Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease

Abstract

Immunological reactions have a key role in health and disease and are complex events characterized by coordinated cell trafficking to specific locations throughout the body. Clarification of these cell-trafficking events is crucial for improving our understanding of how immune reactions are initiated, controlled and recalled. As we discuss here, an emerging modality for revealing cell trafficking is bioluminescence imaging, which harnesses the light-emitting properties of enzymes such as luciferase for quantification of cells and uses low-light imaging systems. This strategy could be useful for the study of a wide range of biological processes, such as the pathophysiology of graft-versus-host and graft-versus-leukaemia reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of a bioluminescence imaging strategy using cells from a transgenic donor mouse.
Figure 2: Sensitivity of detection in bioluminescence imaging studies.
Figure 3: Imaging of graft-versus-host disease.
Figure 4: Effect of transfer of conventional CD4+ and CD8+ T cells with and without CD4+CD25+ regulatory T cells on tumour progression.

Similar content being viewed by others

References

  1. Negrin, R. S. & Blume, K. in Williams Hematology 7th edn Ch. 22 (eds Lichtman, M. A. et al.) 209–247 (McGraw-Hill Professional, 2005).

    Google Scholar 

  2. Ferrara, J. L. & Deeg, H. J. Graft-versus-host disease. N. Engl. J. Med. 324, 667–674 (1991).

    Article  CAS  Google Scholar 

  3. Kaitin, K. I. Graft-versus-host disease. N. Engl. J. Med. 325, 357–358 (1991).

    CAS  PubMed  Google Scholar 

  4. Sykes, M. & Nikolic, B. Treatment of severe autoimmune disease by stem-cell transplantation. Nature 435, 620–627 (2005).

    Article  CAS  Google Scholar 

  5. Thomas, E. D., Storb, R. & Clift, R. A. Bone-marrow transplantation. N. Engl. J. Med. 292, 832–843 (1975).

    Article  CAS  Google Scholar 

  6. Thomas, E. D., Storb, R. & Clift, R. A. Bone-marrow transplantation. N. Engl. J. Med. 292, 895–902 (1975).

    Article  CAS  Google Scholar 

  7. Storb, R. et al. Stable mixed hematopoietic chimerism in dogs given donor antigen, CTLA4Ig, and 100 cGy total body irradiation before and pharmacologic immunosuppression after marrow transplant. Blood 94, 2523–2529 (1999).

    CAS  PubMed  Google Scholar 

  8. McSweeney, P. A. et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 97, 3390–3400 (2001).

    Article  CAS  Google Scholar 

  9. Lowsky, R. et al. Protective conditioning for acute graft-versus-host disease. N. Engl. J. Med. 353, 1321–1331 (2005).

    Article  CAS  Google Scholar 

  10. Wu, Y. L. et al. In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI. Proc. Natl Acad. Sci. USA 103, 1852–1857 (2006).

    Article  CAS  Google Scholar 

  11. Sumen, C., Mempel, T. R., Mazo, I. B. & von Andrian, U. H. Intravital microscopy: visualizing immunity in context. Immunity 21, 315–329 (2004).

    CAS  PubMed  Google Scholar 

  12. Contag, C. H. et al. Photonic detection of bacterial pathogens in living hosts. Mol. Microbiol. 18, 593–603 (1995).

    Article  CAS  Google Scholar 

  13. Contag, C. et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol. 66, 523–531 (1997).

    Article  CAS  Google Scholar 

  14. Lipshutz, G. S., Flebbe-Rehwaldt, L. & Gaensler, K. M. Reexpression following readministration of an adenoviral vector in adult mice after initial in utero adenoviral administration. Mol. Ther. 2, 374–380 (2000).

    Article  CAS  Google Scholar 

  15. Sweeney, T. J. et al. Visualizing the kinetics of tumor cell clearance in living animals. Proc. Natl Acad. Sci. USA 96, 12044–12049 (1999).

    Article  CAS  Google Scholar 

  16. Massoud, T. F., Paulmurugan, R. & Gambhir, S. S. Molecular imaging of homodimeric protein–protein interactions in living subjects. FASEB J. 18, 1105–1107 (2004).

    Article  CAS  Google Scholar 

  17. Cao, Y. A. et al. Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc. Natl Acad. Sci. USA 101, 221–226 (2004).

    Article  CAS  Google Scholar 

  18. Jobsis, F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977).

    Article  CAS  Google Scholar 

  19. Zhao, H. et al. Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J. Biomed. Opt. 10, 41210 (2005).

    Article  Google Scholar 

  20. Lipshutz, G. S. et al. In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol. Ther. 3, 284–292 (2001).

    Article  CAS  Google Scholar 

  21. Rehemtulla, A. et al. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2, 491–495 (2000).

    Article  CAS  Google Scholar 

  22. Zhao, H. et al. Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol. Imaging 3, 43–54 (2004).

    Article  CAS  Google Scholar 

  23. Bhaumik, S. & Gambhir, S. S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl Acad. Sci. USA 99, 377–382 (2002).

    Article  CAS  Google Scholar 

  24. Edinger, M. et al. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence. Blood 101, 640–648 (2003).

    Article  CAS  Google Scholar 

  25. Beilhack, A. et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood 106, 1113–1122 (2005).

    Article  CAS  Google Scholar 

  26. Wang, X. et al. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102, 3478–3482 (2003).

    Article  CAS  Google Scholar 

  27. Edinger, M. et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nature Med. 9, 1144–1150 (2003).

    Article  CAS  Google Scholar 

  28. Panoskaltsis-Mortari, A. et al. In vivo imaging of graft-versus-host-disease in mice. Blood 103, 3590–3598 (2004).

    Article  CAS  Google Scholar 

  29. Murakami, T. et al. Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J. Exp. Med. 198, 1337–1347 (2003).

    Article  CAS  Google Scholar 

  30. Murai, M. et al. Peyer's patch is the essential site in initiating murine acute and lethal graft-versus-host reaction. Nature Immunol. 4, 154–160 (2003).

    Article  CAS  Google Scholar 

  31. Welniak, L. A. et al. Peyer patches are not required for acute graft-versus-host disease after myeloablative conditioning and murine allogeneic bone marrow transplantation. Blood 107, 410–412 (2005).

    Article  Google Scholar 

  32. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003).

    Article  CAS  Google Scholar 

  33. Anderson, B. E. et al. Memory CD4+ T cells do not induce graft-versus-host disease. J. Clin. Invest. 112, 101–108 (2003).

    Article  CAS  Google Scholar 

  34. Foster, A. E. et al. Human CD62L memory T cells are less responsive to alloantigen stimulation than CD62L+ naive T cells: potential for adoptive immunotherapy and allodepletion. Blood 104, 2403–2409 (2004).

    Article  CAS  Google Scholar 

  35. Dutt, S. et al. L-selectin and β7 integrin on donor CD4 T cells are required for the early migration to host mesenteric lymph nodes and acute colitis of graft versus host disease. Blood 106, 4009–4015 (2005).

    Article  CAS  Google Scholar 

  36. Rooney, C. M. et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92, 1549–1555 (1998).

    CAS  PubMed  Google Scholar 

  37. Baker, J., Verneris, M. R., Ito, M., Shizuru, J. A. & Negrin, R. S. Expansion of cytolytic CD8+ natural killer T cells with limited capacity for graft-versus-host disease induction due to interferon γ production. Blood 97, 2923–2931 (2001).

    Article  CAS  Google Scholar 

  38. Asai, O. et al. Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects by activated natural killer cells after allogeneic bone marrow transplantation. J. Clin. Invest. 101, 1835–1842 (1998).

    Article  CAS  Google Scholar 

  39. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).

    Article  CAS  Google Scholar 

  40. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    Article  CAS  Google Scholar 

  41. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    Article  CAS  Google Scholar 

  42. Lan, F., Zeng, D., Higuchi, M., Higgins, J. P. & Strober, S. Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: the role of CD1-reactive natural killer T cells. Biol. Blood Marrow Transplant. 9, 355–363 (2003).

    Article  Google Scholar 

  43. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  44. Hoffmann, R., Ermann, J., Edinger, M., Fathman, C. G. & Strober, S. Donor type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med. 196, 389–399 (2002).

    Article  CAS  Google Scholar 

  45. Taylor, P. A., Lees, C. J. & Blazar, B. R. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99, 3493–3499 (2002).

    Article  CAS  Google Scholar 

  46. Cohen, J. L., Trenado, A., Vasey, D., Klatzmann, D. & Salomon, B. L. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J. Exp. Med. 196, 401–406 (2002).

    Article  CAS  Google Scholar 

  47. Trenado, A. et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J. Clin. Invest. 112, 1688–1696 (2003).

    Article  CAS  Google Scholar 

  48. Ermann, J. et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 105, 2220–2226 (2005).

    Article  CAS  Google Scholar 

  49. Herschman, H. R. Molecular imaging: looking at problems, seeing solutions. Science 302, 605–608 (2003).

    Article  CAS  Google Scholar 

  50. Ponomarev, V. et al. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3, 480–488 (2001).

    Article  CAS  Google Scholar 

  51. Dubey, P. et al. Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc. Natl Acad. Sci. USA 100, 1232–1237 (2003).

    Article  CAS  Google Scholar 

  52. van Montfrans, C. et al. In vivo evaluation of 111In-labeled T-lymphocyte homing in experimental colitis. J. Nucl. Med. 45, 1759–1765 (2004).

    CAS  PubMed  Google Scholar 

  53. Bulte, J. W. & Kraitchman, D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004).

    Article  CAS  Google Scholar 

  54. McCaffrey, A., Kay, M. A. & Contag, C. H. Advancing molecular therapies through in vivo bioluminescent imaging. Mol. Imaging 2, 75–86 (2003).

    Article  CAS  Google Scholar 

  55. Contag, C. H. & Ross, B. D. It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J. Magn. Reson. Imaging 16, 378–387 (2002).

    Article  Google Scholar 

  56. Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnol. 23, 313–320 (2005).

    Article  CAS  Google Scholar 

  57. Hildebrandt, I. J. & Gambhir, S. S. Molecular imaging applications for immunology. Clin. Immunol. 111, 210–224 (2004).

    Article  CAS  Google Scholar 

  58. Contag, C. H. & Bachmann, M. H. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235–260 (2002).

    Article  CAS  Google Scholar 

  59. Rice, B. W., Cable, M. D. & Nelson, M. B. In vivo imaging of light-emitting probes. J. Biomed. Opt. 6, 432–440 (2001).

    Article  CAS  Google Scholar 

  60. Troy, T., Jekic-McMullen, D., Sambucetti, L. & Rice, B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imaging 3, 9–23 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Negrin.

Ethics declarations

Competing interests

C.H.C. is a founder and consultant for Xenogen, Alameda, California, USA.

Related links

Related links

FURTHER INFORMATION

Christopher H. Contag's laboratory

Robert S. Negrin's homepage

Glossary

Allorecognition

Allorecognition occurs when the host immune system detects same-species, non-self antigens and triggers allograft rejection. It can occur by direct or indirect pathways: the direct pathway involves recognition of foreign MHC molecules on donor cells, and the indirect pathway involves processing and presentation of donor-derived MHC molecules by host antigen-presenting cells.

Graft-versus-host disease

(GVHD). Tissue damage in a recipient of allogeneic tissue (usually a bone-marrow transplant) that results from the activity of donor cytotoxic T cells recognizing the tissues of the recipient as foreign. GVHD varies markedly in extent, but it can be life threatening in severe cases. Damage to the liver, skin and gut mucosae are common clinical manifestations.

Graft versus leukaemia

Hosts with leukaemia who receive an allogeneic bone-marrow transplant have far fewer disease relapses than individuals who obtain autologous bone-marrow transplants. This results from the transplanted T cells recognizing alloantigens expressed by the leukaemia.

Haematopoiesis

The commitment and differentiation processes that lead from a haematopoietic stem cell to the production of mature cells of all lineages: erythrocytes, myeloid cells (such as macrophages, mast cells, neutrophils and eosinophils), B and T cells, and natural killer cells.

Minor histocompatibility antigens

Polymorphic peptides derived from normal cellular proteins that can be recognized in the context of MHC molecules. Immune responses to these polymorphic antigens can result in graft-versus-host reactions, graft rejection or beneficial antitumour responses.

Non-myeloablative haematopoietic-cell transplantation

An allogeneic haematopoietic-cell transplantation in a recipient who has received a conditioning regimen to achieve immunosuppression and prevent graft rejection without the complete ablation of host haematopoiesis. The recipient might develop (transient) mixed chimerism, owing to haematopoietic recovery of the host and engraftment of donor haematopoietic cells.

Two-photon intravital microscopy

Laser-scanning microscopy that uses pulsed infrared laser light for the excitation of conventional fluorophores or fluorescent proteins. The main advantage is deep tissue penetration of the infrared light, owing to the low level of light scattering in the tissue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negrin, R., Contag, C. In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 6, 484–490 (2006). https://doi.org/10.1038/nri1879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing