Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

AIDS pathogenesis: what have two decades of HIV research taught us?

Abstract

22 years ago, the first cases of an acquired immunodeficiency syndrome afflicting young, homosexual American men were reported, heralding what we now know to be the beginning of the HIV epidemic. Since then, billions of US dollars have been invested in HIV research in the hope of gaining a better understanding of this infection and how to prevent and treat it. What are the landmarks in HIV research over the past two decades, and what questions still remain to be answered? What has the intense study of HIV infection taught us about other virus infections and how our immune system responds to them?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sites of key events in the development of the HIV epidemic.
Figure 2: The extent of the worldwide HIV-1 epidemic.
Figure 3: Schematic diagram of the course of HIV-1 infection.

References

  1. Gottlieb, M. S. et al. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men. N. Engl. J. Med. 305, 1425–1431 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Masur, H. et al. An outbreak of community-acquired Pneumocystis carinii pneumonia. N. Engl. J. Med. 305, 1431–1438 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Barre-Sinoussi, F. et al. Isolation of a T-lymphotropic retrovirus from a patient at risk of acquired immune deficiency syndrome (AIDS). Science 220, 868–871 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Popovic, M., Sarngadharan, M. G., Read, E. & Gallo, R. C. Detection, isolation and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224, 497–500 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Levy, J. A. et al. Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS Science . 225, 840–842 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Kreiss, J. K. et al. AIDS virus infection in Nairobi prostitutes. Spread of the epidemic to East Africa. N. Engl. J. Med. 314, 414–418 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Weiss, R. A. & Jaffe, H. W. Duesberg, HIV and AIDS. Nature 345, 659–660 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Sipsas, N. V. et al. Identification of type-specific cytotoxic T lymphocyte responses to homologous viral proteins in laboratory workers accidentally infected with HIV-1. J. Clin. Invest. 99, 752–762 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu, T. et al. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature 391, 594–597 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Roberts, J. D., Bebenek, K. & Kunkel, T. A. The accuracy of reverse transcriptase from HIV-1. Science 242, 1171–1173 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Perelson, A. S. et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Korber, B. et al. Timing the ancestor of the HIV-1 pandemic strains. Science 288, 1789–1796 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Korber, B. et al. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull. 58, 19–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Clavel, F. et al. Molecular cloning and polymorphism of the human immune deficiency virus type 2. Nature 324, 691–695 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Guyader, M. et al. Genome organisation and transactivation of the human immunodeficiency virus type 2. Nature 326, 662–669 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Gao, F. et al. Human infection by genetically diverse SIVSM-related HIV-2 in west Africa. Nature 358, 495–499 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Gao, F. et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397, 436–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Rey-Cuille, M. A. et al. Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J. Virol. 72, 3872–3886 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Broussard, S. R. et al. Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J. Virol. 75, 2262–2275 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaur, A. et al. Diverse host responses and outcomes following simian immunodeficiency virus SIVmac239 infection in sooty mangabeys and rhesus macaques. J. Virol. 72, 9597–9611 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Daniel, M. D. et al. Long-term persistent infection of macaque monkeys with the simian immunodeficiency virus. J. Gen. Virol. 68, 3183–3189 (1987).

    Article  PubMed  Google Scholar 

  22. Whittle, H. C., Ariyoshi, K. & Rowland-Jones, S. HIV-2 and T-cell recognition. Curr. Opin. Immunol. 10, 382–387 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Dalgleish, A. et al. The CD4 antigen is an essential component of the receptor for the AIDS retrovirus Nature 312, 763–767 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Klatzmann, D. et al. T-lymphocyte T4 molecule behaves as the receptor for human retroviral LAV. Nature 312, 767–768 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Spiegel, H., Herbst, H., Niedobitek, G., Foss, H. D. & Stein, H. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4+ T-helper cells. Am. J. Pathol. 140, 15–22 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pantaleo, G. et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362, 355–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Embretson, J. et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362, 359–362 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Weissman, D., Barker, T. D. & Fauci, A. S. The efficiency of acute infection of CD4+ T cells is markedly enhanced in the setting of antigen-specific immune activation. J. Exp. Med. 183, 687–692 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Clerici, M. et al. Detection of three distinct patterns of T-helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients. Independence of CD4+ cell numbers and clinical staging. J. Clin. Invest. 84, 1892–1899 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gruters, R. A. et al. Immunological and virological markers in individuals progressing from seroconversion to AIDS. AIDS 5, 837–844 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Musey, L. K. et al. Early and persistent human immunodeficiency virus type 1 (HIV-1)-specific T helper dysfunction in blood and lymph nodes following acute HIV-1 infection. J. Infect. Dis. 180, 278–284 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Douek, D. C. et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417, 95–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Kalams, S. A. & Walker, B. D. The critical need for CD4 help in maintaining effective cytotoxic T-lymphocyte responses. J. Exp. Med. 188, 2199–2204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor : functional cDNA cloning of a seven-transmembrane G protein-coupled receptor. Science 272, 872–877 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Cocchi, F. et al. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Alkhatib, G. et al. CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Deng, H. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Dragic, T. et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Loetscher, P. et al. CCR5 is characteristic of TH1 lymphocytes. Nature 391, 344–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Bleul, C. C., Wu, L., Hoxie, J. A., Springer, T. A. & Mackay, C. R. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl Acad. Sci. 94, 1925–1930 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S. & Landau, N. R. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med. 185, 621–628 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Daar, E. S., Moudgil, T., Meyer, R. D. & Ho, D. D. Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N. Engl. J. Med. 324, 961–964 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Mellors, J. W. et al. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann. Intern. Med. 122, 573–579 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Piatak, M., Saag, M. & Yang, L. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259, 1749–1754 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Margolick, J. B. et al. Failure of T-cell homeostasis preceding AIDS in HIV-1 infection. The Multicenter AIDS Cohort Study. Nature Med. 1, 674–680 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Pakker, N. G. et al. Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: a composite of redistribution and proliferation. Nature Med. 4, 208–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Effros, R. B. et al. Shortened telomeres in the expanded CD28CD8+ subset in HIV disease implicate replicative sensecence in HIV pathogenesis. AIDS 10, F17–F22 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Wolthers, K. C. et al. T-cell telomere length in HIV-1 infection: no evidence for increased CD4+ T-cell turnover. Science 274, 1543–1547 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Hellerstein, M. et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nature Med. 5, 83–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Kovacs, J. A. et al. Identification of dynamically distinct subpopulations of T lymphocytes that are differentially affected by HIV. J. Exp. Med. 194, 1731–1741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sopper, S. et al. Impact of simian immunodeficiency virus (SIV) infection on lymphocyte numbers and T-cell turnover in different organs of rhesus monkeys. Blood 101, 1213–1219 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. De Boer, R. J., Mohri, H., Ho, D. D. & Perelson, A. S. Turnover rates of B cells, T cells and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques. J. Immunol. 170, 2479–2487 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Douek, D. C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Hazenberg, M. D. et al. Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T-cell population in HIV-1 infection. Nature Med. 6, 1036–1042 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Hazenberg, M. D. et al. T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 95, 249–255 (2000).

    CAS  PubMed  Google Scholar 

  58. Douek, D. C. et al. Evidence for increased T-cell turnover and decreased thymic output in HIV infection. J. Immunol. 167, 6663–6668 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Grossman, Z., Meier-Schellersheim, M., Sousa, A. E., Victorino, R. M. & Paul, W. E. CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nature Med. 8, 319–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Sousa, A. E., Carneiro, J., Meier-Schellersheim, M., Grossman, Z. & Victorino, R. M. CD4 T-cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J. Immunol. 169, 3400–3406 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Chakrabarti, L. A. et al. Normal T-cell turnover in sooty mangabeys harboring active simian immunodeficiency virus infection. J. Virol. 74, 1209–1223 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Walker, B. D. et al. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature 328, 345–348 (1987).

    Article  CAS  PubMed  Google Scholar 

  63. Plata, F. et al. AIDS virus-specific cytotoxic T lymphocytes in lung disorders. Nature 328, 348–351 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Altman, J. et al. Direct visualization and phenotypic analysis of virus-specific T lymphocytes in HIV-infected individuals. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Borrow, P., Lewicki, H., Hahn, B. H., Shaw, G. M. & Oldstone, M. B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68, 6103–6110 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wilson, J. D. et al. Direct visualization of HIV-1-specific cytotoxic T lymphocytes during primary infection. AIDS 14, 225–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Ogg, G. S. et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma viral RNA load. Science 279, 2103–2106 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Addo, M. M. et al. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J. Virol. 77, 2081–2092 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Phillips, R. E. et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T-cell recognition. Nature 354, 453–459 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Price, D. A. et al. Positive selection of HIV-1 cytotoxic T-lymphocyte escape variants during primary infection. Proc. Natl Acad. Sci. USA 94, 1890–1895 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Allen, T. M. et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407, 386–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Moore, C. B. et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296, 1439–1443 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Poignard, P. et al. Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo. Immunity 10, 431–438 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. O'Brien, S. J., Nelson, G. W., Winkler, C. A. & Smith, M. W. Polygenic and multifactorial disease gene association in man: lessons from AIDS. Annu. Rev. Genet. 34, 563–591 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35–Cw*04 disadvantage. Science 283, 1748–1752 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Andrew McMichael for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez

HIV-1

HIV-2

SIV

LocusLink

CCL3

CCL4

CCL5

CCR5

CXCR4

FURTHER INFORMATION

Centers for Disease Control and Prevention

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowland-Jones, S. AIDS pathogenesis: what have two decades of HIV research taught us?. Nat Rev Immunol 3, 343–348 (2003). https://doi.org/10.1038/nri1058

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing