Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

What do drug transporters really do?

Abstract

Potential drug–drug interactions mediated by the ATP-binding cassette (ABC) transporter and solute carrier (SLC) transporter families are of clinical and regulatory concern. However, the endogenous functions of these drug transporters are not well understood. Discussed here is evidence for the roles of ABC and SLC transporters in the handling of diverse substrates, including metabolites, antioxidants, signalling molecules, hormones, nutrients and neurotransmitters. It is suggested that these transporters may be part of a larger system of remote communication ('remote sensing and signalling') between cells, organs, body fluid compartments and perhaps even separate organisms. This broader view may help to clarify disease mechanisms, drug–metabolite interactions and drug effects relevant to diabetes, chronic kidney disease, metabolic syndrome, hypertension, gout, liver disease, neuropsychiatric disorders, inflammatory syndromes and organ injury, as well as prenatal and postnatal development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SLC and ABC drug transporters are expressed in most epithelial barriers.
Figure 2: SLC and ABC drug transporters that have been implicated in the handling of xenobiotics and drugs.
Figure 3: Reconstruction of metabolic networks from large-scale 'omics' data implicates drug transporters in metabolic pathways.

Similar content being viewed by others

References

  1. You, G. & Morris, M. E. (eds) Drug Transporters: Molecular Characterization and Role in Drug Disposition (John Wiley & Sons, 2014).

  2. Giacomini, K. M. et al. International Transporter Consortium commentary on clinically important transporter polymorphisms. Clin. Pharmacol. Ther. 94, 23–26 (2013).

    CAS  PubMed  Google Scholar 

  3. Giacomini, K. M. et al. Membrane transporters in drug development. Nature Rev. Drug Discov. 9, 215–236 (2010).

    CAS  Google Scholar 

  4. Morrissey, K. M. et al. The UCSF-FDA TransPortal: a public drug transporter database. Clin. Pharmacol. Ther. 92, 545–546 (2012).

    CAS  PubMed  Google Scholar 

  5. Zamek-Gliszczynski, M. J. et al. ITC recommendations for transporter kinetic parameter estimation and translational modeling of transport-mediated PK and DDIs in humans. Clin. Pharmacol. Ther. 94, 64–79 (2013).

    CAS  PubMed  Google Scholar 

  6. Lee, S. C., Zhang, L. & Huang, S. M. in Drug Transporters: Molecular Characterization and Role in Drug Dispositiont (eds You, G. & Morris, M. E.) 495 (John Wiley & Sons, 2014).

    Google Scholar 

  7. Ahn, S. Y. & Nigam, S. K. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol. Pharmacol. 76, 481–490 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. DeGorter, M. K., Xia, C. Q., Yang, J. J. & Kim, R. B. Drug transporters in drug efficacy and toxicity. Annu. Rev. Pharmacol. Toxicol. 52, 249–273 (2012).

    CAS  PubMed  Google Scholar 

  9. Klaassen, C. D. & Aleksunes, L. M. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol. Rev. 62, 1–96 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Koepsell, H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol. Aspects Med. 34, 413–435 (2013).

    CAS  PubMed  Google Scholar 

  11. Emami Riedmaier, A., Nies, A. T., Schaeffeler, E. & Schwab, M. Organic anion transporters and their implications in pharmacotherapy. Pharmacol. Rev. 64, 421–449 (2012).

    PubMed  Google Scholar 

  12. Roth, M., Obaidat, A. & Hagenbuch, B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br. J. Pharmacol. 165, 1260–1287 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. VanWert, A. L., Gionfriddo, M. R. & Sweet, D. H. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm. Drug Dispos. 31, 1–71 (2010).

    CAS  PubMed  Google Scholar 

  14. Wu, W., Dnyanmote, A. V. & Nigam, S. K. Remote communication through solute carriers and ATP binding cassette drug transporter pathways: an update on the remote sensing and signaling hypothesis. Mol. Pharmacol. 79, 795–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gottesman, M. M. & Ambudkar, S. V. Overview: ABC transporters and human disease. J. Bioenerg. Biomembr. 33, 453–458 (2001).

    CAS  PubMed  Google Scholar 

  16. Seeger, M. A. & van Veen, H. W. Molecular basis of multidrug transport by ABC transporters. Biochim. Biophys. Acta 1794, 725–737 (2009).

    CAS  PubMed  Google Scholar 

  17. Borst, P., de Wolf, C. & van de Wetering, K. Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch. 453, 661–673 (2007).

    CAS  PubMed  Google Scholar 

  18. Aller, S. G. et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718–1722 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Choudhuri, S. & Klaassen, C. D. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int. J. Toxicol. 25, 231–259 (2006).

    CAS  PubMed  Google Scholar 

  20. Miller, D. S. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol. Sci. 31, 246–254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sweeney, D. E. et al. Functional maturation of drug transporters in the developing, neonatal, and postnatal kidney. Mol. Pharmacol. 80, 147–154 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, Q. X., Hu, H. H., Zhou, Q., Yu, A. M. & Zeng, S. An overview of ABC and SLC drug transporter gene regulation. Curr. Drug Metab. 14, 253–264 (2013).

    CAS  PubMed  Google Scholar 

  23. de Jonge-Peeters, S. D., Kuipers, F., de Vries, E. G. & Vellenga, E. ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit. Rev. Oncol. Hematol. 62, 214–226 (2007).

    PubMed  Google Scholar 

  24. Burckhardt, G. & Burckhardt, B. C. in Drug Transporters (eds Fromm, M. F. & Kim, R. B.) 29–104 (Springer, 2011).

    Google Scholar 

  25. Choi, Y. H. & Yu, A. M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des. 20, 793–807 (2013).

    Google Scholar 

  26. Hagenbuch, B. & Stieger, B. The SLCO (former SLC21) superfamily of transporters. Mol. Aspects Med. 34, 396–412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Morrissey, K. M., Stocker, S. L., Wittwer, M. B., Xu, L. & Giacomini, K. M. Renal transporters in drug development. Annu. Rev. Pharmacol. Toxicol. 53, 503–529 (2013).

    CAS  PubMed  Google Scholar 

  28. Ahn, S. Y. & Bhatnagar, V. Update on the molecular physiology of organic anion transporters. Curr. Opin. Nephrol. Hypertens. 17, 499–505 (2008).

    CAS  PubMed  Google Scholar 

  29. Nigam, S. K. & Bhatnagar, V. How much do we know about drug handling by SLC and ABC drug transporters in children? Clin. Pharmacol. Ther. 94, 27–29 (2013).

    CAS  PubMed  Google Scholar 

  30. Lopez-Lopez, E. et al. Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenet. Genom. 23, 53–61 (2013).

    CAS  Google Scholar 

  31. Maeda, A. et al. Drug interaction between celecoxib and methotrexate in organic anion transporter 3-transfected renal cells and in rats in vivo. Eur. J. Pharmacol. 640, 168–171 (2010).

    CAS  PubMed  Google Scholar 

  32. VanWert, A. L. & Sweet, D. H. Impaired clearance of methotrexate in organic anion transporter 3 (Slc22a8) knockout mice: a gender specific impact of reduced folates. Pharm. Res. 25, 453–462 (2008).

    CAS  PubMed  Google Scholar 

  33. Vlaming, M. L. et al. Abcc2 (Mrp2), Abcc3 (Mrp3), and Abcg2 (Bcrp1) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7-hydroxymethotrexate in vivo. Mol. Cancer Ther. 8, 3350–3359 (2009).

    CAS  PubMed  Google Scholar 

  34. Kaler, G. et al. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J. Biol. Chem. 282, 23841–23853 (2007).

    CAS  PubMed  Google Scholar 

  35. Nagle, M. A. et al. Analysis of three-dimensional systems for developing and mature kidneys clarifies the role of OAT1 and OAT3 in antiviral handling. J. Biol. Chem. 286, 243–251 (2011).

    CAS  PubMed  Google Scholar 

  36. Vlaming, M. L. et al. Functionally overlapping roles of Abcg2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo. Clin. Cancer Res. 15, 3084–3093 (2009).

    CAS  PubMed  Google Scholar 

  37. Vlaming, M. L. et al. Bcrp1;Mdr1a/b;Mrp2 combination knockout mice: altered disposition of the dietary carcinogen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and its genotoxic metabolites. Mol. Pharmacol. 85, 520–530 (2014).

    PubMed  Google Scholar 

  38. Eraly, S. A. et al. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J. Biol. Chem. 281, 5072–5083 (2006).

    CAS  PubMed  Google Scholar 

  39. Han, Y. F. et al. Association of intergenic polymorphism of organic anion transporter 1 and 3 genes with hypertension and blood pressure response to hydrochlorothiazide. Am. J. Hypertens. 24, 340–346 (2011).

    CAS  PubMed  Google Scholar 

  40. Vallon, V. et al. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am. J. Physiol. Renal Physiol. 294, F867–F873 (2008).

    CAS  PubMed  Google Scholar 

  41. Chen, Y. et al. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet. Genom. 19, 497–504 (2009).

    Google Scholar 

  42. Christensen, M. M. et al. A gene-gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin. Pharmacogenet. Genom. 23, 526–534 (2013).

    CAS  Google Scholar 

  43. Stocker, S. L. et al. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacol. Ther. 93, 186–194 (2013).

    CAS  PubMed  Google Scholar 

  44. Lopez-Nieto, C. E., You, G., Barros, E. J. G., Beier, D. R. & Nigam, S. K. Molecular cloning and characterization of a novel transporter protein with very high expression in the kidney (abstract) J. Am. Soc. Nephrol. 7, 1301 (1996).

    Google Scholar 

  45. Lopez-Nieto, C. E. et al. Mus musculus kidney-specific transport protein mRNA (complete cds), accession number U52842.1. NCBI GenBank[online], (1996).

  46. Lopez-Nieto, C. E. et al. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J. Biol. Chem. 272, 6471–6478 (1997).

    CAS  PubMed  Google Scholar 

  47. Smith, H. W., Finkelstein, N., Aliminosa, L., Crawford, B. & Graber, M. The renal clearances of substituted hippuric acid derivatives and other aromatic acids in dog and man. J. Clin. Invest. 24, 388–404 (1945).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Burnell, J. M. & Kirby, W. M. Effectiveness of a new compound, benemid, in elevating serum penicillin concentrations. J. Clin. Invest. 30, 697–700 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pritchard, J. B. Luminal and peritubular steps in renal transport of p-aminohippurate. Biochim. Biophys. Acta 906, 295–308 (1987).

    CAS  PubMed  Google Scholar 

  50. Nigam, S. K. et al. The organic anion transporter (OAT) family: A systems biology perspective. Physiol. Rev. (in the press).

  51. Ahn, S. Y., Eraly, S. A., Tsigelny, I. & Nigam, S. K. Interaction of organic cations with organic anion transporters. J. Biol. Chem. 284, 31422–31430 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Truong, D. M., Kaler, G., Khandelwal, A., Swaan, P. W. & Nigam, S. K. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J. Biol. Chem. 283, 8654–8663 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Windass, A. S., Lowes, S., Wang, Y. & Brown, C. D. The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J. Pharmacol. Exp. Ther. 322, 1221–1227 (2007).

    CAS  PubMed  Google Scholar 

  54. Bahn, A. et al. Murine renal organic anion transporters mOAT1 and mOAT3 facilitate the transport of neuroactive tryptophan metabolites. Am. J. Physiol. Cell Physiol. 289, C1075–1084 (2005).

    CAS  PubMed  Google Scholar 

  55. Khamdang, S. et al. Interactions of human- and rat-organic anion transporters with pravastatin and cimetidine. J. Pharmacol. Sci. 94, 197–202 (2004).

    CAS  PubMed  Google Scholar 

  56. Pavlova, A. et al. Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am. J. Physiol. Renal Physiol. 278, F635–643 (2000).

    CAS  PubMed  Google Scholar 

  57. Zalups, R. K. & Ahmad, S. Handling of cysteine S-conjugates of methylmercury in MDCK cells expressing human OAT1. Kidney Int. 68, 1684–1699 (2005).

    CAS  PubMed  Google Scholar 

  58. Wong, C. C., Botting, N. P., Orfila, C., Al-Maharik, N. & Williamson, G. Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (OAT1/SLC22A6). Biochem. Pharmacol. 81, 942–949 (2011).

    CAS  PubMed  Google Scholar 

  59. Rizwan, A. N. & Burckhardt, G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm. Res. 24, 450–470 (2007).

    CAS  PubMed  Google Scholar 

  60. Mizuno, N. et al. Human organic anion transporters 1 (hOAT1/SLC22A6) and 3 (hOAT3/SLC22A8) transport edaravone (MCI-186; 3-methyl-1-phenyl-2-pyrazolin- 5-one) and its sulfate conjugate. Drug Metab. Dispos. 35, 1429–1434 (2007).

    CAS  PubMed  Google Scholar 

  61. Wikoff, W. R., Nagle, M. A., Kouznetsova, V. L., Tsigelny, I. F. & Nigam, S. K. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J. Proteome Res. 10, 2842–2851 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nagle, M. A., Wu, W., Eraly, S. A. & Nigam, S. K. Organic anion transport pathways in antiviral handling in choroid plexus in Oat1 (Slc22a6) and Oat3 (Slc22a8) deficient tissue. Neurosci. Lett. 534, 133–138 (2013).

    CAS  PubMed  Google Scholar 

  63. Torres, A. M., Dnyanmote, A. V., Bush, K. T., Wu, W. & Nigam, S. K. Deletion of multispecific organic anion transporter Oat1/Slc22a6 protects against mercury-induced kidney injury. J. Biol. Chem. 286, 26391–26395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Engstrom, K. et al. Polymorphisms in genes encoding potential mercury transporters and urine mercury concentrations in populations exposed to mercury vapor from gold mining. Environ. Health Perspect. 121, 85–91 (2013).

    PubMed  Google Scholar 

  65. Weaver, Y. M., Ehresman, D. J., Butenhoff, J. L. & Hagenbuch, B. Roles of rat renal organic anion transporters in transporting perfluorinated carboxylates with different chain lengths. Toxicol. Sci. 113, 305–314 (2010).

    CAS  PubMed  Google Scholar 

  66. Brady, K. P. et al. A novel putative transporter maps to the osteosclerosis (oc) mutation and is not expressed in the oc mutant mouse. Genomics 56, 254–261 (1999).

    CAS  PubMed  Google Scholar 

  67. Bakhiya, N. et al. Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy. Toxicology 264, 74–79 (2009).

    CAS  PubMed  Google Scholar 

  68. Vallon, V. et al. Organic anion transporter 3 contributes to the regulation of blood pressure. J. Am. Soc. Nephrol. 19, 1732–1740 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vallon, V. et al. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am. J. Physiol. Renal Physiol. 302, F1293–F1299 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ciarimboli, G. et al. Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clin. Cancer Res. 18, 1101–1108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Eisner, C. et al. Major contribution of tubular secretion to creatinine clearance in mice. Kidney Int. 77, 519–526 (2010).

    CAS  PubMed  Google Scholar 

  72. Lepist, E. I. et al. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int. 86, 350–357 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sveinbjornsson, G. et al. Rare mutations associating with serum creatinine and chronic kidney disease. Hum. Mol. Genet. http://dx.doi.org/10.1093/hmg/ddu399 (2014).

  74. Cimoch, P. J. et al. Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J. Acquir. Immune Def. Syndr. Hum. Retrovirol. 17, 227–234 (1998).

    CAS  Google Scholar 

  75. Eraly, S. A., Blantz, R. C., Bhatnagar, V. & Nigam, S. K. Novel aspects of renal organic anion transporters. Curr. Opin. Nephrol. Hypertens. 12, 551–558 (2003).

    CAS  PubMed  Google Scholar 

  76. Maeda, A. et al. Evaluation of the interaction between nonsteroidal anti-inflammatory drugs and methotrexate using human organic anion transporter 3-transfected cells. Eur. J. Pharmacol. 596, 166–172 (2008).

    CAS  PubMed  Google Scholar 

  77. Takeda, M. et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J. Pharmacol. Exp. Ther. 302, 666–671 (2002).

    CAS  PubMed  Google Scholar 

  78. Yee, S. W. et al. Reduced renal clearance of cefotaxime in Asians with a low-frequency polymorphism of OAT3 (SLC22A8). J. Pharm. Sci. 102, 3451–3457 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Niemi, M., Pasanen, M. K. & Neuvonen, P. J. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev. 63, 157–181 (2011).

    CAS  PubMed  Google Scholar 

  80. Carr, D. F. et al. SLCO1B1 genetic variant associated with statin-induced myopathy: a proof of concept study using the clinical practice research datalink (CPRD). Clin. Pharmacol. Ther. 94, 695–701 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Link, E. et al. SLCO1B1 variants and statin-induced myopathy — a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

    CAS  PubMed  Google Scholar 

  82. Voora, D. et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 54, 1609–1616 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang, M. J. et al. Risk factors for severe hyperbilirubinemia in neonates. Pediatr. Res. 56, 682–689 (2004).

    CAS  PubMed  Google Scholar 

  84. Zhang, W. et al. OATP1B1 polymorphism is a major determinant of serum bilirubin level but not associated with rifampicin-mediated bilirubin elevation. Clin. Exp. Pharmacol. Physiol. 34, 1240–1244 (2007).

    CAS  PubMed  Google Scholar 

  85. Choi, J. H. et al. A common 5′-UTR variant in MATE2-K is associated with poor response to metformin. Clin. Pharmacol. Ther. 90, 674–684 (2011).

    CAS  PubMed  Google Scholar 

  86. Lepper, E. R. et al. Mechanisms of resistance to anticancer drugs: the role of the polymorphic ABC transporters ABCB1 and ABCG2. Pharmacogenomics 6, 115–138 (2005).

    CAS  PubMed  Google Scholar 

  87. Noguchi, K., Katayama, K., Mitsuhashi, J. & Sugimoto, Y. Functions of the breast cancer resistance protein (BCRP/ABCG2) in chemotherapy. Adv. Drug Deliv. Rev. 61, 26–33 (2009).

    CAS  PubMed  Google Scholar 

  88. Bosch, T. M., Meijerman, I., Beijnen, J. H. & Schellens, J. H. Genetic polymorphisms of drug-metabolising enzymes and drug transporters in the chemotherapeutic treatment of cancer. Clin. Pharmacokinet. 45, 253–285 (2006).

    CAS  PubMed  Google Scholar 

  89. Campa, D. et al. A comprehensive study of polymorphisms in ABCB1, ABCC2 and ABCG2 and lung cancer chemotherapy response and prognosis. Int. J. Cancer 131, 2920–2928 (2012).

    CAS  PubMed  Google Scholar 

  90. Kivisto, K. T. & Niemi, M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm. Res. 24, 239–247 (2007).

    PubMed  Google Scholar 

  91. Eraly, S. A. et al. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol. Genom. 33, 180–192 (2008).

    CAS  Google Scholar 

  92. Xu, G. et al. Analyses of coding region polymorphisms in apical and basolateral human organic anion transporter (OAT) genes [OAT1 (NKT), OAT2, OAT3, OAT4, URAT (RST)]. Kidney Int. 68, 1491–1499 (2005).

    CAS  PubMed  Google Scholar 

  93. Bhatnagar, V. et al. Analyses of 5′ regulatory region polymorphisms in human SLC22A6 (OAT1) and SLC22A8 (OAT3). J. Hum. Genet. 51, 575–580 (2006).

    CAS  PubMed  Google Scholar 

  94. Kikuchi, R. et al. Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1alpha/beta and DNA methylation. Mol. Pharmacol. 70, 887–896 (2006).

    CAS  PubMed  Google Scholar 

  95. Martovetsky, G., Tee, J. B. & Nigam, S. K. Hepatocyte nuclear factors 4a and 1a (Hnf4a and Hnf1a) regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters. Mol. Pharmacol. 84, 808–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Saito, H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: pharmacological and toxicological implications. Pharmacol. Ther. 125, 79–91 (2010).

    CAS  PubMed  Google Scholar 

  97. Schlessinger, A., Yee, S. W., Sali, A. & Giacomini, K. M. SLC classification: an update. Clin. Pharmacol. Ther. 94, 19–23 (2013).

    CAS  PubMed  Google Scholar 

  98. Kaler, G. et al. Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochem. Biophys. Res. Commun. 351, 872–876 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Monte, J. C., Nagle, M. A., Eraly, S. A. & Nigam, S. K. Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochem. Biophys. Res. Commun. 323, 429–436 (2004).

    CAS  PubMed  Google Scholar 

  100. Schnabolk, G. W., Youngblood, G. L. & Sweet, D. H. Transport of estrone sulfate by the novel organic anion transporter Oat6 (Slc22a20). Am. J. Physiol. Renal Physiol. 291, F314–F321 (2006).

    CAS  PubMed  Google Scholar 

  101. Enomoto, A. et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417, 447–452 (2002).

    CAS  PubMed  Google Scholar 

  102. Shiraya, K. et al. A novel transporter of SLC22 family specifically transports prostaglandins and co-localizes with 15-hydroxyprostaglandin dehydrogenase in renal proximal tubules. J. Biol. Chem. 285, 22141–22151 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cha, S. H. et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J. Biol. Chem. 275, 4507–4512 (2000).

    CAS  PubMed  Google Scholar 

  104. Nishimura, M. & Naito, S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab. Pharmacokinet. 20, 452–477 (2005).

    CAS  PubMed  Google Scholar 

  105. Cropp, C. D. et al. Organic anion transporter 2 (SLC22A7) is a facilitative transporter of cGMP. Mol. Pharmacol. 73, 1151–1158 (2008).

    CAS  PubMed  Google Scholar 

  106. Kimura, H. et al. Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J. Pharmacol. Exp. Ther. 301, 293–298 (2002).

    CAS  PubMed  Google Scholar 

  107. Kobayashi, Y. et al. Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J. Pharm. Pharmacol. 57, 573–578 (2005).

    CAS  PubMed  Google Scholar 

  108. Kobayashi, Y. et al. Renal transport of organic compounds mediated by mouse organic anion transporter 3 (mOat3): further substrate specificity of mOat3. Drug Metab. Dispos. 32, 479–483 (2004).

    CAS  PubMed  Google Scholar 

  109. Jonker, J. W., Wagenaar, E., Van Eijl, S. & Schinkel, A. H. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol. Cell. Biol. 23, 7902–7908 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Farthing, C. A. & Sweet, D. H. Expression and function of organic cation and anion transporters (SLC22 family) in the CNS. Curr. Pharm. Des. 20, 1472–1486 (2014).

    CAS  PubMed  Google Scholar 

  111. Massmann, V. et al. The organic cation transporter 3 (OCT3) as molecular target of psychotropic drugs: transport characteristics and acute regulation of cloned murine OCT3. Pflugers Arch. 466, 517–527 (2014).

    CAS  PubMed  Google Scholar 

  112. Gilchrist, S. E. & Alcorn, J. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids. Fundam. Clin. Pharmacol. 24, 205–214 (2010).

    CAS  PubMed  Google Scholar 

  113. Lamhonwah, A. M. et al. Upregulation of mammary gland OCTNs maintains carnitine homeostasis in suckling infants. Biochem. Biophys. Res. Commun. 404, 1010–1015 (2011).

    CAS  PubMed  Google Scholar 

  114. Crill, C. M. & Helms, R. A. The use of carnitine in pediatric nutrition. Nutr. Clin. Pract. 22, 204–213 (2007).

    PubMed  Google Scholar 

  115. Shekhawat, P. S. et al. Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine-deficient jvs (OCTN2−/−) mice. Mol. Genet. Metab. 92, 315–324 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Alcorn, J., Lu, X., Moscow, J. A. & McNamara, P. J. Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction. J. Pharmacol. Exp. Ther. 303, 487–496 (2002).

    CAS  PubMed  Google Scholar 

  117. Riordan, J. R. & Ling, V. Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J. Biol. Chem. 254, 12701–12705 (1979).

    CAS  PubMed  Google Scholar 

  118. Li, Y. & Paxton, J. W. The effects of flavonoids on the ABC transporters: consequences for the pharmacokinetics of substrate drugs. Expert Opin. Drug Metab. Toxicol. 9, 267–285 (2013).

    CAS  PubMed  Google Scholar 

  119. Gottesman, M. M. & Ling, V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett. 580, 998–1009 (2006).

    CAS  PubMed  Google Scholar 

  120. He, S. M., Li, R., Kanwar, J. R. & Zhou, S. F. Structural and functional properties of human multidrug resistance protein 1 (MRP1/ABCC1). Curr. Med. Chem. 18, 439–481 (2011).

    CAS  PubMed  Google Scholar 

  121. Poguntke, M., Hazai, E., Fromm, M. F. & Zolk, O. Drug transport by breast cancer resistance protein. Expert Opin. Drug Metab. Toxicol. 6, 1363–1384 (2010).

    CAS  PubMed  Google Scholar 

  122. Hu, S. et al. Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin. Cancer Res. 15, 6062–6069 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ose, A. et al. Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxyl ate phosphate (Ro 64–0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab. Dispos. 37, 315–321 (2009).

    CAS  PubMed  Google Scholar 

  124. Chu, X. Y. et al. Characterization of mice lacking the multidrug resistance protein MRP2 (ABCC2). J. Pharmacol. Exp. Ther. 317, 579–589 (2006).

    CAS  PubMed  Google Scholar 

  125. Lagas, J. S. et al. P-glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide. Clin. Cancer Res. 16, 130–140 (2010).

    CAS  PubMed  Google Scholar 

  126. Zelcer, N. et al. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc. Natl Acad. Sci. USA 102, 7274–7279 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lagas, J. S., Vlaming, M. L. & Schinkel, A. H. Pharmacokinetic assessment of multiple ATP-binding cassette transporters: the power of combination knockout mice. Mol. Interv. 9, 136–145 (2009).

    CAS  PubMed  Google Scholar 

  128. Kruh, G. D., Belinsky, M. G., Gallo, J. M. & Lee, K. Physiological and pharmacological functions of Mrp2, Mrp3 and Mrp4 as determined from recent studies on gene-disrupted mice. Cancer Metastasis Rev. 26, 5–14 (2007).

    CAS  PubMed  Google Scholar 

  129. Keppler, D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb. Exp. Pharmacol. 201, 299–323 (2011).

    CAS  Google Scholar 

  130. Tang, S. C., Hendrikx, J. J., Beijnen, J. H. & Schinkel, A. H. Genetically modified mouse models for oral drug absorption and disposition. Curr. Opin. Pharmacol. 13, 853–858 (2013).

    CAS  PubMed  Google Scholar 

  131. Mori, K. et al. Kidney-specific expression of a novel mouse organic cation transporter-like protein. FEBS Lett. 417, 371–374 (1997).

    CAS  PubMed  Google Scholar 

  132. Kolz, M. et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 5, e1000504 (2009).

    PubMed  PubMed Central  Google Scholar 

  133. Mount, D. B. The kidney in hyperuricemia and gout. Curr. Opin. Nephrol. Hypertens. 22, 216–223 (2013).

    CAS  PubMed  Google Scholar 

  134. Tin, A. et al. Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum. Mol. Genet. 20, 4056–4068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Vazquez-Mellado, J. et al. Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology 46, 215–219 (2007).

    CAS  PubMed  Google Scholar 

  136. Sautin, Y. Y. & Johnson, R. J. Uric acid: the oxidant-antioxidant paradox. Nucleos. Nucleot. Nucl. 27, 608–619 (2008).

    CAS  Google Scholar 

  137. Mazzali, M. et al. Uric acid and hypertension: cause or effect? Curr. Rheumatol Rep. 12, 108–117 (2010).

    CAS  PubMed  Google Scholar 

  138. van Herwaarden, A. E. et al. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol. Cell. Biol. 27, 1247–1253 (2007).

    CAS  PubMed  Google Scholar 

  139. Ichida, K. et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nature Commun. 3, 764 (2012).

    Google Scholar 

  140. Hosomi, A., Nakanishi, T., Fujita, T. & Tamai, I. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS ONE 7, e30456 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Matsuo, H. et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci. Transl. Med. 1, 5ra11 (2009).

    PubMed  Google Scholar 

  142. Sakurai, H. Urate transporters in the genomic era. Curr. Opin. Nephrol. Hypertens. 22, 545–550 (2013).

    CAS  PubMed  Google Scholar 

  143. Woodward, O. M. et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl Acad. Sci. USA 106, 10338–10342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yano, H., Tamura, Y., Kobayashi, K., Tanemoto, M. & Uchida, S. Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clin. Exp. Nephrol. 18, 50–55 (2014).

    CAS  PubMed  Google Scholar 

  145. Dehghan, A. et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372, 1953–1961 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Nezu, J. et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nature Genet. 21, 91–94 (1999).

    CAS  PubMed  Google Scholar 

  147. Tang, N. L. et al. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum. Mol. Genet. 8, 655–660 (1999).

    CAS  PubMed  Google Scholar 

  148. Tamai, I. Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm. Drug Dispos. 34, 29–44 (2013).

    CAS  PubMed  Google Scholar 

  149. Tokuhiro, S. et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nature Genet. 35, 341–348 (2003).

    CAS  PubMed  Google Scholar 

  150. Peltekova, V. D. et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nature Genet. 36, 471–475 (2004).

    CAS  PubMed  Google Scholar 

  151. Waller, S. et al. Evidence for association of OCTN genes and IBD5 with ulcerative colitis. Gut 55, 809–814 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Aouida, M., Poulin, R. & Ramotar, D. The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5. J. Biol. Chem. 285, 6275–6284 (2010).

    CAS  PubMed  Google Scholar 

  153. Eraly, S. A. & Nigam, S. K. Novel human cDNAs homologous to Drosophila Orct and mammalian carnitine transporters. Biochem. Biophys. Res. Commun. 297, 1159–1166 (2002).

    CAS  PubMed  Google Scholar 

  154. Toh, S. et al. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin-Johnson syndrome. Am. J. Hum. Genet. 64, 739–746 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Schuetz, J. D., Swaan, P. W. & Tweedie, D. J. The role of transporters in toxicity and disease. Drug Metab. Dispos. 42, 541–545 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. Keebaugh, A. C. & Thomas, J. W. The evolutionary fate of the genes encoding the purine catabolic enzymes in hominoids, birds, and reptiles. Mol. Biol. Evol. 27, 1359–1369 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jonker, J. W. et al. Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene. Mol. Cell. Biol. 21, 5471–5477 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Sweet, D. H. et al. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J. Biol. Chem. 277, 26934–26943 (2002).

    CAS  PubMed  Google Scholar 

  159. Wu, W. et al. Multispecific drug transporter slc22a8 (oat3) regulates multiple metabolic and signaling pathways. Drug Metab. Dispos. 41, 1825–1834 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kouznetsova, V. L., Tsigelny, I. F., Nagle, M. A. & Nigam, S. K. Elucidation of common pharmacophores from analysis of targeted metabolites transported by the multispecific drug transporter-Organic anion transporter1 (Oat1). Bioorg. Med. Chem. 19, 3320–3340 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Wright, S. H. & Dantzler, W. H. Molecular and cellular physiology of renal organic cation and anion transport. Physiol. Rev. 84, 987–1049 (2004).

    CAS  PubMed  Google Scholar 

  162. Gong, L. et al. Characterization of organic anion-transporting polypeptide (Oatp) 1a1 and 1a4 null mice reveals altered transport function and urinary metabolomic profiles. Toxicol. Sci. 122, 587–597 (2011).

    CAS  PubMed  Google Scholar 

  163. Toyohara, T. et al. SLCO4C1 transporter eliminates uremic toxins and attenuates hypertension and renal inflammation. J. Am. Soc. Nephrol. 20, 2546–2555 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. van de Steeg, E. et al. Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J. Clin. Invest. 120, 2942–2952 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Iusuf, D., van de Steeg, E. & Schinkel, A. H. Functions of OATP1A and 1B transporters in vivo: insights from mouse models. Trends Pharmacol. Sci. 33, 100–108 (2012).

    CAS  PubMed  Google Scholar 

  166. Hagenbuch, B. Cellular entry of thyroid hormones by organic anion transporting polypeptides. Best Pract. Res. Clin. Endocrinol. Metab. 21, 209–221 (2007).

    CAS  PubMed  Google Scholar 

  167. Mayerl, S., Visser, T. J., Darras, V. M., Horn, S. & Heuer, H. Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 153, 1528–1537 (2012).

    CAS  PubMed  Google Scholar 

  168. van de Wetering, K., Feddema, W., Helms, J. B., Brouwers, J. F. & Borst, P. Targeted metabolomics identifies glucuronides of dietary phytoestrogens as a major closs of Mrp3 substrates in vivo. Gastroenterology 137, 1725–1735 (2009).

    CAS  PubMed  Google Scholar 

  169. Tiwari, A. K., Zhang, R. & Gallo, J. M. Overlapping functions of ABC transporters in topotecan disposition as determined in gene knockout mouse models. Mol. Cancer Ther. 12, 1343–1355 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Jonker, J. W. et al. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nature Med. 11, 127–129 (2005).

    CAS  PubMed  Google Scholar 

  171. Merino, G. et al. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab. Dispos. 34, 690–695 (2006).

    CAS  PubMed  Google Scholar 

  172. Wang, L., Leggas, M., Goswami, M., Empey, P. E. & McNamara, P. J. N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dih ydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) as a chemical ATP-binding cassette transporter family G member 2 (Abcg2) knockout model to study nitrofurantoin transfer into milk. Drug Metab. Dispos. 36, 2591–2596 (2008).

    CAS  PubMed  Google Scholar 

  173. Lagas, J. S. et al. P-glycoprotein, multidrug-resistance associated protein 2, Cyp3a, and carboxylesterase affect the oral availability and metabolism of vinorelbine. Mol. Pharmacol. 82, 636–644 (2012).

    CAS  PubMed  Google Scholar 

  174. Szallasi, Z., Stelling, J. & Periwal, V. (eds) System Modeling in Cell Biology: From Concepts to Nuts and Bolts (The MIT Press, 2006).

    Google Scholar 

  175. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nature Biotech. 31, 419–425 (2013).

    CAS  Google Scholar 

  177. Ahn, S. Y. et al. Linkage of organic anion transporter-1 to metabolic pathways through integrated 'omics'-driven network and functional analysis. J. Biol. Chem. 286, 31522–31531 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Weiss, J. & Haefeli, W. E. Impact of ATP-binding cassette transporters on human immunodeficiency virus therapy. Int. Rev. Cell. Mol. Biol. 280, 219–279 (2010).

    CAS  PubMed  Google Scholar 

  179. Minuesa, G. et al. Drug uptake transporters in antiretroviral therapy. Pharmacol. Ther. 132, 268–279 (2011).

    CAS  PubMed  Google Scholar 

  180. Nix, L. M. & Tien, P. C. Metabolic syndrome, diabetes, and cardiovascular risk in HIV. Curr. HIV/AIDS Rep. 11, 271–278 (2014).

    PubMed  PubMed Central  Google Scholar 

  181. Buscemi, S. et al. Impact of chronic diuretic treatment on glucose homeostasis. Diabetol Metab. Syndr. 5, 80 (2013).

    PubMed  PubMed Central  Google Scholar 

  182. Toyohara, T. et al. Metabolomic profiling of uremic solutes in CKD patients. Hypertens. Res. 33, 944–952 (2010).

    PubMed  Google Scholar 

  183. Jourde-Chiche, N. et al. Protein-bound toxins — update 2009. Semin. Dial. 22, 334–339 (2009).

    PubMed  Google Scholar 

  184. Vanholder, R., Van Laecke, S. & Glorieux, G. What is new in uremic toxicity? Pediatr. Nephrol. 23, 1211–1221 (2008).

    PubMed  PubMed Central  Google Scholar 

  185. Banoglu, E. & King, R. S. Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet. 27, 135–140 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Vecsei, L., Szalardy, L., Fulop, F. & Toldi, J. Kynurenines in the CNS: recent advances and new questions. Nature Rev. Drug Discov. 12, 64–82 (2013).

    CAS  Google Scholar 

  187. Wang, J. et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 281, 22021–22028 (2006).

    CAS  PubMed  Google Scholar 

  188. Meyer, T. W. & Hostetter, T. H. Uremic solutes from colon microbes. Kidney Int. 81, 949–954 (2012).

    CAS  PubMed  Google Scholar 

  189. Geisler, M. & Murphy, A. S. The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett. 580, 1094–1102 (2006).

    CAS  PubMed  Google Scholar 

  190. Zazimalova, E., Murphy, A. S., Yang, H., Hoyerova, K. & Hosek, P. Auxin transporters—why so many? Cold Spring Harb. Perspect. Biol. 2, a001552 (2010).

    PubMed  PubMed Central  Google Scholar 

  191. Sparks, E., Wachsman, G. & Benfey, P. N. Spatiotemporal signalling in plant development. Nature Rev. Genet. 14, 631–644 (2013).

    CAS  PubMed  Google Scholar 

  192. Duranton, F. et al. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 23, 1258–1270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Sharma, K. et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol. 24, 1901–1912 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Beyoglu, D. & Idle, J. R. The metabolomic window into hepatobiliary disease. J. Hepatol. 59, 842–858 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Prentice, K. J. et al. The furan fatty acid metabolite CMPF is elevated in diabetes and induces β cell dysfunction. Cell. Metab. 19, 653–666 (2014).

    CAS  PubMed  Google Scholar 

  196. Alebouyeh, M. et al. Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J. Pharmacol. Sci. 93, 430–436 (2003).

    CAS  PubMed  Google Scholar 

  197. Redzic, Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8, 3 (2011).

    PubMed  PubMed Central  Google Scholar 

  198. Brandoni, A., Hazelhoff, M. H., Bulacio, R. P. & Torres, A. M. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis. World J. Gastroenterol. 18, 6387–6397 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Hosseini, E., Grootaert, C., Verstraete, W. & Van de Wiele, T. Propionate as a health-promoting microbial metabolite in the human gut. Nutr. Rev. 69, 245–258 (2011).

    PubMed  Google Scholar 

  200. Hanafy, S., El-Kadi, A. O. & Jamali, F. Effect of inflammation on molecular targets and drug transporters. J. Pharm. Pharm. Sci. 15, 361–375 (2012).

    CAS  PubMed  Google Scholar 

  201. Ikemura, K., Nakagawa, E., Kurata, T., Iwamoto, T. & Okuda, M. Altered pharmacokinetics of cimetidine caused by down-regulation of renal rat organic cation transporter 2 (rOCT2) after liver ischemia-reperfusion injury. Drug Metab. Pharmacokinet. 28, 504–509 (2013).

    CAS  PubMed  Google Scholar 

  202. Lu, H. & Klaassen, C. Gender differences in mRNA expression of ATP-binding cassette efflux and bile acid transporters in kidney, liver, and intestine of 5/6 nephrectomized rats. Drug Metab. Dispos. 36, 16–23 (2008).

    PubMed  Google Scholar 

  203. Naud, J., Nolin, T. D., Leblond, F. A. & Pichette, V. Current understanding of drug disposition in kidney disease. J. Clin. Pharmacol. 52, 10S–22S (2012).

    CAS  PubMed  Google Scholar 

  204. Chahine, S., Seabrooke, S. & O'Donnell, M. J. Effects of genetic knock-down of organic anion transporter genes on secretion of fluorescent organic ions by Malpighian tubules of Drosophila melanogaster. Arch. Insect Biochem. Physiol. 81, 228–240 (2012).

    CAS  PubMed  Google Scholar 

  205. Korolnek, T., Zhang, J., Beardsley, S., Scheffer, G. L. & Hamza, I. Control of metazoan heme homeostasis by a conserved multidrug resistance protein. Cell. Metab. 19, 1008–1019 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Shipp, L. E. & Hamdoun, A. ATP-binding cassette (ABC) transporter expression and localization in sea urchin development. Dev. Dyn. 241, 1111–1124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Hook, J. B. & Hewitt, W. R. Development of mechanisms for drug excretion. Am. J. Med. 62, 497–506 (1977).

    CAS  PubMed  Google Scholar 

  208. Zhou, F., Hong, M. & You, G. Regulation of human organic anion transporter 4 by progesterone and protein kinase C in human placental BeWo cells. Am. J. Physiol. Endocrinol. Metab. 293, E57–E61 (2007).

    CAS  PubMed  Google Scholar 

  209. Zhang, Q. et al. Organic anion transporter OAT1 undergoes constitutive and protein kinase C-regulated trafficking through a dynamin- and clathrin-dependent pathway. J. Biol. Chem. 283, 32570–32579 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Chow, E. C., Sun, H., Khan, A. A., Groothuis, G. M. & Pang, K. S. Effects of 1α, 25-dihydroxyvitamin D3 on transporters and enzymes of the rat intestine and kidney in vivo. Biopharm. Drug Dispos. 31, 91–108 (2010).

    CAS  PubMed  Google Scholar 

  211. Physicians' Desk Reference (Thomson PDR, 2014).

  212. Zheng, W. H. et al. Evolutionary relationships of ATP-Binding Cassette (ABC) uptake porters. BMC Microbiol. 13, 98 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Lorca, G. L. et al. Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. Biochim. Biophys. Acta 1768, 1342–1366 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhang, X. et al. Twelve transmembrane helices form the functional core of mammalian MATE1 (multidrug and toxin extruder 1) protein. J. Biol. Chem. 287, 27971–27982 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Eraly, S. A., Hamilton, B. A. & Nigam, S. K. Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem. Biophys. Res. Commun. 300, 333–342 (2003).

    CAS  PubMed  Google Scholar 

  216. Wu, W., Baker, M. E., Eraly, S. A., Bush, K. T. & Nigam, S. K. Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members. Physiol. Genom. 38, 116–124 (2009).

    CAS  Google Scholar 

  217. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Konieczna, A. et al. Differential expression of ABC transporters (MDR1, MRP1, BCRP) in developing human embryos. J. Mol. Histol 42, 567–574 (2011).

    CAS  PubMed  Google Scholar 

  219. Ricardo, S. & Lehmann, R. An ABC transporter controls export of a Drosophila germ cell attractant. Science 323, 943–946 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Eraly, S. A., Monte, J. C. & Nigam, S. K. Novel slc22 transporter homologs in fly, worm, and human clarify the phylogeny of organic anion and cation transporters. Physiol. Genom. 18, 12–24 (2004).

    CAS  Google Scholar 

  221. Strader, L. C. & Bartel, B. Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol. Plant 4, 477–486 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Good, J. R. et al. TagA, a putative serine protease/ABC transporter of Dictyostelium that is required for cell fate determination at the onset of development. Development 130, 2953–2965 (2003).

    CAS  PubMed  Google Scholar 

  223. Mao, Q., Ganapathy, V. & Unadkat, J. D. in Drug Transporters: Molecular Characterization and Role in Drug Disposition: (eds You, G. & Morris, M. E.) 341–354 (John Wiley & Sons, 2014).

    Google Scholar 

  224. Funk, R. S., Brown, J. T. & Abdel-Rahman, S. M. Pediatric pharmacokinetics: human development and drug disposition. Pediatr. Clin. North Am. 59, 1001–1016 (2012).

    PubMed  Google Scholar 

  225. Sweet, D. H., Eraly, S. A., Vaughn, D. A., Bush, K. T. & Nigam, S. K. Organic anion and cation transporter expression and function during embryonic kidney development and in organ culture models. Kidney Int. 69, 837–845 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Gallegos, T. F., Martovetsky, G., Kouznetsova, V., Bush, K. T. & Nigam, S. K. Organic anion and cation SLC22 'drug' transporter (Oat1, Oat3, and Oct1) regulation during development and maturation of the kidney proximal tubule. PLoS ONE 7, e40796 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Gao, B., St Pierre, M. V., Stieger, B. & Meier, P. J. Differential expression of bile salt and organic anion transporters in developing rat liver. J. Hepatol. 41, 201–208 (2004).

    CAS  PubMed  Google Scholar 

  228. Braunlich, H. Postnatal development of kidney function in rats receiving thyroid hormones. Exp. Clin. Endocrinol. 83, 243–250 (1984).

    CAS  PubMed  Google Scholar 

  229. Bush, K. T. et al. in Drug Transporters: Molecular Characterization and Role in Drug Disposition (eds You, G. & Morris, M. E.) 25–42 (John Wiley & Sons, 2014).

    Google Scholar 

  230. Nozaki, Y. et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J. Pharmacol. Exp. Ther. 322, 1162–1170 (2007).

    CAS  PubMed  Google Scholar 

  231. Shibayama, Y. et al. Effect of methotrexate treatment on expression levels of multidrug resistance protein 2, breast cancer resistance protein and organic anion transporters Oat1, Oat2 and Oat3 in rats. Cancer Sci. 97, 1260–1266 (2006).

    CAS  PubMed  Google Scholar 

  232. Cheng, Y., Vapurcuyan, A., Shahidullah, M., Aleksunes, L. M. & Pelis, R. M. Expression of organic anion transporter 2 in the human kidney and its potential role in the tubular secretion of guanine-containing antiviral drugs. Drug Metab. Dispos. 40, 617–624 (2012).

    CAS  PubMed  Google Scholar 

  233. Staud, F., Cerveny, L., Ahmadimoghaddam, D. & Ceckova, M. Multidrug and toxin extrusion proteins (MATE/SLC47); role in pharmacokinetics. Int. J. Biochem. Cell Biol. 45, 2007–2011 (2013).

    CAS  PubMed  Google Scholar 

  234. Aslamkhan, A. G. et al. The flounder organic anion transporter fOat has sequence, function, and substrate specificity similarity to both mammalian Oat1 and Oat3. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1773–R1780 (2006).

    CAS  PubMed  Google Scholar 

  235. Cihlar, T. et al. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol. Pharmacol. 56, 570–580 (1999).

    CAS  PubMed  Google Scholar 

  236. Mulato, A. S., Ho, E. S. & Cihlar, T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J. Pharmacol. Exp. Ther. 295, 10–15 (2000).

    CAS  PubMed  Google Scholar 

  237. Hsiang, B. et al. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J. Biol. Chem. 274, 37161–37168 (1999).

    CAS  PubMed  Google Scholar 

  238. Nakai, D. et al. Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J. Pharmacol. Exp. Ther. 297, 861–867 (2001).

    CAS  PubMed  Google Scholar 

  239. Sasaki, M., Suzuki, H., Ito, K., Abe, T. & Sugiyama, Y. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and Multidrug resistance-associated protein 2 (MRP2/ABCC2). J. Biol. Chem. 277, 6497–6503 (2002).

    CAS  PubMed  Google Scholar 

  240. Nozawa, T., Imai, K., Nezu, J., Tsuji, A. & Tamai, I. Functional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human. J. Pharmacol. Exp. Ther. 308, 438–445 (2004).

    PubMed  Google Scholar 

  241. Takeda, M. et al. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors. Eur. J. Pharmacol. 483, 133–138 (2004).

    CAS  PubMed  Google Scholar 

  242. Hirano, M., Maeda, K., Hayashi, H., Kusuhara, H. & Sugiyama, Y. Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J. Pharmacol. Exp. Ther. 314, 876–882 (2005).

    CAS  PubMed  Google Scholar 

  243. Kitamura, S., Maeda, K., Wang, Y. & Sugiyama, Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab. Dispos. 36, 2014–2023 (2008).

    CAS  PubMed  Google Scholar 

  244. Keskitalo, J. E. et al. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 86, 197–203 (2009).

    CAS  PubMed  Google Scholar 

  245. Ho, R. H. et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130, 1793–1806 (2006).

    CAS  PubMed  Google Scholar 

  246. Ito, S. et al. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J. Pharmacol. Exp. Ther. 340, 393–403 (2012).

    CAS  PubMed  Google Scholar 

  247. Kurata, T., Muraki, Y., Mizutani, H., Iwamoto, T. & Okuda, M. Elevated systemic elimination of cimetidine in rats with acute biliary obstruction: the role of renal organic cation transporter OCT2. Drug Metab. Pharmacokinet. 25, 328–334 (2010).

    CAS  PubMed  Google Scholar 

  248. Ohta, K. Y., Inoue, K., Yasujima, T., Ishimaru, M. & Yuasa, H. Functional characteristics of two human MATE transporters: kinetics of cimetidine transport and profiles of inhibition by various compounds. J. Pharm. Pharm. Sci. 12, 388–396 (2009).

    CAS  PubMed  Google Scholar 

  249. Tsuda, M. et al. Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J. Pharmacol. Exp. Ther. 329, 185–191 (2009).

    CAS  PubMed  Google Scholar 

  250. Tsuda, M. et al. Targeted disruption of the multidrug and toxin extrusion 1 (Mate1) gene in mice reduces renal secretion of metformin. Mol. Pharmacol. 75, 1280–1286 (2009).

    CAS  PubMed  Google Scholar 

  251. Tzvetkov, M. V. et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin. Pharmacol. Ther. 86, 299–306 (2009).

    CAS  PubMed  Google Scholar 

  252. Ahmadimoghaddam, D. & Staud, F. Transfer of metformin across the rat placenta is mediated by organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) protein. Reprod. Toxicol. 39, 17–22 (2013).

    CAS  PubMed  Google Scholar 

  253. Filipski, K. K., Mathijssen, R. H., Mikkelsen, T. S., Schinkel, A. H., & Sparreboom, A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin. Pharmacol. Ther. 86, 396–402 (2009).

    CAS  PubMed  Google Scholar 

  254. More, S. S. et al. Organic cation transporters modulate the uptake and cytotoxicity of picoplatin, a third-generation platinum analogue. Mol. Cancer Ther. 9, 1058–1069 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Ho, G. T. et al. ABCB1/MDR1 gene determines susceptibility and phenotype in ulcerative colitis: discrimination of critical variants using a gene-wide haplotype tagging approach. Hum. Mol. Genet. 15, 797–805 (2006).

    CAS  PubMed  Google Scholar 

  256. Krupoves, A. et al. Associations between ABCB1/MDR1 gene polymorphisms and Crohn's disease: a gene-wide study in a pediatric population. Inflamm. Bowel Dis. 15, 900–908 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the considerable help of W. Wu and K. T. Bush in providing comments, as well as in the preparation of figures, tables and references. Also, the author is indebted to students, postdoctoral fellows and many colleagues within and outside the general field of drug transporters for stimulating discussions. Given the broad scope of this subject, it was not possible to discuss many important papers, and there is a risk of oversimplification; the reader can therefore refer to more specialized authoritative reviews such as those cited in this article. This work was partly supported by the US National Institutes of Health Grants (GM098449, GM104098 and HD07160 (U54)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Nigam.

Ethics declarations

Competing interests

The author has received research support from pharmaceutical companies.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigam, S. What do drug transporters really do?. Nat Rev Drug Discov 14, 29–44 (2015). https://doi.org/10.1038/nrd4461

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4461

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research