Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells

Key Points

  • Histone deacetylases (HDACs) regulate gene expression and protein function by catalysing the removal of acetyl groups from the lysines of histone tails and a large number of signalling molecules and other non-histone proteins. Much effort has gone into development of HDAC inhibitors (HDACIs), especially for applications in oncology.

  • Accruing studies indicate that HDACI therapy might also be of use in non-oncology settings, including during inflammation and autoimmunity. Most of these studies have employed a one-size-fits-all approach and used pan-HDACIs. Pan-HDACI use can limit dendritic cell differentiation and curb dendritic cell and T cell activation, resulting in beneficial effects in experimental models of arthritis, inflammatory bowel disease and transplant rejection. Initial clinical trials, including some in Phase II, are also showing evidence of HDACI tolerability, safety and efficacy.

  • A subset of T lymphocytes expressing the transcription factor, FOXP3, are of increasing interest as these so-called regulatory T cells (Tregs) limit inflammation and autoimmunity in humans and experimental animals. Recently, FOXP3 itself was shown to be regulated by acetylation by histone acetyltransferases, and deacetylation by HDACs. Exposure to pan-HDACIs increases FOXP3+ Treg production, Foxp3 acetylation and Treg suppressive functions in vitro and in vivo.

  • Experimental studies indicate that a subset of HDAC proteins, especially of the class II family of HDACs, is of particular relevance to control of Treg functions. Several studies have pointed to the value of targeting HDAC7 and HDAC9 (class IIa HDAC) and also HDAC6 (class IIb). Development of selective pharmacological inhibitors of individual HDACs, or associated interacting proteins, may provide significant benefits compared with use of pan-HDACIs.

  • Ongoing analysis of HDAC structure–function relationships and the development of new and selective HDACIs have the promise of providing powerful new therapies for immuno-inflammatory disorders.

Abstract

Classical zinc-dependent histone deacetylases (HDACs) catalyse the removal of acetyl groups from histone tails and also from many non-histone proteins, including the transcription factor FOXP3, a key regulator of the development and function of regulatory T cells. Many HDAC inhibitors are in cancer clinical trials, but a subset of HDAC inhibitors has important anti-inflammatory or immunosuppressive effects that might be of therapeutic benefit in immuno-inflammatory disorders or post-transplantation. At least some of these effects result from the ability of HDAC inhibitors to enhance the production and suppressive functions of FOXP3+ regulatory T cells. Understanding which HDACs contribute to the regulation of the functions of regulatory T cells may further stimulate the development of new class- or subclass-specific HDAC inhibitors with applications beyond oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main anti-inflammatory effects of histone deacetylase inhibitors (HDACIs) in leukocytes.
Figure 2: HDAC/FOXP3 complex in regulatory T cells.
Figure 3: HDAC6 and HDAC9 as synergistic targets for Treg-based histone deacetylase inhibitor (HDACI) therapy.

Similar content being viewed by others

References

  1. Kouzarides, T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19, 1176–1179 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Minucci, S. & Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Rev. Cancer 6, 38–51 (2006).

    Article  CAS  Google Scholar 

  3. Sadoul, K., Boyault, C., Pabion, M. & Khochbin, S. Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie. 90, 306–312 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Spange, S., Wagner, T., Heinzel, T. & Kramer, O. H. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int. J. Biochem. Cell Biol. 41, 185–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009). Eye-opening landmark paper illustrating the extent of acetylation of non-histone proteins.

    Article  CAS  PubMed  Google Scholar 

  6. Li, B. et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl Acad. Sci. USA 104, 4571–4576 (2007). Important study that highlighted the dynamic complexing of HATs and HDACs with FOXP3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nature Med. 13, 1299–1307 (2007). This paper shows the potential for regulation of T reg function by modulation of FOXP3 acetylation in vitro and in vivo using HDACIs.

    Article  CAS  PubMed  Google Scholar 

  8. Yang, X. J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature Rev. Mol. Cell Biol. 9, 206–218 (2008). Superb overview of class I and class II HDAC structure and function.

    Article  CAS  Google Scholar 

  9. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nature Rev. Genet. 10, 32–42 (2009). Latest of a fine series of reviews from this group highlighting the involvement of HDACs in diseases other than cancer.

    Article  CAS  PubMed  Google Scholar 

  10. Baur, J. A. & Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nature Rev. Drug Discov. 5, 493–506 (2006).

    Article  CAS  Google Scholar 

  11. Lavu, S., Boss, O., Elliott, P. J. & Lambert, P. D. Sirtuins — novel therapeutic targets to treat age-associated diseases. Nature Rev. Drug Discov. 7, 841–853 (2008).

    Article  CAS  Google Scholar 

  12. Zhang, J. et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J. Clin. Invest. 1 Sep 2009 (doi:10.1172/JCI38902).

  13. Villagra, A. et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nature Immunol. 10, 92–100 (2009).

    Article  CAS  Google Scholar 

  14. Blanchard, F. & Chipoy, C. Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov. Today 10, 197–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Karagiannis, T. C. & El-Osta, A. Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia 21, 61–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Adcock, I. M. HDAC inhibitors as anti-inflammatory agents. Br. J. Pharmacol. 150, 829–831 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor FOXP3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. FOXP3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  21. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  22. Chai, J. G. et al. In vitro expansion improves in vivo regulation by CD4+CD25+ regulatory T cells. J. Immunol. 180, 858–869 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Riley, J. L., June, C. H. & Blazar, B. R. Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity 30, 656–665 (2009). State-of-the art review of cellular therapy using human T regs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, C., Rowell, E. A., Thomas, R. M., Hancock, W. W. & Wells, A. D. Transcriptional regulation by FOXP3 is associated with direct promoter occupancy and modulation of histone acetylation. J. Biol. Chem. 281, 36828–36834 (2006). Important study that first noted the need for TCR-activation to drive FOXP3-associated chromatin remodelling and the upregulation, as well as the more recognized downregulation, of gene expression by T regs.

    Article  CAS  PubMed  Google Scholar 

  25. Samanta, A. et al. TGF-β and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc. Natl Acad. Sci. USA 105, 14023–14027 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Zoeten, E. F., Wang, L., Sai, H. & Hancock, W. W. HDAC9 as a therapeutic target in murine colitis. Gastroenterology (in the press). Shows the importance of HDAC9 as a regulator of FOXP3-dependent functions, and the functionally significant physical association of FOXP3 with HSP70.

  27. Reilly, C. M. et al. The histone deacetylase inhibitor trichostatin A upregulates regulatory T cells and modulates autoimmunity in NZB/W F1 mice. J. Autoimmun 31, 123–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Saouaf, S. J. et al. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp. Mol. Pathol. 87, 99–104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McDonel, P., Costello, I. & Hendrich, B. Keeping things quiet: roles of NuRD and Sin3 co-repressor complexes during mammalian development. Int. J. Biochem. Cell Biol. 41, 108–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Grozinger, C. M., Hassig, C. A. & Schreiber, S. L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl Acad. Sci. USA 96, 4868–4873 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 9, 45–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl Acad. Sci. USA 104, 17335–17340 (2007). Fascinating explanation of why class IIa HDACs lack significant HDAC activity.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jones, P. et al. Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg Med. Chem. Lett. 18, 1814–1819 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Lemercier, C. et al. Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J. Biol. Chem. 277, 22045–22052 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, C. L., McKinsey, T. A., Lu, J. R. & Olson, E. N. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J. Biol. Chem. 276, 35–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, C. L., McKinsey, T. A. & Olson, E. N. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol. Cell Biol. 22, 7302–7312 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chang, S., Bezprozvannaya, S., Li, S. & Olson, E. N. An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proc. Natl Acad. Sci. USA 102, 8120–8125 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Berdeaux, R. et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nature Med. 13, 597–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Grozinger, C. M. & Schreiber, S. L. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl Acad. Sci. USA 97, 7835–7840 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han, A., He, J., Wu, Y., Liu, J. O. & Chen, L. Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. J. Mol. Biol. 345, 91–102 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. McKinsey, T. A., Zhang, C. L. & Olson, E. N. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc. Natl Acad. Sci. USA 97, 14400–14405 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Angelelli, C. et al. Differentiation-dependent lysine 4 acetylation enhances MEF2C binding to DNA in skeletal muscle cells. Nucleic Acids Res. 36, 915–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Paroni, G. et al. PP2A regulates HDAC4 nuclear import. Mol. Biol. Cell 19, 655–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009). Major study showing the widespread regulation of gene expression by interacting HATs and HDACs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Valenzuela-Fernandez, A., Cabrero, J. R., Serrador, J. M. & Sanchez-Madrid, F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 18, 291–297 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Richon, V. M. & O'Brien, J. P. Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin. Cancer Res. 8, 662–664 (2002).

    PubMed  Google Scholar 

  48. Bottomley, M. J. et al. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J. Biol. Chem. 283, 26694–26704 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schuetz, A. et al. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J. Biol. Chem. 283, 11355–11363 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Somoza, J. R. et al. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12, 1325–1334 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Vannini, A. et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl Acad. Sci. USA 101, 15064–15069 (2004).

    Article  CAS  Google Scholar 

  52. Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nature Rev. Drug Discov. 5, 769–784 (2006).

    Article  CAS  Google Scholar 

  53. Walkinshaw, D. R. & Yang, X. J. Histone deacetylase inhibitors as novel anticancer therapeutics. Curr. Oncol. 15, 237–243 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mai, A. & Altucci, L. Epi-drugs to fight cancer: From chemistry to cancer treatment, the road ahead. Int. J. Biochem. Cell Biol. 41, 199–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Gibson, P. R. The intracellular target of butyrate's actions: HDAC or HDON'T? Gut 46, 447–448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vezzani, A. & Granata, T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46, 1724–1743 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Rasheed, W., Bishton, M., Johnstone, R. W. & Prince, H. M. Histone deacetylase inhibitors in lymphoma and solid malignancies. Expert Rev. Anticancer Ther. 8, 413–432 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, M. J., Kim, Y. S., Kummar, S., Giaccone, G. & Trepel, J. B. Histone deacetylase inhibitors in cancer therapy. Curr. Opin. Oncol. 20, 639–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnstone, R. W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nature Rev. Drug Discov. 1, 287–299 (2002).

    Article  CAS  Google Scholar 

  60. Richon, V. M., Garcia-Vargas, J. & Hardwick, J. S. Development of vorinostat: Current applications and future perspectives for cancer therapy. Cancer Lett. (2009).

  61. Hu, E. et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J. Pharmacol. Exp. Ther. 307, 720–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Jones, P. et al. A novel series of potent and selective ketone histone deacetylase inhibitors with antitumor activity in vivo. J. Med. Chem. 51, 2350–2353 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Massa, S. et al. 3-(4-aroyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides, a new class of synthetic histone deacetylase inhibitors. J. Med. Chem. 44, 2069–2072 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Mai, A. et al. Class II (IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxyamides. J. Med. Chem. 48, 3344–3353 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Muraglia, E. et al. 2-Trifluoroacetylthiophene oxadiazoles as potent and selective class II human histone deacetylase inhibitors. Bioorg Med. Chem. Lett. 18, 6083–6087 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. & Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl Acad. Sci. USA 100, 4389–4394 (2003). This paper presents the first evidence of a selective pharmacological inhibitor of a single HDAC isoform, HDAC6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Balasubramanian, S. et al. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22, 1026–1034 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Kramer, O. H. et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 22, 3411–3420 (2003). The first of various studies to highlight additional mechanisms of action of HDACIs than simply blocking HDAC catalytic activity.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dokmanovic, M. et al. Histone deacetylase inhibitors selectively suppress expression of HDAC7. Mol. Cancer Ther. 6, 2525–2534 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Scognamiglio, A. et al. HDAC-class II specific inhibition involves HDAC proteasome-dependent degradation mediated by RANBP2. Biochim. Biophys. Acta 1783, 2030–2038 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Backs, J., Backs, T., Bezprozvannaya, S., McKinsey, T. A. & Olson, E. N. Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol. Cell Biol. 28, 3437–3445 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76, 75–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. & Allis, C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad. Sci. USA 92, 1237–1241 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moreira, J. M., Scheipers, P. & Sorensen, P. The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses. BMC Cancer 3, 30 (2003). Classic and comprehensive study of the effects of TsA on T cells.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gregoretti, I. V., Lee, Y. M. & Goodson, H. V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, C. S., Weng, S. C., Tseng, P. H. & Lin, H. P. Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J. Biol. Chem. 280, 38879–38887 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Brogdon, J. L. et al. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood 109, 1123–1130 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Leoni, F. et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc. Natl Acad. Sci. USA 99, 2995–3000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Backdahl, L., Bushell, A. & Beck, S. Inflammatory signalling as mediator of epigenetic modulation in tissue-specific chronic inflammation. Int. J. Biochem. Cell Biol. 41, 176–184 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Nencioni, A. et al. Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clin. Cancer Res. 13, 3933–3941 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Bosisio, D. et al. Blocking TH17-polarizing cytokines by histone deacetylase inhibitors in vitro and in vivo. J. Leukoc. Biol. 84, 1540–1548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sun, Y. et al. Cutting edge: negative regulation of dendritic cells through acetylation of the nonhistone protein STAT-3. J. Immunol. 182, 5899–5903 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Reddy, P. et al. Histone deacetylase inhibition modulates indoleamine 2, 3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J. Clin. Invest. 118, 2562–2573 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Matsuoka, H. et al. Disruption of HDAC4/N-CoR complex by histone deacetylase inhibitors leads to inhibition of IL-2 gene expression. Biochem. Pharmacol. 74, 465–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Matsuoka, H., Fujimura, T., Mori, H., Aramori, I. & Mutoh, S. Mechanism of HDAC inhibitor FR235222-mediated IL-2 transcriptional repression in Jurkat cells. Int. Immunopharmacol. 7, 1422–1432 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Edens, R. E., Dagtas, S. & Gilbert, K. M. Histone deacetylase inhibitors induce antigen specific anergy in lymphocytes: a comparative study. Int. Immunopharmacol. 6, 1673–1681 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Huber, L. C. et al. Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum. 56, 2755–2764 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Zhou, Q. et al. Histone deacetylase inhibitors blocked activation and caused senescence of corneal stromal cells. Mol. Vis. 14, 2556–2565 (2008).

    PubMed  PubMed Central  Google Scholar 

  89. Wang, Z. et al. SAHA- a potential epigenetic therapeutic agent for lung fibrosis? Eur. Respir. J. 12 Feb 2009 (doi:10.1183/09031936.00084808).

  90. Yoshikawa, M., Hishikawa, K., Marumo, T. & Fujita, T. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-β1 in human renal epithelial cells. J. Am. Soc. Nephrol. 18, 58–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Shan, B. et al. Requirement of HDAC6 for transforming growth factor-β1-induced epithelial-mesenchymal transition. J. Biol. Chem. 283, 21065–21073 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Glenisson, W., Castronovo, V. & Waltregny, D. Histone deacetylase 4 is required for TGFβ1-induced myofibroblastic differentiation. Biochim. Biophys. Acta 1773, 1572–1582 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Choi, J. H. et al. Trichostatin A attenuates airway inflammation in mouse asthma model. Clin. Exp. Allergy 35, 89–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Camelo, S. et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol. 164, 10–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Mishra, N., Reilly, C. M., Brown, D. R., Ruiz, P. & Gilkeson, G. S. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111, 539–552 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Glauben, R. et al. Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J. Immunol. 176, 5015–5022 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Nishida, K. et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 50, 3365–3376 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Lin, H. S. et al. Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br. J. Pharmacol. 150, 862–872 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Reddy, P. et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc. Natl Acad. Sci. USA 101, 3921–3926 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, N. et al. HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen. Proc. Natl Acad. Sci. USA 105, 4796–4801 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Granger, A. et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 22, 3549–3560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Marumo, T., Hishikawa, K., Yoshikawa, M. & Fujita, T. Epigenetic regulation of BMP7 in the regenerative response to ischemia. J. Am. Soc. Nephrol. 19, 1311–1320 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kim, H. J. et al. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J. Pharmacol. Exp. Ther. 321, 892–901 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Ryu, H. et al. Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc. Natl Acad. Sci. USA 100, 4281–4286 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hockly, E. et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl Acad. Sci. USA 100, 2041–2046 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Minamiyama, M. et al. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 13, 1183–1192 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Petri, S. et al. Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 22, 40–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Parmigiani, R. B. et al. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc. Natl Acad. Sci. USA 105, 9633–9638 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lin, T. et al. Histone deacetylase as therapeutic target in a rodent model of hemorrhagic shock: effect of different resuscitation strategies on lung and liver. Surgery 141, 784–794 (2007).

    Article  PubMed  Google Scholar 

  110. Sailhamer, E. A. et al. Acetylation: a novel method for modulation of the immune response following trauma/hemorrhage and inflammatory second hit in animals and humans. Surgery 144, 204–216 (2008).

    Article  PubMed  Google Scholar 

  111. Alam, H. B. et al. Impact of resuscitation strategies on the acetylation status of cardiac histones in a swine model of hemorrhage. Resuscitation 76, 299–310 (2008).

    Article  PubMed  Google Scholar 

  112. Li, Y. et al. Cell protective mechanism of valproic acid in lethal hemorrhagic shock. Surgery 144, 217–224 (2008).

    Article  PubMed  Google Scholar 

  113. Vojinovic, J., Dinarello, C. A., Damjanov, N. & Oldoni, T. Safety and efficacy of oral ITF 2357 in patients with active systemic onset juvenile idopathic arthritis (SOJIA) — results of a phase II open label, international, multicentre clinical trial. Arthritis Rheum. 58, S943 (2008).

    Google Scholar 

  114. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  115. Fisson, S. et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med. 198, 737–746 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen, W. et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor FOXP3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liang, S. et al. Conversion of CD4+ CD25- cells into CD4+CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J. Exp. Med. 201, 127–137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Almeida, A. R., Zaragoza, B. & Freitas, A. A. Competition controls the rate of transition between the peripheral pools of CD4+CD25- and CD4+CD25+ T cells. Int. Immunol. 18, 1607–1613 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces FOXP3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of FOXP3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Heinonen, K. M. & Perreault, C. Development and functional properties of thymic and extrathymic T lymphocytes. Crit. Rev. Immunol. 28, 441–466 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Dominitzki, S. et al. Cutting edge: trans-signaling via the soluble IL-6R abrogates the induction of FOXP3 in naive CD4+CD25 T cells. J. Immunol. 179, 2041–2045 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Korn, T. et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into FOXP3+ regulatory T cells. Proc. Natl Acad. Sci. USA 105, 18460–18465 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Shevach, E. M. Mechanisms of FOXP3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Izcue, A., Coombes, J. L. & Powrie, F. Regulatory lymphocytes and intestinal inflammation. Annu. Rev. Immunol. 27, 313–338 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Wing, K. et al. CTLA-4 control over FOXP3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Tao, R., Wang, L., Murphy, K. M., Fraser, C. C. & Hancock, W. W. Regulatory T cell expression of herpesvirus entry mediator suppresses the function of B and T lymphocyte attenuator-positive effector T cells. J. Immunol. 180, 6649–6655 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Borsellino, G. et al. Expression of ectonucleotidase CD39 by FOXP3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225–1232 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Cobbold, S. P. et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl Acad. Sci. USA 106, 12055–12060 (2009). Fascinating extension of the concept that T regs can act by competing for essential nutrients by moving beyond the tryptophan/IDO concept to use multiple signalling pathways.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Stroud, J. C. et al. Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14, 159–166 (2006). Landmark structure–function modelling of FOXP2–DNA binding that has influenced the view of FOXP3 functions.

    Article  CAS  PubMed  Google Scholar 

  133. Li, B. et al. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int. Immunol. 19, 825–835 (2007). Further biochemical analysis by this group of muticomponent FOXP3 complexes.

    Article  CAS  PubMed  Google Scholar 

  134. Zhou, Z., Song, X., Li, B. & Greene, M. I. FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity. Immunol. Res. 42, 19–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Bettelli, E., Dastrange, M. & Oukka, M. FOXP3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl Acad. Sci. USA 102, 5138–5143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Grant, C. et al. FOXP3 represses retroviral transcription by targeting both NF-kappa B and CREB pathways. PLoS Pathog 2, e33 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ono, M. et al. FOXP3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Lee, S. M., Gao, B. & Fang, D. FOXP3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA-binding activity of AP-1. Blood 111, 3599–3606 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Li, B. & Greene, M. I. FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle 6, 1432–1436 (2007).

    CAS  PubMed  Google Scholar 

  141. Lucas, J. L. et al. Induction of FOXP3+ regulatory T cells with histone deacetylase inhibitors. Cell. Immunol. 257, 97–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Wang, L., Tao, R. & Hancock, W. W. Using histone deacetylase inhibitors to enhance FOXP3+ regulatory T-cell function and induce allograft tolerance. Immunol. Cell Biol. 87, 195–202 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Koenen, H. J. et al. Human CD25highFOXP3+ regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340–2352 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Kinugasa, F. et al. Effect of the immunosuppressant histone deacetylase inhibitor FR276457 in a canine renal transplant model. Transpl. Immunol. 21, 198–202 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Chung, Y. L., Lee, M. Y., Wang, A. J. & Yao, L. F. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol. Ther. 8, 707–717 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Mai, A. et al. Discovery of (aryloxopropenyl)pyrrolyl hydroxyamides as selective inhibitors of class IIa histone deacetylase homologue HD1-A. J. Med. Chem. 46, 4826–4829 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Jones, P. et al. 2-Trifluoroacetylthiophenes, a novel series of potent and selective class II histone deacetylase inhibitors. Bioorg Med. Chem. Lett. 18, 3456–3461 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Estiu, G. et al. Structural origin of selectivity in class II-selective histone deacetylase inhibitors. J. Med. Chem. 51, 2898–2906 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Mai, A. et al. New pyrrole-based histone deacetylase inhibitors: Binding mode, enzyme- and cell-based investigations. Int. J. Biochem. Cell Biol. 41, 235–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Sengupta, N. & Seto, E. Regulation of histone deacetylase activities. J. Cell Biochem. 93, 57–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Wong, R. H. et al. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 136, 1056–1072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, L. et al. HDAC7 targeting enhances FOXP3+ Treg function and induces long-term allograft survival. Am. J. Transplant 9, S621 (2009).

    Article  Google Scholar 

  153. Hancock, W. W., Wang, L., de Zoeten, E. F., Bradner, J. E. & Mazitschel, R. HDAC6 is a key new epigenetic target for the enhancement of Treg production and function in vitro and in vivo. Am. J. Transplant 8, S223 (2008).

    Google Scholar 

  154. Bardel, E., Larousserie, F., Charlot-Rabiega, P., Coulomb-L'Hermine, A. & Devergne, O. Human CD4+ CD25+ FOXP3+ regulatory T cells do not constitutively express IL-35. J. Immunol. 181, 6898–6905 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Shevach, E. M. Mechanisms of FOXP3+ T Regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Gallimore, A. M. & Simon, A. K. Positive and negative influences of regulatory T cells on tumour immunity. Oncogene 27, 5886–5893 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Lawson, J. M. et al. Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes. Clin. Exp. Immunol. 154, 353–359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. D'Alise, A. M. et al. The defect in T-cell regulation in NOD mice is an effect on the T-cell effectors. Proc. Natl Acad. Sci. USA 105, 19857–19862 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Strevel, E. L., Ing, D. J. & Siu, L. L. Molecularly targeted oncology therapeutics and prolongation of the QT interval. J. Clin. Oncol. 25, 3362–3371 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Carducci, M. A. et al. A Phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin. Cancer Res. 7, 3047–3055 (2001).

    CAS  PubMed  Google Scholar 

  161. Kelly, W. K. et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res. 9, 3578–3588 (2003).

    CAS  PubMed  Google Scholar 

  162. Ryan, Q. C. et al. Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J. Clin. Oncol. 23, 3912–3922 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Klimek, V. M. et al. Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin. Cancer Res. 14, 826–832 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Barnes, P. J. Role of HDAC2 in the Pathophysiology of COPD. Annu. Rev. Physiol. (2008).

  165. Adenuga, D., Yao, H., March, T. H., Seagrave, J. & Rahman, I. Histone deacetylase 2 is phosphorylated, ubiquitinated and degraded by cigarette smoke. Am. J. Respir. Cell. Mol. Biol. 40, 464–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Archin, N. M. et al. Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res. Hum. Retroviruses 25, 207–212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bots, M. & Johnstone, R. W. Rational combinations using HDAC inhibitors. Clin. Cancer Res. 15, 3970–3977 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Wang, L., Tao, R., Friedlander, J. A. & Hancock, W. W. Tolerance without immunosuppression: Exploiting epigenetic regulation as a new approach to achieving donor-specific allograft tolerance. Am. J. Transplant 8, S203 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne W. Hancock.

Glossary

Histone deacetylase

(HDAC). Enzyme that catalyses removal of acetyl groups from lysines in histone tails or non-histone proteins; such deacetylation usually decreases gene expression or protein function. Classical HDACs are those which are zinc-dependent and include HDACs 1–11. Sirtuins are a distinctly different family of HDACs (SIRT1–7) that are NAD-dependent and are mainly involved in cell metabolism.

FOXP3

Forkhead or winged helix transcription factor that is expressed primarily in regulatory T cells and controls their functions; its DNA binding and interactions with other proteins are promoted by acetylation and impaired by deacetylation. Mutations in FOXP3 are responsible for life-threatening autoimmunity in patients and experimental animals.

Regulatory T cell

(Treg). These cells express FOXP3 and dampen immune responses mediated by T and B cells. They may also modulate functions of cells of the innate immune system. They function by multiple mechanisms, including direct membrane–membrane effects, the release of soluble products and catabolism of essential amino acids.

Histone acetyltransferase

(HAT). Enzymes that catalyse acetylation of key lysines in histone tails and various non-histone proteins; such acetylation usually promotes gene expression or protein function.

Aggresome

An intracellular inclusion body that stores misfolded intracellular proteins and recruits motor proteins to transport misfolded or aggregated proteins to chaperones and proteasomes for subsequent destruction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., de Zoeten, E., Greene, M. et al. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov 8, 969–981 (2009). https://doi.org/10.1038/nrd3031

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing