Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifaceted roles of TRAFs in the regulation of B-cell function

Key Points

  • TRAFs (tumour-necrosis factor receptor (TNFR)-associated factors) have multiple roles in B-cell biology. These include involvement in cellular activation, differentiation and the apoptotic signals delivered by receptors of both the TNFR family and the Toll-like receptor family.

  • The main structural features of TRAFs are similar. Various domains of TRAFs regulate their receptor binding, the multimerization of TRAFs and their interaction with cellular signalling cascades.

  • Receptors recruit TRAFs to membrane signalling complexes. Before receptor engagement, TRAFs are mainly present in the cytoplasm. Ligand binding to receptors induces the rapid recruitment of TRAFs to lipid and signal-protein-enriched membrane rafts, which is followed, in some cases, by their degradation.

  • TRAFs mediate both unique and similar, overlapping functions in B cells. Although each member of the TRAF family expressed by B cells makes unique contributions to B-cell biology, it has recently been shown that TRAFs can also substitute for one another in certain signalling pathways.

  • Interactions between TRAFs regulate TRAF functions. In addition to forming homotrimers, TRAFs can form heteromultimers, and these combinations add to the number and variety of biological functions TRAFs can mediate.

  • Specific TRAF roles vary widely between receptors. TRAFs can have sharply divergent roles, mediating either activating or inhibitory signals, depending on which receptors they associate with and the composition of the signalling complex.

Abstract

Tumour-necrosis factor receptor (TNFR)-associated factors (TRAFs) are cytoplasmic adaptor proteins that are important in lymphocyte activation and apoptosis. Many studies of TRAFs have used models of exogenous overexpression by non-lymphoid cells. However, the actions of TRAFs present at normal levels in lymphoid cells often differ considerably from those that have been established in non-lymphocyte overexpression models. As I discuss here, information obtained from studying these molecules in physiological settings in B cells reveals that they have several roles, which are both unique and overlapping. These include activation of kinases and transcription factors, and interactions with other signalling proteins, culminating in the induction or inhibition of biological functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main structural features of TRAFs.
Figure 2: Formation of a CD40–TRAF-signalling complex in lipid rafts.
Figure 3: TRAFs can mediate both unique and overlapping functions in CD40-mediated B-cell activation.
Figure 4: The functional roles of TRAFs are receptor specific.
Figure 5: CD40–TRAF-activated signalling pathways that lead to gene regulation.

Similar content being viewed by others

References

  1. Lotz, M., Setareh, M., von Kempis, J. & Schwartz, H. The NGF/TNF receptor family. J. Leukoc. Biol. 60, 1–7 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Locksley, R. M., Kileen, N. & Lenardo, M. J. The TNF and TNFR superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Noelle, R. J., Ledbetter, J. A. & Aruffo, A. CD40 and its ligand, an essential ligand–receptor pair for thymus-dependent B-cell activation. Immunol. Today 13, 431–433 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Banchereau, J. et al. The CD40 antigen and its ligand. Annu. Rev. Immunol. 12, 881–922 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Bishop, G. A. & Hostager, B. S. The CD40–CD154 interaction in B cell–T cell liaisons. Cytokine Growth Factor Rev. 14, 297–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Foy, T. M. et al. gp39–CD40 interactions are essential for germinal center formation and the development of B cell memory. J. Exp. Med. 180, 157–163 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired Ig class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Rieckmann, P., D'Allessandro, F., Nordan, R. P., Fauci, A. S. & Kehrl, J. H. IL-6 and TNF-α. Autocrine and paracrine cytokines involved in B cell function. J. Immunol. 146, 3462–3468 (1991).

    CAS  PubMed  Google Scholar 

  9. Gauchat, J. -F., Aversa, G., Gascan, H. & de Vries, J. E. Modulation of IL-4 induced germline ε RNA synthesis in human B cells by TNFα, anti-CD40 mAb or TGF-β correlates with levels of IgE production. Int. Immunol. 4, 397–406 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Macchia, D. et al. Membrane TNF-α is involved in the polyclonal B-cell activation induced by HIV-infected human T cells. Nature 363, 464–466 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Ranheim, E. A. & Kipps, T. J. TNF-α facilitates induction of CD80 (B7-1) and CD54 on human B cells by activated T cells: complex regulation by IL-4, IL-10, and CD40L. Cell. Immunol. 161, 226–235 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Worm, M. & Geha, R. S. Activation of TNF-α and lymphotoxin-β via anti-CD40 in human B cells. Int. Arch. Allergy Immunol. 107, 368–369 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Worm, M., Ebermayer, K. & Henz, B. Lymphotoxin-α is an important autocrine factor for CD40 + IL-4-mediated B cell activation in normal and atopic donors. Immunology 94, 395–402 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hostager, B. S. & Bishop, G. A. Role of TRAF2 in the activation of IgM secretion by CD40 and CD120b. J. Immunol. 168, 3318–3322 (2002). This study exemplifies how a TRAF can have an indirect role in signalling to B cells by a TNFR-family member. TRAF2 is required for optimal CD40-mediated IgM production, but it does not need to directly interact with CD40. Instead, in B cells, CD40-induced TNF binds to CD120b, which requires the direct binding of TRAF2 for signalling.

    Article  CAS  PubMed  Google Scholar 

  15. Klein, U., Rajewsky, K. & Küppers, R. Human IgM+IgD+ peripheral blood B cells expressing the CD27 surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–1689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Agematsu, K., Hokibara, S., Nagumo, H. & Komiyama, A. CD27: a memory B cell marker. Immunol. Today 21, 204–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Morimoto, S. et al. CD134L engagement enhances human B cell Ig production: CD154/CD40, CD70/CD27, and CD134/CD134L interactions coordinately regulate T cell-dependent B cell responses. J. Immunol. 164, 4097–4104 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Nagumo, H. et al. CD27/CD70 interaction augments IgE secretion by promoting the differentiation of memory B cells into plasma cells. J. Immunol. 161, 6496–6502 (1998).

    CAS  PubMed  Google Scholar 

  19. Jacquot, S., Kobata, T., Iwata, S., Morimoto, C. & Schlossman, S. F. CD154/CD40 and CD70/CD27 interactions have different and sequential functions in T cell-dependent B cell responses. J. Immunol. 159, 2652–2657 (1997).

    CAS  PubMed  Google Scholar 

  20. Jumper, M. D., Fujita, K., Lipsky, P. E. & Meek, K. A CD30 responsive element in the germline ε promoter that is distinct from and inhibitory to the CD40 response element. Mol. Immunol. 33, 965–972 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Cerutti, A. et al. CD30 is a CD40-inducible molecule that negatively regulates CD40-mediated Ig class switching in non-antigen-selected human B cells. Immunity 9, 247–256 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cerutti, A. et al. Engagement of CD153 by CD30+ T cells inhibits class switch DNA recombination and antibody production in human IgD+IgM+ B cells. J. Immunol. 165, 786–794 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Baker, S. J. & Reddy, E. P. Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene 12, 1–9 (1996).

    CAS  PubMed  Google Scholar 

  24. Do, R. K. G. & Chen-Kiang, S. Mechanisms of BLyS action in B cell immunity. Cytokine Growth Factor Rev. 13, 19–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Arch, R. H., Gedrich, R. W. & Thompson, C. B. TRAFs — a family of adapter proteins that regulates life and death. Genes Dev. 12, 2821–2830 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Chan, F. K., Siegel, R. M. & Lenardo, M. J. Signaling by the TNF receptor superfamily and T cell homeostasis. Immunity 13, 419–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Bishop, G. A., Hostager, B. S. & Brown, K. D. Mechanisms of tumor necrosis factor receptor associated factor (TRAF) regulation in B lymphocytes. J. Leukoc. Biol. 72, 19–23 (2002).

    CAS  PubMed  Google Scholar 

  28. Akira, S. TLR signaling. J. Biol. Chem. 278, 38105–38108 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. McWhirter, S. M. et al. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc. Natl Acad. Sci. USA 96, 8408–8413 (1999). This is the first report of a crystal structure of the TRAF-binding portion of CD40 and the CD40-binding portion of TRAF2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ni, C. et al. Molecular basis for CD40 signaling mediated by TRAF3. Proc. Natl Acad. Sci. USA 97, 10395–10399 (2000). This paper shows a crystal structure that has the advantage of using the entire CD40 cytoplasmic domain. It reveals that, although there is overlap between the CD40-binding sites of TRAF2 and TRAF3, TRAF3 associates with CD40 in a different manner than TRAF2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan, F. K. et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Hostager, B. S., Catlett, I. M. & Bishop, G. A. Recruitment of CD40, TRAF2 and TRAF3 to membrane microdomains during CD40 signaling. J. Biol. Chem. 275, 15392–15398 (2000). This report provides the first evidence that engagement of a TNFR-family member endogenously expressed by B cells can recruit associated TRAFs to lipid rafts.

    Article  CAS  PubMed  Google Scholar 

  33. Kuhné, M. R. et al. Assembly and regulation of the CD40 receptor complex in human B cells. J. Exp. Med. 186, 337–342 (1997). This is the first report to show that, in B cells, endogenous TRAFs show little association with CD40 until CD40 is engaged by its ligand. After this occurs, TRAF2 and TRAF3 are rapidly recruited to the receptor complex at the cell-surface.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bishop, G. A. & Hostager, B. S. B lymphocyte activation by contact-mediated interactions with T lymphocytes. Curr. Opin. Immunol. 13, 278–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Huang, D. C. S. et al. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-xL . Proc. Natl Acad. Sci. USA 96, 14871–14876 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baccam, M. & Bishop, G. A. Membrane-bound CD154, but not anti-CD40 mAbs, induces NF-κB independent B cell IL-6 production. Eur. J. Immunol. 29, 3855–3866 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Baccam, M., Woo, S., Vinson, C. & Bishop, G. A. CD40-mediated transcriptional regulation of the IL-6 gene in B lymphocytes: involvement of NF-κB, AP-1, and C/EBP. J. Immunol. 170, 3099–3108 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Rush, J. S. & Hodgkin, P. D. B cells activated via CD40 and IL-4 undergo a division burst but require continued stimulation to maintain division, survival and differentiation. Eur. J. Immunol. 31, 1150–1159 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, B. O., Haynes, L., Eaton, S. M., Swain, S. L. & Randall, T. D. The biological outcome of CD40 signaling is dependent on the duration of CD40L expression: reciprocal regulation by IL-4 and IL-12. J. Exp. Med. 196, 693–704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jalukar, S. V., Hostager, B. S. & Bishop, G. A. Characterization of the roles of TRAF6 in CD40-mediated B lymphocyte effector functions. J. Immunol. 164, 623–630 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Polyak, M. J., Tailor, S. H. & Deans, J. P. Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent insoluble membrane compartment. J. Immunol. 161, 3242–3248 (1998).

    CAS  PubMed  Google Scholar 

  42. Cheng, P. C., Dykstra, M. L., Mitchell, R. N. & Pierce, S. K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 190, 1549–1560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bouillon, M. et al. Lipid raft-dependent and independent signaling through HLA-DR molecules. J. Biol. Chem. 278, 7099–7107 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Ardila-Osorio, H. et al. Evidence of LMP1–TRAF3 interactions in glycosphingolipid-rich complexes of lymphoblastoid and nasopharyngeal carcinoma cells. Int. J. Cancer 81, 645–649 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Cottin, V., Doan, J. E. S. & Riches, D. W. H. Restricted localization of the TNF-R CD120a to lipid rafts: a novel role for the death domain. J. Immunol. 168, 4095–4102 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Arron, J. R., Pewzner-Jung, Y., Walsh, M. C., Kobayashi, T. & Choi, Y. Regulation of the subcellular localization of TRAF2 by TRAF1 reveals mechanisms of TRAF2 signaling. J. Exp. Med. 196, 923–934 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hueber, A. -O., Bernard, A. -M., Hérincs, Z., Couzinet, A. & He, H. -T. An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep. 3, 1–7 (2002).

    Article  Google Scholar 

  48. Ha, H. et al. Membrane rafts play a crucial role in RANK signaling and osteoclast function. J. Biol. Chem. 278, 18573–18580 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Ye, H., Park, Y. C., Kreishman, M., Kieff, E. & Wu, H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol. Cell 4, 321–330 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Rothe, M., Sarma, V., Dixit, V. M. & Goeddel, D. V. TRAF2-mediated activation of NF-κB by TNF receptor 2 and CD40. Science 269, 1424–1427 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Pullen, S. S. et al. CD40–TRAF interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochemistry 37, 11836–11845 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Haxhinasto, S. A. & Bishop, G. A. A novel interaction between PKD and TRAFs regulates BCR–CD40 synergy. J. Immunol. 171, 4655–4662 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Haxhinasto, S. A. & Bishop, G. A. Synergistic B cell activation by CD40 and the BCR: role of BCR-mediated kinase activation and TRAF regulation. J. Biol. Chem. 279, 2575–2582 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Horejsí, V. et al. GPI-microdomains: a role in signalling via immunoreceptors. Immunol. Today 20, 356–361 (1999).

    Article  PubMed  Google Scholar 

  55. Rudd, C. E. Adaptors and molecular scaffolds in immune cell signaling. Cell 96, 5–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Aggarwal, B. B. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  Google Scholar 

  57. Duckett, C. S. & Thompson, C. B. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev. 11, 2810–2821 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brown, K. D., Hostager, B. S. & Bishop, G. A. Differential signaling and TRAF degradation by CD40 and the EBV oncoprotein LMP1. J. Exp. Med. 193, 943–954 (2001). This paper shows that CD40-mediated signalling induces rapid proteasome-dependent degradation of TRAF2 and TRAF3. By contrast, the sustained and amplified signalling to B cells that is provided by the CD40 mimic LMP1 correlates with a failure of LMP1 to promote degradation of associated TRAF2 and TRAF3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Takayanagi, H. et al. T-cell mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Brown, K. D., Hostager, B. S. & Bishop, G. A. Regulation of TRAF2 signaling by self-induced degradation. J. Biol. Chem. 277, 19433–19438 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Hostager, B. S., Haxhinasto, S. A., Rowland, S. R. & Bishop, G. A. TRAF2-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J. Biol. Chem. 278, 45382–45390 (2003). This study uses a new method of gene targeting by homologous recombination to produce B-cell lines from several genetic backgrounds that lack TRAF2. Experiments using these cells show that, in B cells, TRAF2 has overlapping roles with TRAF6 in NF-κB activation, as well as unique roles in TRAF3 degradation, JNK activation and CD40–BCR synergy.

    Article  CAS  PubMed  Google Scholar 

  62. Freemont, P. S. Ubiquitination: RING for destruction? Curr. Biol. 10, R84–R87 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Moore, C. & Bishop, G. A. Receptor-induced TRAF degradation in B lymphocytes. FASEB J. 18, A428 (2004).

    Article  CAS  Google Scholar 

  64. Ishida, T. et al. Identification of TRAF6, a novel TRAF protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J. Biol. Chem. 271, 28745–28748 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Yeh, W. et al. Early lethality, functional NF-κB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715–725 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Hsing, Y., Hostager, B. S. & Bishop, G. A. Characterization of CD40 signaling determinants regulating NF-κB activation in lymphocytes. J. Immunol. 159, 4898–4906 (1997).

    CAS  PubMed  Google Scholar 

  67. Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective IL-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1021 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yasui, T. et al. Dissection of B cell differentiation during primary immune responses in mice with altered CD40 signals. Int. Immunol. 14, 319–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Ahonen, C. L. et al. The CD40–TRAF6 axis controls affinity maturation and the generation of long-lived plasma cells. Nature Immunol. 3, 451–456 (2002).

    Article  CAS  Google Scholar 

  70. Jabara, H. H. et al. The binding site for TRAF2 and TRAF3 but not for TRAF6 is essential for CD40-mediated Ig class switching. Immunity 17, 265–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Haxhinasto, S. A., Hostager, B. S. & Bishop, G. A. Molecular mechanisms of synergy between CD40 and the BCR: role for TRAF2 in receptor interaction. J. Immunol. 169, 1145–1149 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Inui, S. et al. Identification of the intracytoplasmic region essential for signal transduction through a B cell activation molecule, CD40. Eur. J. Immunol. 20, 1747–1753 (1990).

    Article  CAS  PubMed  Google Scholar 

  73. Goldstein, M. D. & Watts, T. H. Identification of distinct domains in CD40 involved in B7-1 induction or growth inhibition. J. Immunol. 157, 2837–2843 (1996).

    CAS  PubMed  Google Scholar 

  74. Hostager, B. S., Hsing, Y., Harms, D. E. & Bishop, G. A. Different CD40-mediated signaling events require distinct CD40 structural features. J. Immunol. 157, 1047–1053 (1996).

    CAS  PubMed  Google Scholar 

  75. Sutherland, C. L., Krebs, D. L. & Gold, M. R. An 11-amino acid sequence in the cytoplasmic domain of CD40 is sufficient for activation of JNK, activation of MAPKAP kinase-2, phosphorylation of IκBα, and protection of WEHI-231 cells from anti-IgM-induced growth arrest. J. Immunol. 162, 4720–4730 (1999).

    CAS  PubMed  Google Scholar 

  76. Lu, L., Cook, W. J., Lin, L. & Noelle, R. J. CD40 signaling through a newly identified TRAF2 binding site. J. Biol. Chem. 278, 45414–45418 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Xie, P., Hostager, B. S. & Bishop, G. A. Requirement for TRAF3 in signaling by LMP1, but not CD40, in B lymphocytes. J. Exp. Med. 199, 661–671 (2004). Using newly produced TRAF3-deficient B-cell lines, this paper presents the unexpected finding that TRAF3 has divergent roles in B-cell signalling mediated by different molecules: it inhibits CD40-mediated signalling, but it is an essential component of the B-cell activation mediated by LMP1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hsing, Y. & Bishop, G. A. Requirement for NF-κB activation by a distinct subset of CD40-mediated effector functions in B lymphocytes. J. Immunol. 162, 2804–2811 (1999).

    CAS  PubMed  Google Scholar 

  79. Baud, V. et al. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 13, 1297–1308 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hostager, B. S. & Bishop, G. A. Contrasting roles of TRAF2 and TRAF3 in CD40-mediated B lymphocyte activation. J. Immunol. 162, 6307–6311 (1999).

    CAS  PubMed  Google Scholar 

  81. Bishop, G. A. et al. Molecular mechanisms of B lymphocyte activation by the immune response modifier R-848. J. Immunol. 165, 5552–5557 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Bishop, G. A. et al. The immune response modifier, resiquimod, mimics CD40-induced B cell activation. Cell. Immunol. 208, 9–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Rothe, M., Wong, S. C., Henzel, W. J. & Goeddel, D. V. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78, 681–692 (1994). In this report, the first two TRAFs are described and both are shown to associate with CD120b.

    Article  CAS  PubMed  Google Scholar 

  84. Devernge, O. et al. Association of TRAF1, TRAF2, and TRAF3 with an EBV LMP1 domain important for B-lymphocyte transformation: role in NF-κB activation. Mol. Cell. Biol. 16, 7098–7108 (1996).

    Article  Google Scholar 

  85. Pullen, S. S., Dang, T. T. A., Crute, J. J. & Kehry, M. R. CD40 signaling through TRAFs. Binding site specificity and activation of downstream pathways by distinct TRAFs. J. Biol. Chem. 274, 14246–14254 (1999). This paper presents a complete in vitro study of CD40-derived peptides binding to TRAFs produced by insect cells. Some CD40 mutants are subsequently studied in overexpression systems in HEK293 cells. The paper contains useful information; however, in B cells, not all CD40 mutants bind TRAFs in the way that is described here (for example, see reference 71), indicating cell-type specificity in some aspects of TRAF–receptor binding.

    Article  CAS  PubMed  Google Scholar 

  86. Carpentier, I. & Beyaert, R. TRAF1 is a TNF inducible regulator of NF-κB activation. FEBS Lett. 460, 246–250 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Leo, E. et al. TRAF1 is a substrate of caspases activated during TNF-α-induced apoptosis. J. Biol. Chem. 276, 8087–8093 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Fotin-Mleczek, M. et al. TRAF1 regulates CD40-induced TRAF2-mediated NF-κB activation. J. Biol. Chem. 279, 677–685 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Song, H. Y., Rothe, M. & Goeddel, D. V. The TNF-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation. Proc. Natl Acad. Sci. USA 93, 6721–6725 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rothe, M., Pan, M., Henzel, W. J., Ayres, T. M. & Goeddel, D. V. The TNFR2–TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83, 1243–1252 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Duckett, C. S., Gedrich, R. W., Gilfillan, M. C. & Thompson, C. B. Induction of NF-κB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol. Cell. Biol. 17, 1535–1542 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cha, G. -H. et al. Discrete functions of TRAF1 and TRAF2 in Drosophila melanogaster mediated by JNK and NF-κB-dependent signaling pathways. Mol. Cell. Biol. 23, 7982–7991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tsitsikov, E. et al. TRAF1 is a negative regulator of TNF signaling: enhanced TNF signaling in TRAF1-deficient mice. Immunity 15, 647–657 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Kilger, E., Kieser, A., Baumann, M. & Hammerschmidt, W. EBV-mediated B cell proliferation is dependent upon LMP1, which simulates an activated CD40 receptor. EMBO J. 17, 1700–1709 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Busch, L. K. & Bishop, G. A. The EBV transforming protein, LMP1, mimics and cooperates with CD40 signaling in B lymphocytes. J. Immunol. 162, 2555–2561 (1999).

    CAS  PubMed  Google Scholar 

  96. Izumi, K. M., Kaye, K. M. & Kieff, E. D. The EBV LMP1 amino acid sequence that engages TRAFs is critical for primary B lymphocyte growth transformation. Proc. Natl Acad. Sci. USA 94, 1447–1452 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Busch, L. K. & Bishop, G. A. Multiple carboxyl-terminal regions of the EBV oncoprotein, LMP1, cooperatively regulate signaling to B lymphocytes via TRAF-dependent and TRAF-independent mechanisms. J. Immunol. 167, 5805–5813 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Kaye, K. M. et al. TRAF2 is a mediator of NF-κB activation by LMP1, the EBV transforming protein. Proc. Natl Acad. Sci. USA 93, 11085–11090 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Munroe, M. E. & Bishop, G. A. Differences in signaling mechanisms to B lymphocytes by CD40 and TNFR2 (CD120b). FASEB J. 18, A50 (2004).

    Google Scholar 

  100. Berberich, I., Shu, G. L. & Clark, E. A. Cross-linking CD40 on B cells rapidly activates nuclear factor-κB. J. Immunol. 153, 4357–4366 (1994).

    CAS  PubMed  Google Scholar 

  101. Coope, H. J. et al. CD40 regulates the processing of NF-κB2 p100 to p52. EMBO J. 21, 5375–5385 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zarnegar, B. et al. Unique CD40-mediated biological program in B cell activation requires both type 1 and type 2 NF-κB activation pathways. Proc. Natl Acad. Sci. USA 101, 8108–8113 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ren, C. L., Morio, T., Fu, S. M. & Geha, R. S. Signal transduction via CD40 involves activation of lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase Cγ2. J. Exp. Med. 179, 673–680 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Zhu, N. et al. CD40 signaling in B cells regulates the expression of the Pim-1 kinase via the NF-κB pathway. J. Immunol. 168, 744–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Chin, A. I. et al. TANK potentiates TRAF-mediated JNK/SAPK activation through the GCK pathway. Mol. Cell. Biol. 19, 6665–6672 (1999). This is one of the rare studies that verifies interactions between TRAFs and downstream kinases that are expressed at normal levels in B cells. It shows that GC kinase is a probable intermediate between TRAF2 and the TRAF2-dependent activation of JNK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shi, C., Leonardi, A., Kyriakis, J., Siebenlist, U. & Kehrl, J. H. TNF-mediated activation of the SAPK pathway: TRAF2 recruits and activates germinal center kinase related. J. Immunol. 163, 3279–3285 (1999).

    CAS  PubMed  Google Scholar 

  107. Yan, M. et al. Activation of SAPK by MEKK1 phosphorylation of its activator SEK1. Nature 372, 798–800 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Sanchez, I. et al. Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 372, 794–798 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Ichijo, H. et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275, 90–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Malinin, N. L., Boldin, M. P., Kovalenko, A. V. & Wallach, D. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385, 540–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Song, H. Y., Ré;gnier, C. H., Kirschning, C. J., Goeddel, D. V. & Rothe, M. TNF-mediated kinase cascades: bifurcation of NF-κB and JNK/SAPK pathways at TRAF2. Proc. Natl Acad. Sci. USA 94, 9792–9796 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ling, L., Cao, Z. & Goeddel, D. V. NF-κB inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc. Natl Acad. Sci. USA 95, 3792–3797 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shinkura, R. et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding NIK. Nature Genet. 22, 74–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Yamada, T. et al. Abnormal immune function of hemopoietic cells from aly mice, a natural strain with mutant NIK. J. Immunol. 165, 804–812 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Garceau, N. et al. Lineage-restriced function of NIK in transducing signals via CD40. J. Exp. Med. 191, 381–385 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yin, L. et al. Defective LT-β receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science 291, 2162–2165 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Lee, F. S., Hagler, J., Chen, Z. J. & Maniatis, T. Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88, 213–222 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Bishop, G. A., Haxhinasto, S. A., Stunz, L. L. & Hostager, B. S. Antigen-specific B lymphocyte activation. CRC Crit. Rev. Immunol. 23, 149–197 (2003).

    Article  CAS  Google Scholar 

  119. Mann, J., Oakley, F., Johnson, P. W. & Mann, D. A. CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-κB and CBF1. J. Biol. Chem. 277, 17125–17138 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Huang, C. J., Chen, C. Y., Chen, H. H., Tsai, S. F. & Choo, K. B. TDPOZ, a family of bipartite animal and plant proteins that contain the TRAF (TD) and POZ/BTB domains. Gene 324, 117–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Hu, H. M., O'Rourke, K., Boguski, M. S. & Dixit, V. M. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J. Biol. Chem. 269, 30069–30072 (1994).

    CAS  PubMed  Google Scholar 

  122. Cheng, G. et al. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science 267, 1494–1498 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Régnier, C. H. et al. Presence of a new conserved domain in CART1, a novel member of the TRAF protein family, which is expressed in breast carcinoma. J. Biol. Chem. 270, 25715–25721 (1995).

    Article  PubMed  Google Scholar 

  124. Masson, R. et al. TRAF4 expression pattern during mouse development. Mech. Dev. 71, 187–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Shiels, H. et al. TRAF4 deficiency leads to tracheal malformation with resulting alterations in air flow to lungs. Am. J. Pathol. 157, 679–688 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nakano, H. et al. TRAF5, an activator of NF-κB and putative signal transducer for the LT-β receptor. J. Biol. Chem. 271, 14661–14664 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Ishida, T. et al. TRAF5, a novel TNF-R-associated factor family protein, mediates CD40 signaling. Proc. Natl Acad. Sci. USA 93, 9437–9442 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is grateful to members of her laboratory and B. Hostager for valuable discussions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

BAFF

BAFFR

BCMA

CD20

CD27

CD30

CD40

CD95

CD120a

CD120b

CD154

RANK

TACI

TNF

TRAF1

TRAF2

TRAF3

TRAF6

TRAIL

FURTHER INFORMATION

Gail Bishop's laboratory

Glossary

TOLL-LIKE RECEPTOR (TLR) FAMILY

A family of receptors that recognize conserved products unique to microorganisms (such as lipopolysaccharide), which are known as pathogen-associated molecular patterns (PAMPs). TLR-mediated events signal to the host that a microbial pathogen is present.

RING DOMAIN

(Really interesting new gene domain). A cysteine-rich motif found in several hundred proteins from diverse eukaryotes.

AGONISTIC

An artificial receptor stimulus that mimics the effects of natural ligand binding.

LIPID RAFTS

Areas of the plasma membrane that are rich in cholesterol, glycosphingolipids and glycosylphosphatidylinositol-anchored proteins. They are also known as glycolipid-enriched membrane domains (GEMs) and detergent-insoluble glycolipid-enriched membranes (DIGs).

UBIQUITYLATION

The addition of one or more ubiquitin residues to a protein.

E3 UBIQUITIN LIGASE

The enzyme that is required to attach the molecular tag ubiquitin to proteins that are destined for degradation by the proteasomal complex.

DOMINANT-NEGATIVE PROTEINS

Defective proteins that retain the ability to interact but lack enzymatic activity, so they distort or compete with normal proteins.

HOMOLOGOUS RECOMBINATION

Genetic recombination that occurs between regions of DNA with long stretches of homology. This occurs with a low frequency in somatic cells and at a much higher frequency in germ cells.

ALYMPHOPLASIA

(aly). A mouse phenotype that is characterized by the absence of lymph nodes and Peyer's patches. It is caused by a spontaneous mutation in the gene that encodes nuclear-factor-κB-inducing kinase (NIK).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, G. The multifaceted roles of TRAFs in the regulation of B-cell function. Nat Rev Immunol 4, 775–786 (2004). https://doi.org/10.1038/nri1462

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1462

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing