Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Outlook
  • Published:

Preclinical safety evaluation of biotechnology-derived pharmaceuticals

Abstract

Although the principles of preclinical safety evaluation are similar between conventional pharmaceuticals and biotechnology-derived pharmaceuticals (biotech products), the difference lies in the way that these principles are put into practice. The biggest challenge in the preclinical assessment of biotech products has been coping with species specificity and the associated detection and implications of altered immune status. The choice of animal model and study design should depend on the question being asked. This article explores to what extent animal toxicity studies can lead to safer drugs in humans?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Zbinden, G. Biotechnology products intended for human use, toxicological targets and research strategies. Prog. Clin. Biol. Res. 235, 143–159 (1987).

    CAS  PubMed  Google Scholar 

  2. Claude, J. R. Difficulties in conceiving and applying guidelines for the safety evaluation of biotechnologically produced drugs: some examples. Toxicol. Lett. 64–65, 349–355 (1992).

    Article  Google Scholar 

  3. Cavagnaro, J. A. Science-based approach to preclinical safety evaluation of biotechnology products. Pharm. Eng. 12, 32–33 (1992).

    Google Scholar 

  4. Dayan, A. D. Safety evaluation of biological and biotechnology-derived medicines. Toxicology 105, 59–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Maki, E. Safety assessment of biotechnology-derived pharmaceutical products. General principles and the relevant cases. J. Toxicol. Sci. 21, 531–534 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Serabian, M. A. & Pilaro, A. M. Safety assessment of biotechnology-derived pharmaceuticals: ICH and beyond. Toxicol. Pathol. 27, 27–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Bass, R., Purves, J. & Amati, M. P. Safety of biotechnological products. Pharmacol. Toxicol. 86 (Suppl. 1), 27–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Cavagnaro, J. A. in Comprehensive Toxicology 2. Toxicity Testing & Evaluation (eds Williams, P. D. & Hottendorf, G. H.) 291–298 (Elsevier Science, New York, 1996).

    Google Scholar 

  9. Griffiths, S. A. & Lumley, C. (eds) Proceedings of the CMR International Workshop on Safety Evaluation of Biotechnology-Derived Pharmaceuticals: Facilitating a Scientific Approach (CMR International, Surrey, UK, 1997).

    Google Scholar 

  10. Black, L. E. et al. Safety evaluation of immunomodulatory biopharmaceuticals: can we improve the predictive value of preclinical studies? Hum. Exp. Toxicol. 19 (Special issue), 1–265 (2000).

    Article  Google Scholar 

  11. Sims, J. Assessment of biotechnology products for therapeutic use. Toxicol. Lett. 120, 59–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Federal Register 61, FR2733 (29 January 1996).

  13. Guidance for industry on content and format of investigational new drug applications (INDs) for Phase I studies of drugs, including well-characterized, therapeutic, biotechnology-derived products. Center for Biologics Evaluation and Research [online] (cited 29 April 2002) 〈http://www.fda.gov/cber/gdlns/ind1.pdf〉 (1995).

  14. Guidance for industry Q&A content and format of INDs for Phase I studies of drugs, including well-characterized, therapeutic, biotechnology-derived products. Center for Biologics Evaluation and Research [online] (cited 29 April 2002) 〈http://www.fda.gov/cber/gdlns/qaind1.htm〉 (2000).

  15. Guidance for industry INDs for Phase II and III studies of drugs, including specified therapeutic biotechnology-derived products chemistry, manufacturing, and controls content and format. Center for Biologics Evaluation and Research [online] (cited 29 April 2002) 〈http://www.fda.gov/cber/gdlns/indbiodft.pdf〉 (1999).

  16. ICH guidance: Q6B specifications test procedures and acceptance criteria for biotechnological/biological products. Center for Biologics Evaluation and Research [online] (cited 29 April 2002) 〈http://www.fda.gov/cber/guidelines.htm〉 (1999).

  17. Center for Biologics Evaluation and Review (CBER) product approval information. US Food and Drug Adminisitration [online] (cited 29 April 2002) 〈www.fda.gov/cber/efoi/approve.htm〉 (2002).

  18. Biotechnology industry statistics. Biotechnology Industry Organization [online] (cited 25 April 2002) 〈www.bio.org/er/statistics.asp〉 (2001).

  19. Debouck, C. & Metcalf, B. The impact of genomics on drug discovery. Annu. Rev. Pharmacol. Toxicol. 40, 193–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Harris, S. & Ford, S. M. Transgenic gene knock-outs: functional genomics and therapeutic target selection. Pharmacogenomics 1, 433–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Nuwaysir, E. F., Bittner, M., Trent, J., Barrett, J. C. & Afshari, C. A. Microarrays and toxicology: the advent of toxicogenomics. Mol. Carcinog. 24, 153–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Lovett, R. A. Toxicogenomics. Toxicologists brace for the genomics revolution. Science 289, 536–537 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Burchiel, S. W. et al. Analysis of genetic and epigenetic mechanisms of toxicity: potential role of toxicogenomics and proteomics in toxicology. Toxicol Sci. 59, 193–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Cunningham, M. J. Genomics and proteomics: the new millennium of drug discovery and development. J. Pharmacol. Toxicol. Methods 44, 291–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Fielden, M. R. & Zacharewski, T. R. Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology. Toxicol. Sci. 60, 6–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Nicholson, J. K., Lindon, J. C. & Holmes, E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 11, 1181–1189 (1999).

    Article  Google Scholar 

  27. Searls, D. B. Using bioinformatics in gene and drug discovery. Drug Discov. Today 5, 135–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Maggio, E. T. & Ramnarayan, K. Recent developments in computational proteomics. Drug Discov. Today 6, 996–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Loo, J. A., DeJohn, D. E., Du, P., Stevenson, T. I. & Ogorzalek Loo, R. R. Application of mass spectrometry for target identification and characterization. Med. Res. Rev. 19, 307–319 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Roberts, S. A. High-throughput screening approaches for investigating drug metabolism and pharmacokinetics. Xenobiotica 31, 557–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. MacGregor, J. T. et al. New molecular endpoints and methods for routing toxicity testing. Fundam. Appl. Toxicol. 26, 156–173 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Kensler, T. W., Davidson, N. E., Groopman, J. D. & Munoz, A. Biomarkers and surrogacy: relevance to chemoprevention. IARC Sci. Publ. 154, 27–47 (2001).

    CAS  PubMed  Google Scholar 

  33. ICH guidance: S6 safety evaluation of biotechnology-derived pharmaceuticals. Center for Biologics Evaluation and Research [online] (cited 29 April 2002) 〈http://www.fda.gov/cber/guidelines.htm〉 (1997).

  34. Coscarella, A. et al. Pharmacokinetic and immunogenic behavior of three recombinant human GM-CSF–EPO hybrid proteins in cynomolgus monkeys. Mol. Biotechnol. 10, 115–122 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Braun, A., Kwee, L., Labow, M. A. & Alsenz, J. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon-α (IFN-α) in normal and transgenic mice. Pharm. Res. 14, 1472–1478 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, D. S. et al. Effect of dosing schedule on pharmacokinetics of α-interferon and anti-α interferon neutralizing antibody in mice. Antimicrob. Agents Chemother. 45, 176–180 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Von Wussow, P. et al. Immunogenicity of different types of interferons in the treatment of hairy-cell leukemias. N. Engl. J. Med. 319, 1226–1227 (1988).

    CAS  PubMed  Google Scholar 

  38. Miller, L. L. et al. Abrogation of the hematological and biological activities of the interleukin 3/granulocyte– macrophage colony-stimulating factor fusion protein PIXY321 by neutralizing anti-PIXY321 antibodies in cancer patients receiving high-dose carboplatin. Blood 93, 3250–3258 (1999).

    CAS  PubMed  Google Scholar 

  39. Gunn, H. Immunogenicity of recombinant human interleukin-3. Clin. Immunol. Immunopathol. 83, 1–4 (1997).

    Article  Google Scholar 

  40. Finkelman, F. D. et al. Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine–anti-cytokine antibody complexes. J. Immunol. 151, 1235–1244 (1993).

    CAS  PubMed  Google Scholar 

  41. May, L. T. et al. Antibodies chaperone circulating IL-6. Paradoxical effects of anti-IL-6 'neutralizing' antibodies in vivo. J. Immunol. 151, 3225–3236 (1993).

    CAS  PubMed  Google Scholar 

  42. Jones, A. T. & Ziltener, H. J. Enhancement of the biologic effects of interleukin-3 in vivo by anti-interleukin-3 antibodies. Blood 82, 1133–1141 (1993).

    CAS  PubMed  Google Scholar 

  43. Brown, R. A. et al. Enhanced firbroblast conctraction of 3D collagen lattices and integrin expression by TGF-β1 and -β3: mechanoregulatory growth factors? Exp. Cell Res. 274, 310–322 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Green, J. D. & Black, L. E. Status of preclinical safety assessment of immunomodulatory biopharmaceuticals. Hum. Exp. Toxicol. 19, 208–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Pullai, O., Dhanikaul, A. B. & Panchagnula, R. Drug delivery: an odyssey of 100 years. Curr. Opin. Chem. Biol. 5, 439–446 (2001).

    Article  Google Scholar 

  46. Watts, T. L. & Fasano, A. Modulation of intestinal permeability: a novel and innovative approach for the oral delivery of drugs, macromolecules and antigens. Biotechnol. Genet. Eng. Rev. 17, 433–453 (2001).

    Article  Google Scholar 

  47. FDA guidance concerning demonstration of comparability of human biological products, including therapeutic biotechnology-derived products. Center for Biologics Evaluation and Research [online] (cited 29 April 2002) 〈http://www.fda.gov/cber/gdlns/comptest.txt〉 (1996).

  48. Committee for Proprietary Medicinal Products. Note for guidance on comparability of medicinal products containing biotechnology-derived products as drug substance. The European Agency for the Evaluation of Medicinal Products [online] (cited 29 Apr 02) 〈http://www.emea.eu.int/pdfs/human/bwp/320700en.pdf〉 (2001).

  49. Mordenti, J., Cavagnaro, J. A. & Green, J. D. Design of biological equivalence programs for therapeutic biotechnology products in clinical development: a perspective. Pharm. Res. 13, 1427–1437 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Schaffner, G., Haase, M. & Giess, S. Criteria for investigation of the product equivalence of monoclonal antibodies for therapeutic and in vivo diagnostic use in case of introduction of changes in the manufacturing process. Biologicals 23, 253–259 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Polastro, E. T. & Little, A. D. The future of biogenerics. Contract Pharma [online] (cited 29 April 2002) 〈http://www.contractpharma.com/Oct013.htm〉 (2001).

  52. Schellekens, H. & Ryff, J.-C. Biogenerics: the off-patent biotech products. Trends Pharmacol. Sci. 23, 119–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Cavagnaro, J. Preclinical development strategies for new medicines: are the correct questions being asked? Reg. Affairs J. 12, 3–4 (2000).

    Google Scholar 

  54. Schwetz, B. A. Toxicology at the Food and Drug Administration: new century, new challenges. Int. J. Toxicol. 20, 3–8 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Smith, L. L. Key challenges for toxicologists in the 21st century. Trends Pharmacol. Sci. 22, 281–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. ICH guidance: M3 non-clinical safety studies for the conduct of human clinical trials for pharmaceuticals. Center for Biologics Evaluation and Research [online] (cited 29 April 2002) 〈http://www.fda.gov/cber/guidelines.htm〉 (2002).

  57. Cavagnaro, J. & Spindler, P. Methods for predicting tumorigenicity of immunomodulatory biopharmaceuticals. Hum. Exp. Toxicol. 19, 213–215 (2000).

    Article  Google Scholar 

  58. Calabrese, E. J. Suitability of animal models for predictive toxicology: theoretical and practical considerations. Drug Metab. Rev. 15, 505–523 (1984).

    Article  CAS  PubMed  Google Scholar 

  59. Russel, R. W. Essential role of animal models in understanding human toxicities. Neurosci. Biobehav. Rev. 15, 7–11 (1991).

    Article  Google Scholar 

  60. Miller, G. S. New concepts of preparation and use of animal models in toxicology. Reg. Toxicol. Pharmacol. 7, 414–416 (1987).

    Article  CAS  Google Scholar 

  61. Dayan, A. Forward-safety evaluation of immunomodulatory biopharmaceuticals: can we improve the predictive value of preclinical studies? Hum. Exp. Toxicol. 19, 206–207 (2000).

    Google Scholar 

  62. Sharma, A. et al. Comparative pharmacodynamics of keliximab and clenoliximab in transgenic mice bearing human CD4. J. Pharmacol. Exp. Ther. 293, 33–41 (2000).

    CAS  PubMed  Google Scholar 

  63. Nishijima, I. et al. A human GM-CSF receptor expressed in transgenic mice stimulates proliferation and differentiation of hemopoietic progenitors to all lineages in response to human GM-CSF. Mol. Biol. Cell 6, 497–508 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Terrell, T. G. & Green, J. D. Comparative pathology of recombinant murine interferon-γ in mice and recombinant human interferon-γ in cynomolgus monkeys. Int. Rev. Exp. Pathol. 34, 73–101 (1993).

    Article  PubMed  Google Scholar 

  65. Anderson, T. D. & Hayes, T. J. Toxicity of human recombinant interleukin-2 in rats. Pathologic changes are characterized by marked lymphocytic and eosinophilic proliferation and multisystem involvement. Lab. Invest. 60, 331–346 (1989).

    CAS  PubMed  Google Scholar 

  66. Anderson, T. D., Areco, R. & Hayes, T. J. Comparable toxicology and pathology associated with administration of recombinant HuIL-1α to animals. Int. Rev. Exp. Pathol. 34, 9–36 (1993).

    PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges fellow members of the ICH S6 'relevant' Expert Working Group — G. Vicari, J. Sims, J. Carstensen, W. Neumann, T. Inoue, M. Nakadate, E. Maki, M. Kawai and J. Green, and colleagues C. Klingbeil, J. Stoudemire, M. Serabian, A. Pilaro, M. Papaluca-Amati, P. Spindler, D. Kornbrust, P. Smith, T. Hayes, T. Anderson, R. Tyler and others for staying on “Dr Zbinden's track”.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Biotechnology Industry Organization

Food and Drug Administration

Regulatory Affairs Professionals Society

Society of Toxicology

Virginia Biotechnology Association

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavagnaro, J. Preclinical safety evaluation of biotechnology-derived pharmaceuticals. Nat Rev Drug Discov 1, 469–475 (2002). https://doi.org/10.1038/nrd822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd822

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing