215–1221 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  12. Shih, T. A. et al. . Role of BCR affinity in T cell dependent antibody responses in vivo . Nature Immunol. 3, 570–575 (2002).

    Article  Google Scholar 

  13. Cyster, J. G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    Article  CAS  Google Scholar 

  14. MacLennan, I. C. et al. . Extrafollicular antibody responses. Immunol. Rev. 194, 8–18 (2003).

    Article  CAS  Google Scholar 

  15. Smith, K. G. et al. . The phenotype and fate of the antibody-forming cells of the splenic foci. Eur. J. Immunol. 26, 444–448 (1996).

    Article  CAS  Google Scholar 

  16. Haberman, A. M. & Shlomchik, M. J. Reassessing the function of immune-complex retention by follicular dendritic cells. Nature Rev. Immunol. 3, 757–764 (2003).

    Article  CAS  Google Scholar 

  17. Zhang, J. et al. . B cell memory to thymus-independent antigens type 1 and type 2: the role of lipopolysaccharide in B memory induction. Eur. J. Immunol. 18, 1417–1424 (1988).

    Article  CAS  Google Scholar 

  18. Obukhanych, T. V. & Nussenzweig, M. C. T-independent type II immune responses generate memory B cells. J. Exp. Med. 203, 305–310 (2006).

    Article  PubMed Central  Google Scholar 

  19. Herzenberg, L. A. B-1 cells: the lineage question revisited. Immunol. Rev. 175, 9–22 (2000).

    Article  CAS  Google Scholar 

  20. Toyama, H. et al. . Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells. Immunity 17, 329–339 (2002).

    Article  CAS  Google Scholar 

  21. McHeyzer-Williams, L. J. et al. . Antigen-specific B cell memory: expression and replenishment of a novel B220 memory B cell compartment. J. Exp. Med. 191, 1149–1166 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  22. Manz, R. A. et al. . Survival of long-lived plasma cells is independent of antigen. Int. Immunol. 10, 1703–1711 (1998).

    Article  CAS  Google Scholar 

  23. Shapiro-Shelef, M. et al. . Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    Article  CAS  Google Scholar 

  24. Mack, M. et al. . Identification of antigen-capturing cells as basophils. J. Immunol. 174, 735–741 (2005).

    Article  CAS  Google Scholar 

  25. Bell, J. & Gray, D. Antigen-capturing cells can masquerade as memory B cells. J. Exp. Med. 197, 1233–1244 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  26. Kallies, A. et al. . Plasma cell ontogeny defined by quantitative changes in Blimp-1 expression. J. Exp. Med. 200, 967–977 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  27. Blink, E. J. et al. . Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545–554 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. O'Connor, B. P. et al. . Short-lived and long-lived bone marrow plasma cells are derived from a novel precursor population. J. Exp. Med. 195, 737–745 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  29. Tew, J. G. et al. . A subpopulation of germinal center B cells differentiate directly into antibody forming cells upon secondary immunization. Adv. Exp. Med. Biol. 237, 215–220 (1988).

    Article  CAS  Google Scholar 

  30. Angelin-Duclos, C. et al. . Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo . J. Immunol. 165, 5462–5471 (2000).

    Article  CAS  Google Scholar 

  31. Kawabe, T. et al. . The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  Google Scholar 

  32. Han, S. et al. . Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J. Immunol. 155, 556–567 (1995).

    CAS  PubMed  Google Scholar 

  33. Tangye, S. G. et al. . Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J. Immunol. 170, 686–694 (2003).

    Article  CAS  Google Scholar 

  34. Hasbold, J. et al. . Evidence from the generation of immunoglobulin G-secreting cells that stochastic mechanisms regulate lymphocyte differentiation. Nature Immunol. 5, 55–63 (2004).

    Article  CAS  Google Scholar 

  35. Arpin, C. et al. . Generation of memory B cells and plasma cells in vitro . Science 268, 720–722 (1995).

    Article  CAS  Google Scholar 

  36. Randall, T. D. et al. . Arrest of B lymphocyte terminal differentiation by CD40 signaling: mechanism for lack of antibody-secreting cells in germinal centers. Immunity 8, 733–742 (1998).

    Article  CAS  Google Scholar 

  37. Muramatsu, M. et al. . Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  Google Scholar 

  38. Dedeoglu, F. et al. . Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFκB. Int. Immunol. 16, 395–404 (2004).

    Article  CAS  Google Scholar 

  39. Kehry, M. R. CD40-mediated signaling in B cells. Balancing cell survival, growth, and death. J. Immunol. 156, 2345–2348 (1996).

    CAS  PubMed  Google Scholar 

  40. Tuscano, J. M. et al. . Bcl-x rather than Bcl-2 mediates CD40-dependent centrocyte survival in the germinal center. Blood 88, 1359–1364 (1996).

    CAS  PubMed  Google Scholar 

  41. Huntington, N. D. et al. . CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nature Immunol. 7, 190–198 (2006).

    Article  CAS  Google Scholar 

  42. Liu, Y. J. et al. . Mechanism of antigen-driven selection in germinal centres. Nature 342, 929–931 (1989).

    Article  CAS  PubMed Central  Google Scholar 

  43. Liu, Y. J. et al. . Germinal center cells express bcl-2 protein after activation by signals which prevent their entry into apoptosis. Eur. J. Immunol. 21, 1905–1910 (1991).

    Article  CAS  Google Scholar 

  44. Lanzavecchia, A. Antigen-specific interaction between T and B cells. Nature 314, 537–539 (1985).

    Article  CAS  Google Scholar 

  45. Batista, F. D. & Neuberger, M. S. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8, 751–759 (1998).

    Article  CAS  Google Scholar 

  46. Cortes, M. & Georgopoulos, K. Aiolos is required for the generation of high affinity bone marrow plasma cells responsible for long-term immunity. J. Exp. Med. 199, 209–219 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  47. Takahashi, Y. et al. . In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection. J. Exp. Med. 187, 885–895 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  48. Smith, K. G. et al. . The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. EMBO J. 16, 2996–3006 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  49. Paus, D. et al. . Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med. 203, 1081–1091 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  50. Su, G. H. et al. . Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J. 16, 7118–7129 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  51. Gray, D. A role for antigen in the maintenance of immunological memory. Nature Rev. Immunol. 2, 60–65 (2002).

    Article  CAS  Google Scholar 

  52. Baine, Y. & Thorbecke, G. J. Induction and persistence of local B cell memory in mice. J. Immunol. 128, 639–643 (1982).

    CAS  PubMed  Google Scholar 

  53. Bachmann, M. F. et al. . Induction of long-lived germinal centers associated with persisting antigen after viral infection. J. Exp. Med. 183, 2259–2269 (1996).

    Article  CAS  Google Scholar 

  54. Takahashi, Y. et al. . Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14, 181–192 (2001).

    Article  CAS  Google Scholar 

  55. Smith, K. G. et al. . bcl-2 transgene expression inhibits apoptosis in the germinal center and reveals differences in the selection of memory B cells and bone marrow antibody-forming cells. J. Exp. Med. 191, 475–484 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  56. Maruyama, M. et al. . Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000).

    Article  CAS  Google Scholar 

  57. Schluns, K. S. & Lefrancois, L. Cytokine control of memory T-cell development and survival. Nature Rev. Immunol. 3, 269–279 (2003).

    Article  CAS  Google Scholar 

  58. Shapiro-Shelef, M. & Calame, K. Regulation of plasma-cell development. Nature Rev. Immunol. 5, 230–242 (2005).

    Article  CAS  Google Scholar 

  59. Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  Google Scholar 

  60. Ozaki, K. et al. . Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J. Immunol. 173, 5361–5371 (2004).

    Article  CAS  Google Scholar 

  61. Vinuesa, C. G. et al. . Follicular B helper T cells in antibody responses and autoimmunity. Nature Rev. Immunol. 5, 853–865 (2005).

    Article  CAS  Google Scholar 

  62. Bernasconi, N. L. et al. . Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank current and previous members of my laboratory who have worked on this problem. I am also grateful to the other members of the B-cell Program for fruitful and stimulating discussions. D.T. is supported by grants from the National Health and Medical Research Council (Australia).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarlinton, D. B-cell memory: are subsets necessary?. Nat Rev Immunol 6, 785–790 (2006). https://doi.org/10.1038/nri1938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1938

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing