Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The zebrafish: a new model of T-cell and thymic development

Key Points

  • Zebrafish have an adaptive immune system that comprises both T and B cells. The molecular pathways that regulate the development and maturation of these lymphoid-cell populations have been highly conserved throughout evolution.

  • The zebrafish is a powerful genetic model for dissecting the pathways that regulate erythrocyte and leukocyte development.

  • Genetic screens have identified mutations that perturb normal thymic and T-cell development, most of which result in severe cranio-facial defects. This indicates that many of these mutations affect pharyngeal-arch development and, subsequently, that the thymic anlage fails to form in mutated embryos.

  • Although the main advantage of using the zebrafish model system lies in the ability to carry out forward-genetic screens, the zebrafish model also offers many other advantages for studying thymic and T-cell development.

  • Transgenic zebrafish have been created that have green fluorescent protein (GFP)-labelled T cells, which allow the visualization of thymocyte development and function in a living organism. In conjunction with cell transplantation, transgenic approaches have provided unique reagents for the study of T-cell homing and the assessment of haematopoietic stem-cell function.

  • Reverse-genetic approaches rely on the targeted inactivation of gene products in developing organisms. Because gene-knockout technology has yet to be developed in zebrafish, researchers can use either targeting induced local lesions in genomes (TILLING) or morpholino antisense oligonucleotides to disrupt gene function in developing embryos.

  • TILLING is a technique that uses N-ethyl-N-nitrosourea mutagenesis and the sequencing of genomic DNA to detect point mutations that are present in a gene of interest. This technology has been used successfully to disrupt recombination-activating gene 1 (rag1) gene function in zebrafish, which alters immune function in homozygous mutant individuals.

  • Morpholinos are chemically modified antisense oligonucleotides that can be microinjected into one-cell-stage embryos. Because of their long half-life, these molecules can disrupt gene function for up to 5 days.

  • The high-throughput sequencing of cDNA libraries in conjunction with whole-mount in situ hybridization has allowed researchers to carry out expression-based screens in zebrafish embryos, which provide new avenues for gene discovery.

  • Small-molecule-inhibitor screens have been used to identify water-soluble compounds that can be taken up by living zebrafish larvae and can restore mutant gene function in embryos. Because T-cell ablation can be monitored in rag2GFP- and light-chain kinase (lck)–GFP-transgenic fish, and because dexamethasone treatment results in the loss of fluorescently labelled thymocytes, it might be possible to carry out small-molecule-inhibitor screens that are designed to identify drugs that selectively kill thymocytes, which might identify new immunosuppressive drugs.

Abstract

T-cell and thymic development are processes that have been highly conserved throughout vertebrate evolution. Mammals, birds, reptiles and fish share common molecular signalling pathways that regulate the development of the adaptive immune system. This Review article focuses on defining the similarities and differences between zebrafish and mammalian T-cell immunobiology, and it highlights the advantages of using the zebrafish as a genetic model to uncover mutations that affect T-cell and thymic development. Finally, we summarize the use of the zebrafish as a new model for assessing stem-cell function and for drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transgenesis in zebrafish.
Figure 2: Cell-transplantation assays.
Figure 3: N-ethyl-N-nitrosourea-mutagenesis screens to identify recessive mutations affecting T-cell and thymic development: classical F3 screens versus F2 gynogenetic diploid screens.
Figure 4: Targeting induced local lesions in genomes in zebrafish.
Figure 5: Morpholino antisense technology.

Similar content being viewed by others

References

  1. Chitwood, B. G. & Chitwood, M. B. Introduction to Nematology (University Park, Baltimore, 1974).

    Google Scholar 

  2. Schulenburg, H., Kurz, C. L. & Ewbank, J. J. Evolution of the innate immune system: the worm perspective. Immunol. Rev. 198, 36–58 (2004).

    CAS  PubMed  Google Scholar 

  3. Evans, C. J., Hartenstein, V. & Banerjee, U. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell 5, 673–690 (2003).

    CAS  PubMed  Google Scholar 

  4. Appleby, M. W. & Ramsdell, F. A forward-genetic approach for analysis of the immune system. Nature Rev. Immunol. 3, 463–471 (2003).

    CAS  Google Scholar 

  5. Thisse, C. & Zon, L. I. Organogenesis: heart and blood formation from the zebrafish point of view. Science 295, 457–462 (2002).

    CAS  PubMed  Google Scholar 

  6. Hansen, J. D. & Zapata, A. G. Lymphocyte development in fish and amphibians. Immunol. Rev. 166, 199–220 (1998).

    CAS  PubMed  Google Scholar 

  7. Trede, N. S., Zapata, A. & Zon, L. I. Fishing for lymphoid genes. Trends Immunol. 22, 302–307 (2001).

    CAS  PubMed  Google Scholar 

  8. Trede, N. S. & Zon, L. I. Development of T-cells during fish embryogenesis. Dev. Comp. Immunol. 22, 253–263 (1998).

    CAS  PubMed  Google Scholar 

  9. Long, Q. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105–4111 (1997).

    CAS  PubMed  Google Scholar 

  10. Jessen, J. R., Willett, C. E. & Lin, S. Artificial chromosome transgenesis reveals long-distance negative regulation of rag1 in zebrafish. Nature Genet. 23, 15–16 (1999).

    CAS  PubMed  Google Scholar 

  11. Jessen, J. R., Jessen, T. N., Vogel, S. S. & Lin, S. Concurrent expression of recombination activating genes 1 and 2 in zebrafish olfactory sensory neurons. Genesis 29, 156–162 (2001).

    CAS  PubMed  Google Scholar 

  12. Traver, D. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nature Immunol. 4, 1238–1246 (2003). This paper describes the prospective isolation of specific blood-cell lineages in the kidney marrow of adult zebrafish through the use of FACS and GFP-transgenic technology. It also establishes methodologies for haematopoietic stem-cell transplantation into embryos.

    CAS  Google Scholar 

  13. Hsu, K. et al. The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 104, 1291–1297 (2004).

    CAS  PubMed  Google Scholar 

  14. Langenau, D. M. et al. In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc. Natl Acad. Sci. USA 101, 7369–7374 (2004). This work provides a comprehensive characterization of T- and B-cell lymphopoiesis in embryonic and adult zebrafish by comparing the expression of GFP in rag2–GFP - and lck–GFP -transgenic animals.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293–296 (1981).

    CAS  PubMed  Google Scholar 

  16. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  PubMed  Google Scholar 

  17. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996). References 16 and 17 are classic papers that describe the first ENU-based mutagenesis screens in zebrafish.

    CAS  PubMed  Google Scholar 

  18. Poss, K. D., Nechiporuk, A., Hillam, A. M., Johnson, S. L. & Keating, M. T. Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 129, 5141–5149 (2002).

    CAS  PubMed  Google Scholar 

  19. Peterson, R. T. et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nature Biotechnol. 22, 595–599 (2004).

    CAS  Google Scholar 

  20. Peterson, R. T., Link, B. A., Dowling, J. E. & Schreiber, S. L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl Acad. Sci. USA 97, 12965–12969 (2000). Although small-molecule chemical screens using zebrafish were first described in reference 20, reference 19 describes the first use of small-molecule-inhibitor screens to identify compounds that restore mutant-gene function in living zebrafish embryos.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Laird, D. J., De Tomaso, A. W., Cooper, M. D. & Weissman, I. L. 50 million years of chordate evolution: seeking the origins of adaptive immunity. Proc. Natl Acad. Sci. USA 97, 6924–6926 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Du Pasquier, L., Zucchetti, I. & De Santis, R. Immunoglobulin superfamily receptors in protochordates: before RAG time. Immunol. Rev. 198, 233–248 (2004).

    CAS  PubMed  Google Scholar 

  23. Greenhalgh, P. & Steiner, L. A. Recombination activating gene 1 (Rag1) in zebrafish and shark. Immunogenetics 41, 54–55 (1995).

    CAS  PubMed  Google Scholar 

  24. Nam, B. H., Hirono, I. & Aoki, T. The four TCR genes of teleost fish: the cDNA and genomic DNA analysis of Japanese flounder (Paralichthys olivaceus) TCR α-, β-, γ-, and δ-chains. J. Immunol. 170, 3081–3090 (2003).

    CAS  PubMed  Google Scholar 

  25. Partula, S., de Guerra, A., Fellah, J. S. & Charlemagne, J. Structure and diversity of the T cell antigen receptor β-chain in a teleost fish. J. Immunol. 155, 699–706 (1995).

    CAS  PubMed  Google Scholar 

  26. Partula, S., Fellah, J. S., de Guerra, A. & Charlemagne, J. Characterization of cDNA of T-cell receptor β-chain in rainbow trout. C. R. Acad. Sci. III 317, 765–770 (1994).

    CAS  PubMed  Google Scholar 

  27. Haire, R. N., Rast, J. P., Litman, R. T. & Litman, G. W. Characterization of three isotypes of immunoglobulin light chains and T-cell antigen receptor-α in zebrafish. Immunogenetics 51, 915–923 (2000).

    CAS  PubMed  Google Scholar 

  28. Wilson, M. R. et al. T-cell receptors in channel catfish: structure and expression of TCR-α and -β genes. Mol. Immunol. 35, 545–557 (1998).

    CAS  PubMed  Google Scholar 

  29. Wang, K. et al. Characterization of the Japanese pufferfish (Takifugu rubripes) T-cell receptor-α locus reveals a unique genomic organization. Immunogenetics 53, 31–42 (2001).

    CAS  PubMed  Google Scholar 

  30. Wermenstam, N. E. & Pilstrom, L. T-cell antigen receptors in Atlantic cod (Gadus morhua L.): structure, organisation and expression of TCR-α and -β genes. Dev. Comp. Immunol. 25, 117–135 (2001).

    CAS  PubMed  Google Scholar 

  31. Hordvik, I., Jacob, A. L., Charlemagne, J. & Endresen, C. Cloning of T-cell antigen receptor-β chain cDNAs from Atlantic salmon (Salmo salar). Immunogenetics 45, 9–14 (1996).

    CAS  PubMed  Google Scholar 

  32. Schatz, D. G. Antigen receptor genes and the evolution of a recombinase. Semin. Immunol. 16, 245–256 (2004).

    CAS  PubMed  Google Scholar 

  33. Willett, C. E., Kawasaki, H., Amemiya, C. T., Lin, S. & Steiner, L. A. Ikaros expression as a marker for lymphoid progenitors during zebrafish development. Dev. Dyn. 222, 694–698 (2001).

    CAS  PubMed  Google Scholar 

  34. Park, C. I., Hirono, I., Enomoto, J., Nam, B. H. & Aoki, T. Cloning of Japanese flounder Paralichthys olivaceus CD3 cDNA and gene, and analysis of its expression. Immunogenetics 53, 130–135 (2001).

    CAS  PubMed  Google Scholar 

  35. Park, C. I., Hirono, I. & Aoki, T. Molecular characterization of the Japanese flounder, Paralichthys olivaceus, CD3ε and evolution of the CD3 cluster. Dev. Comp. Immunol. 29, 123–133 (2005).

    CAS  PubMed  Google Scholar 

  36. Suetake, H., Araki, K. & Suzuki, Y. Cloning, expression, and characterization of Fugu CD4, the first ectothermic animal CD4. Immunogenetics 56, 368–374 (2004).

    CAS  PubMed  Google Scholar 

  37. Hansen, J. D. & Strassburger, P. Description of an ectothermic TCR coreceptor, CD8-α, in rainbow trout. J. Immunol. 164, 3132–3139 (2000).

    CAS  PubMed  Google Scholar 

  38. Lam, S. H. et al. Morphologic transformation of the thymus in developing zebrafish. Dev. Dyn. 225, 87–94 (2002).

    CAS  PubMed  Google Scholar 

  39. Willett, C. E., Cortes, A., Zuasti, A. & Zapata, A. G. Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev. Dyn. 214, 323–336 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Willett, C. E., Zapata, A. G., Hopkins, N. & Steiner, L. A. Expression of zebrafish rag genes during early development identifies the thymus. Dev. Biol. 182, 331–341 (1997).

    CAS  PubMed  Google Scholar 

  41. Danilova, N. et al. T cells and the thymus in developing zebrafish. Dev. Comp. Immunol. 28, 755–767 (2004).

    CAS  PubMed  Google Scholar 

  42. Zon, L. I. Developmental biology of hematopoiesis. Blood 86, 2876–2891 (1995).

    CAS  PubMed  Google Scholar 

  43. Johansson-Lindbom, B. et al. Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J. Exp. Med. 198, 963–969 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jahnsen, F. L., Farstad, I. N., Aanesen, J. P. & Brandtzaeg, P. Phenotypic distribution of T cells in human nasal mucosa differs from that in the gut. Am. J. Respir. Cell Mol. Biol. 18, 392–401 (1998).

    CAS  PubMed  Google Scholar 

  45. Hirata, N., Takeuchi, K., Majima, Y. & Sakakura, Y. The Vδ1 T cell receptor repertoire in human nasal mucosa. Scand. J. Immunol. 52, 380–384 (2000).

    CAS  PubMed  Google Scholar 

  46. Traver, D. et al. Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood 104, 1298–1305 (2004).

    CAS  PubMed  Google Scholar 

  47. Lam, S. H., Chua, H. L., Gong, Z., Lam, T. J. & Sin, Y. M. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev. Comp. Immunol. 28, 9–28 (2004).

    CAS  PubMed  Google Scholar 

  48. Anderson, E. D. et al. Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus. Mol. Mar. Biol. Biotechnol. 5, 114–122 (1996).

    CAS  PubMed  Google Scholar 

  49. Lobb, C. & Clem, L. W. Fish lymphocytes differ in the expression of surface immunoglobulin. Dev. Comp. Immunol. 6, 473–479 (1982).

    CAS  PubMed  Google Scholar 

  50. Lin, G. L., Ellsaesser, C. F., Clem, L. W. & Miller, N. W. Phorbol ester/calcium ionophore activate fish leukocytes and induce long-term cultures. Dev. Comp. Immunol. 16, 153–163 (1992).

    CAS  PubMed  Google Scholar 

  51. Miller, N. et al. Functional and molecular characterization of teleost leukocytes. Immunol. Rev. 166, 187–197 (1998).

    CAS  PubMed  Google Scholar 

  52. Miller, N. W., Deuter, A. & Clem, L. W. Phylogeny of lymphocyte heterogeneity: the cellular requirements for the mixed leucocyte reaction with channel catfish. Immunology 59, 123–128 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vallejo, A. N., Miller, N. W. & Clem, L. W. Phylogeny of immune recognition: role of alloantigens in antigen presentation in channel catfish immune responses. Immunology 74, 165–168 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Saunders, H. L. & Magor, B. G. Cloning and expression of the AID gene in the channel catfish. Dev. Comp. Immunol. 28, 657–663 (2004).

    CAS  PubMed  Google Scholar 

  55. Zhao, Y., Pan-Hammarstrom, Q., Zhao, Z. & Hammarstrom, L. Identification of the activation-induced cytidine deaminase gene from zebrafish: an evolutionary analysis. Dev. Comp. Immunol. 29, 61–71 (2005).

    CAS  PubMed  Google Scholar 

  56. Stavnezer, J. & Amemiya, C. T. Evolution of isotype switching. Semin. Immunol. 16, 257–275 (2004).

    CAS  PubMed  Google Scholar 

  57. Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180 (2004).

    CAS  PubMed  Google Scholar 

  58. Danilova, N. & Steiner, L. A. B cells develop in the zebrafish pancreas. Proc. Natl Acad. Sci. USA 99, 13711–13716 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rolink, A., Haasner, D., Nishikawa, S. & Melchers, F. Changes in frequencies of clonable pre B cells during life in different lymphoid organs of mice. Blood 81, 2290–2300 (1993).

    CAS  PubMed  Google Scholar 

  60. Brecher, G. et al. Self-renewal of the long-term repopulating stem cell. Proc. Natl Acad. Sci. USA 90, 6028–6031 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Perry, S. S., Pierce, L. J., Slayton, W. B. & Spangrude, G. J. Characterization of thymic progenitors in adult mouse bone marrow. J. Immunol. 170, 1877–1886 (2003).

    CAS  PubMed  Google Scholar 

  62. Langenau, D. M. et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 299, 887–890 (2003).

    CAS  PubMed  Google Scholar 

  63. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    CAS  PubMed  Google Scholar 

  64. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Papathanasiou, P. et al. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity 19, 131–144 (2003).

    CAS  PubMed  Google Scholar 

  66. Nelms, K. A. & Goodnow, C. C. Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15, 409–418 (2001).

    CAS  PubMed  Google Scholar 

  67. Boehm, T., Bleul, C. C. & Schorpp, M. Genetic dissection of thymus development in mouse and zebrafish. Immunol. Rev. 195, 15–27 (2003).

    CAS  PubMed  Google Scholar 

  68. Piotrowski, T. et al. The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development 130, 5043–5052 (2003).

    CAS  PubMed  Google Scholar 

  69. Popperl, H. et al. lazarus is a novel pbx gene that globally mediates hox gene function in zebrafish. Mol. Cell 6, 255–267 (2000).

    CAS  PubMed  Google Scholar 

  70. Reiter, J. F., Kikuchi, Y. & Stainier, D. Y. Multiple roles for Gata5 in zebrafish endoderm formation. Development 128, 125–135 (2001).

    CAS  PubMed  Google Scholar 

  71. Ryan, A. K. et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J. Med. Genet. 34, 798–804 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lindsay, E. A. et al. Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410, 97–101 (2001).

    CAS  PubMed  Google Scholar 

  73. Wittbrodt, J., Shima, A. & Schartl, M. Medaka: a model organism from the Far East. Nature Rev. Genet. 3, 53–64 (2002).

    CAS  PubMed  Google Scholar 

  74. Iwanami, N. et al. Mutations affecting thymus organogenesis in medaka, Oryzias latipes. Mech. Dev. 121, 779–789 (2004).

    CAS  PubMed  Google Scholar 

  75. Amsterdam, A. et al. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13, 2713–2724 (1999). Work from the laboratory of Nancy Hopkins has established new methodologies for mutagen treatment and the rapid identification of disrupted gene products through the use of retroviral-based technologies. This is the seminal paper describing the development and use of retroviral gene disruption in the zebrafish.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Amsterdam, A. et al. Identification of 315 genes essential for early zebrafish development. Proc. Natl Acad. Sci. USA 101, 12792–12797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kawakami, K., Shima, A. & Kawakami, N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc. Natl Acad. Sci. USA 97, 11403–11408 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Parinov, S., Kondrichin, I., Korzh, V. & Emelyanov, A. Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev. Dyn. 231, 449–459 (2004).

    CAS  PubMed  Google Scholar 

  79. Kawakami, K. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133–144 (2004).

    CAS  PubMed  Google Scholar 

  80. Jansen, G., Hazendonk, E., Thijssen, K. L. & Plasterk, R. H. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nature Genet. 17, 119–121 (1997).

    CAS  PubMed  Google Scholar 

  81. Bentley, A., MacLennan, B., Calvo, J. & Dearolf, C. R. Targeted recovery of mutations in Drosophila. Genetics 156, 1169–1173 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. McCallum, C. M., Comai, L., Greene, E. A. & Henikoff, S. Targeted screening for induced mutations. Nature Biotechnol. 18, 455–457 (2000).

    CAS  Google Scholar 

  83. Perry, J. A. et al. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol. 131, 866–871 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Beier, D. R. Sequence-based analysis of mutagenized mice. Mamm. Genome 11, 594–597 (2000).

    CAS  PubMed  Google Scholar 

  85. Coghill, E. L. et al. A gene-driven approach to the identification of ENU mutants in the mouse. Nature Genet. 30, 255–256 (2002).

    PubMed  Google Scholar 

  86. Zan, Y. et al. Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nature Biotechnol. 21, 645–651 (2003).

    CAS  Google Scholar 

  87. Hurlstone, A. F. et al. The Wnt/β-catenin pathway regulates cardiac valve formation. Nature 425, 633–637 (2003).

    CAS  PubMed  Google Scholar 

  88. Wienholds, E., Schulte-Merker, S., Walderich, B. & Plasterk, R. H. Target-selected inactivation of the zebrafish rag1 gene. Science 297, 99–102 (2002). TILLING approaches have been used in many organisms to identify point mutations that perturb gene function. This paper describes the first use of this reverse-genetic approach in the zebrafish.

    CAS  PubMed  Google Scholar 

  89. Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E. & Plasterk, R. H. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genet. 35, 217–218 (2003).

    CAS  PubMed  Google Scholar 

  90. Wienholds, E. et al. Efficient target-selected mutagenesis in zebrafish. Genome Res. 13, 2700–2707 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Steinsvik, T. E., Gaarder, P. I., Aaberge, I. S. & Lovik, M. Engraftment and humoral immunity in SCID and RAG-2-deficient mice transplanted with human peripheral blood lymphocytes. Scand. J. Immunol. 42, 607–616 (1995).

    CAS  PubMed  Google Scholar 

  92. Martin, A. et al. Engraftment of human lymphocytes and thyroid tissue into scid and rag2-deficient mice: absent progression of lymphocytic infiltration. J. Clin. Endocrinol. Metab. 79, 716–723 (1994).

    CAS  PubMed  Google Scholar 

  93. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000). This paper describes the first use of morpholino antisense technology in the zebrafish, providing a robust assay for assessing the loss of gene function in living zebrafish larvae.

    CAS  PubMed  Google Scholar 

  94. Wang, J. H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

    CAS  PubMed  Google Scholar 

  95. Song, H. D. et al. Hematopoietic gene expression profile in zebrafish kidney marrow. Proc. Natl Acad. Sci. USA 101, 16240–16245 (2004).

    PubMed  PubMed Central  Google Scholar 

  96. Sinnhuber, R. O., Hendricks, J. D., Wales, J. H. & Putnam, G. B. Neoplasms in rainbow trout, a sensitive animal model for environmental carcinogenesis. Ann. NY Acad. Sci. 298, 389–408 (1978).

    CAS  PubMed  Google Scholar 

  97. Hawkins, W. E., Overstreet, R. M., Fournie, J. W. & Walker, W. W. Development of aquarium fish models for environmental carcinogenesis: tumor induction in seven species. J. Appl. Toxicol. 5, 261–264 (1985).

    CAS  PubMed  Google Scholar 

  98. Bunton, T. E. Experimental chemical carcinogenesis in fish. Toxicol. Pathol. 24, 603–618 (1996).

    CAS  PubMed  Google Scholar 

  99. Spitsbergen, J. M. et al. Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N'-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol. Pathol. 28, 716–725 (2000).

    CAS  PubMed  Google Scholar 

  100. Spitsbergen, J. M. et al. Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz(a)anthracene by two exposure routes at different developmental stages. Toxicol. Pathol. 28, 705–715 (2000).

    CAS  PubMed  Google Scholar 

  101. Beckwith, L. G., Moore, J. L., Tsao-Wu, G. S., Harshbarger, J. C. & Cheng, K. C. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio). Lab. Invest. 80, 379–385 (2000).

    CAS  PubMed  Google Scholar 

  102. Peterson, R. T., Mably, J. D., Chen, J. N. & Fishman, M. C. Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul. Curr. Biol. 11, 1481–1491 (2001).

    CAS  PubMed  Google Scholar 

  103. Zhong, T. P., Rosenberg, M., Mohideen, M. A., Weinstein, B. & Fishman, M. C. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287, 1820–1824 (2000).

    CAS  PubMed  Google Scholar 

  104. Langenau, D. M. et al. Suppression of apoptosis by bcl-2-overexpression in lymphoid cells of transgenic zebrafish. Blood 23 Dec 2004 (10.1182/blood-2004-08-3073).

  105. Trede, N. S., Langenau, D. M., Traver, D., Look, A. T. & Zon, L. I. The use of zebrafish to understand immunity. Immunity 20, 367–379 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.M.L. is the Edmond J. Safra Foundation–Irvington Institute Fellow. This work is supported by the National Institutes of Health (United States). L.I.Z. is also supported by the Howard Hughes Medical Institute (United States).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard I. Zon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

gata1

hey2

ikaros

lck

rag1

rag2

TBX1

OMIM

DiGeorge syndrome

T-cell acute lymphoblastic leukaemia

FURTHER INFORMATION

The Danio rerio Sequencing Project

The Zebrafish Information Network (ZFIN)

Glossary

GYNOGENETIC

A term describing the production of offspring that have only maternally inherited chromosomes.

ENU MUTAGENESIS

(N-ethyl-N-nitrosourea mutagenesis). Male fish are treated with ENU to induce point mutations in the spermatozoa and are then mated with female fish. The resulting progeny have heterozygous genetic lesions that are inherited from the father.

BACTERIAL ARTIFICIAL CHROMOSOME

(BAC). A DNA construct that is used for cloning large genomic fragments into bacteria, which usually comprises 100–300 kilobases of genomic DNA.

DIGEORGE SYNDROME

A rare congenital disease that often results in immune suppression, heart defects and cranio-facial defects. DiGeorge syndrome occurs because of a large deletion on chromosome 22, which results in the disruption of several genes from this genetic locus. Remarkably, the variation in symptoms might be related to the amount of genetic material that is lost by chromosomal deletion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langenau, D., Zon, L. The zebrafish: a new model of T-cell and thymic development. Nat Rev Immunol 5, 307–317 (2005). https://doi.org/10.1038/nri1590

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing