Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Chemokine receptor antagonists: overcoming developmental hurdles

Abstract

Chemokine receptors have a key role in the pathogenesis of autoimmune diseases, inflammation and viral infection. However, with the exception of selective CCR5 antagonists for HIV, the promise of obtaining new therapeutics related to chemokine receptors has not yet been realized. This article highlights some of the recent failures in the clinical trials of chemokine receptor antagonists and explores possible reasons as to why this might have occurred. Such reasons include the lack of predictability of animal models and redundancy of the target. A potential solution could be to develop drugs that target more than one receptor — known as polypharmacology — which could be a novel way to generate effective therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of some chemokine receptor antagonists.
Figure 2: The design of dual angiotensin II (AT1) and endothelin (ETA) receptor antagonists.
Figure 3: Structures of non-peptide dual-chemokine receptor inhibitors.

Similar content being viewed by others

References

  1. Theta Reports. Autoimmune Disease Therapeutics Worldwide: Markets & Developments 1–450 (PJB Publications, New York, 2002).

  2. Gerard, C. & Rollins, B. J. Chemokines and disease. Nature Immunol. 2, 108–115 (2001).

    CAS  Google Scholar 

  3. Frantz, S. Drug discovery: playing dirty. Nature 437, 942–943 (2005).

    CAS  PubMed  Google Scholar 

  4. Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nature Rev. Drug Discov. 3, 353–359 (2004).

    CAS  Google Scholar 

  5. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  Google Scholar 

  6. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Google Scholar 

  7. Lamb, E. Top 200 Prescription Drugs of 2006. Pharmacy Times 34–37 (1 May 2007).

    Google Scholar 

  8. Brown, M. F. et al. Piperazinyl CCR1 antagonists — optimization of human liver microsome stability. Bioorg. Med. Chem. Lett. 17, 3109–3112 (2007).

    CAS  PubMed  Google Scholar 

  9. Zipp, F. et al. Blockade of chemokine signaling in patients with multiple sclerosis. Neurology 67, 1880–1883 (2006).

    CAS  PubMed  Google Scholar 

  10. Beaulieu, A. et al. The efficacy and safety of a CCR2 receptor antagonist in the treatment of rheumatoid arthritis (RA). Ann. Rheum. Dis. 65 (Suppl. 2), 175 (2006).

    Google Scholar 

  11. Braddock, M. 11th annual inflammatory and immune diseases drug discovery and development summit 12–13 March 2007, San Francisco, USA. Expert Opin. Investig. Drugs 16, 909–917 (2007).

    CAS  PubMed  Google Scholar 

  12. Braddock, M. Advances in anti-inflammatory therapeutics: 20–21 November 2006, London, UK. Expert Opin. Investig. Drugs 16, 257–261 (2007).

    CAS  PubMed  Google Scholar 

  13. Johnson, M. et al. Discovery and optimization of a series of quinazolinone-derived antagonists of CXCR3. Bioorg. Med. Chem. Lett. 17, 3339–3343 (2007).

    CAS  PubMed  Google Scholar 

  14. Ribeiro, S. & Horuk, R. in Leukocyte Trafficking: Molecular Mechanisms, Therapeutic Targets, and Methods (eds Hannan, A. & Engelhardt, B.) 371–402 (Wiley, Weinheim, 2005).

    Google Scholar 

  15. Kunkel, S. L., Godessart, N., Hogaboam, C., Chensue, S. W. & Lukacs, N. in Chemokine Biology — Basic Research and Clinical Applications Vol. 1 Pt. 1 Ch. 1 (eds Neote, K., Letts, G. L. & Moser, B.) (Birkhauser, Basel, 2007).

    Google Scholar 

  16. Vann, L. End of 2007 brings extra activity. Autoimmune Drug Focus 37, 1 (2007).

    Google Scholar 

  17. Haas, C. S. et al. Chemokine receptor expression in rat adjuvant-induced arthritis. Arthritis Rheum. 52, 3718–3730 (2005).

    CAS  PubMed  Google Scholar 

  18. Haringman, J. J., Smeets, T. J., Reinders-Blankert, P. & Tak, P. P. Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann. Rheum. Dis. 65, 294–300 (2006).

    CAS  PubMed  Google Scholar 

  19. Amat, M. et al. Pharmacological blockade of CCR1 ameliorates murine arthritis and alters cytokine networks in vivo. Br. J. Pharmacol. 149, 666–675 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Haringman, J. J., Kraan, M. C., Smeets, T. J., Zwinderman, K. H. & Tak, P. P. Chemokine blockade and chronic inflammatory disease: proof of concept in patients with rheumatoid arthritis. Ann. Rheum. Dis. 62, 715–721 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gladue, R. P., Zwillich, S. H., Clucas, A. T. & Brown, M. F. CCR1 antagonists for the treatment of autoimmune diseases. Curr. Opin. Investig. Drugs 5, 499–504 (2004).

    CAS  PubMed  Google Scholar 

  22. Karpus, W. J. et al. An important role for the chemokine macrophage inflammatory protein-1 alpha in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 155, 5003–5010 (1995).

    CAS  PubMed  Google Scholar 

  23. Trebst, C. et al. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am. J. Pathol. 159, 1701–1710 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rottman, J. B. et al. Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur. J. Immunol. 30, 2372–2377 (2000).

    CAS  PubMed  Google Scholar 

  25. Liang, M. et al. Identification and characterization of a potent, selective, and orally active antagonist of the CC chemokine receptor-1. J. Biol. Chem. 275, 19000–19008 (2000).

    CAS  PubMed  Google Scholar 

  26. Murphy, P. M. et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52, 145–176 (2000).

    CAS  PubMed  Google Scholar 

  27. Charo, I. F. et al. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc. Natl Acad. Sci. USA 91, 2752–2756 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hancock, W. W., Gao, W., Faia, K. L. & Csizmadia, V. Chemokines and their receptors in allograft rejection. Curr. Opin. Immunol. 12, 511–516 (2000).

    CAS  PubMed  Google Scholar 

  29. Szekanecz, Z., Szucs, G., Szanto, S. & Koch, A. E. Chemokines in rheumatic diseases. Curr. Drug Targets 7, 91–102 (2006).

    CAS  PubMed  Google Scholar 

  30. Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    CAS  PubMed  Google Scholar 

  31. Ogata, H., Takeya, M., Yoshimura, T., Takagi, K. & Takahashi, K. The role of monocyte chemoattractant protein-1 (MCP-1) in the pathogenesis of collagen-induced arthritis in rats. J. Pathol. 182, 106–114 (1997).

    CAS  PubMed  Google Scholar 

  32. Taylor, P. C. et al. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor alpha blockade in patients with rheumatoid arthritis. Arthritis Rheum. 43, 38–47 (2000).

    CAS  PubMed  Google Scholar 

  33. Min, D. J. et al. Augmented production of chemokines by the interaction of type II collagen-reactive T cells with rheumatoid synovial fibroblasts. Arthritis Rheum. 50, 1146–1155 (2004).

    CAS  PubMed  Google Scholar 

  34. Katschke, K. J. Jr et al. Differential expression of chemokine receptors on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages in rheumatoid arthritis. Arthritis Rheum. 44, 1022–1032 (2001).

    CAS  PubMed  Google Scholar 

  35. Ellingsen, T., Hornung, N., Moller, B. K., Poulsen, J. H. & Stengaard-Pedersen, K. Differential effect of methotrexate on the increased CCR2 density on circulating CD4 T lymphocytes and monocytes in active chronic rheumatoid arthritis, with a down regulation only on monocytes in responders. Ann. Rheum. Dis. 66, 151–157 (2007).

    CAS  PubMed  Google Scholar 

  36. Karpus, W. J. & Kennedy, K. J. MIP-1α and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J. Leukoc. Biol. 62, 681–687 (1997).

    CAS  PubMed  Google Scholar 

  37. Carter, P. H., Cherney, R. J. & Mangion, I. K. Advances in the Discovery of CC chemokine receptor 2 antagonists. Annu. Rep. Med. Chem. 42, 211–227 (2007).

    CAS  Google Scholar 

  38. Flier, J. et al. Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J. Pathol. 194, 398–405 (2001).

    CAS  PubMed  Google Scholar 

  39. Xie, J. H. et al. Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation. J. Leukoc. Biol. 73, 771–780 (2003).

    CAS  PubMed  Google Scholar 

  40. Berry, K. et al. Evaluation of T0906487, a CXCR3 antagonist, in a Phase 2a psoriasis trial. Inflamm. Res. 53 (Suppl. 3), S222 (2004).

    Google Scholar 

  41. Silverman, R. B. The Organic Chemistry of Drug Design and Drug Action 1–617 (Elsevier, Oxford, 2004).

    Google Scholar 

  42. Ng, R. Drugs: From Discovery to Approval 1–368 (John Wiley & Sons, New Jersey, 2004).

    Google Scholar 

  43. Conklyn, M. J. & Showell, H. J. Biological activity C-X-C and C-C chemokines on leukocyte subpopulations in human whole blood. Methods Enzymol. 287, 378–387 (1997).

    CAS  PubMed  Google Scholar 

  44. Clucas, A. T., Shah, A., Zhang, Y. D., Chow, V. F. & Gladue, R. P. Phase I evaluation of the safety, pharmacokinetics and pharmacodynamics of CP-481,715. Clin. Pharmacokinet. 46, 757–766 (2007).

    CAS  PubMed  Google Scholar 

  45. Hesselgesser, J. et al. Identification and characterization of small molecule functional antagonists of the CCR1 chemokine receptor. J. Biol. Chem. 273, 15687–15692 (1998).

    CAS  PubMed  Google Scholar 

  46. Eltayeb, S. et al. Effector stage CC chemokine receptor-1 selective antagonism reduces multiple sclerosis-like rat disease. J. Neuroimmunol. 142, 75–85 (2003).

    CAS  PubMed  Google Scholar 

  47. Giorelli, M., Livrea, P. & Trojano, M. Dopamine fails to regulate activation of peripheral blood lymphocytes from multiple sclerosis patients: effects of IFN-β. J. Interferon Cytokine Res. 25, 395–406 (2005).

    CAS  PubMed  Google Scholar 

  48. Dijkstra, C. D. et al. Therapeutic effect of the D2-dopamine agonist bromocriptine on acute and relapsing experimental allergic encephalomyelitis. Psychoneuroendocrinology 19, 135–142 (1994).

    CAS  PubMed  Google Scholar 

  49. Li, A. R. et al. Optimization of the heterocyclic core of the quinazolinone-derived CXCR3 antagonists. Bioorg. Med. Chem. Lett. 18, 688–693 (2008).

    CAS  PubMed  Google Scholar 

  50. Steinman, L. & Zamvil, S. S. Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol. 26, 565–571 (2005).

    CAS  PubMed  Google Scholar 

  51. Ransohoff, R. M. EAE: pitfalls outweigh virtues of screening potential treatments for multiple sclerosis. Trends Immunol. 27, 167–168 (2006).

    CAS  PubMed  Google Scholar 

  52. Wiendl, H. & Hohlfeld, R. Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 16, 183–200 (2002).

    CAS  PubMed  Google Scholar 

  53. Steinman, L. Myelin-specific CD8 T cells in the pathogenesis of experimental allergic encephalitis and multiple sclerosis. J. Exp. Med. 194, F27–F30 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Horuk, R. in Cytokine Cytokine Reference: A Compendium of Cytokines and Other Mediators of Host Defense (eds Durum, S. K., Hirano, T., Vilcek, J. & Nicola, N. A.) 2027–2041 (Academic, San Diego, 2000).

    Google Scholar 

  55. Levine, S. & Saltzman, A. The hyperacute form of allergic encephalomyelitis produced in rats without the aid of pertussis vaccine. J. Neuropathol. Exp. Neurol. 48, 255–262 (1989).

    CAS  PubMed  Google Scholar 

  56. Boehncke, W. H. & Schon, M. P. Animal models of psoriasis. Clin. Dermatol. 25, 596–605 (2007).

    PubMed  Google Scholar 

  57. Clark, R. A. & Kupper, T. S. Misbehaving macrophages in the pathogenesis of psoriasis. J. Clin. Invest. 116, 2084–2087 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Anders, H. J. et al. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J. Clin. Invest. 109, 251–259 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gladue, R. P. et al. CP-481,715: A potent and selective CCR1 antagonist with potential therapeutic implications for inflammatory diseases. J. Biol. Chem. 278, 40473–40480 (2003).

    CAS  PubMed  Google Scholar 

  60. Gladue, R. P. et al. The human specific CCR1 antagonist CP-481,715 inhibits cell infiltration and inflammatory responses in human CCR1 transgenic mice. J. Immunol. 176, 3141–3148 (2006).

    CAS  PubMed  Google Scholar 

  61. Noseworthy, J. H., Lucchinetti, C., Rodriguez, M. & Weinshenker, B. G. Multiple sclerosis. N. Engl. J. Med. 343, 938–952 (2000).

    CAS  PubMed  Google Scholar 

  62. Lassmann, H., Bruck, W. & Lucchinetti, C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol. Med. 7, 115–121 (2001).

    CAS  PubMed  Google Scholar 

  63. Szekanecz, Z., Szegedi, G. & Koch, A. E. Angiogenesis in rheumatoid arthritis: pathogenic and clinical significance. J. Investig. Med. 46, 27–41 (1998).

    CAS  PubMed  Google Scholar 

  64. Haringman, J. J. et al. A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum. 54, 2387–2392 (2006).

    CAS  PubMed  Google Scholar 

  65. Vergunst, C.E. et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 58, 1931–1939 (2008).

    CAS  PubMed  Google Scholar 

  66. Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS  PubMed  Google Scholar 

  67. Tak, P. P. Chemokine inhibition in inflammatory arthritis. Best Pract. Res. Clin. Rheumatol. 20, 929–939 (2006).

    CAS  PubMed  Google Scholar 

  68. Moore, B. B. et al. Protection from pulmonary fibrosis in the absence of CCR2 signaling. J. Immunol. 167, 4368–4377 (2001).

    CAS  PubMed  Google Scholar 

  69. Bacon, K. et al. Chemokine/chemokine receptor nomenclature. J. Interferon Cytokine Res. 22, 1067–1068 (2002).

    PubMed  Google Scholar 

  70. Horuk, R. Chemokine receptors. Growth Factor Rev. 12, 313–335 (2001).

    CAS  Google Scholar 

  71. D'Elios, M. M., Del Prete, G. & Amedei, A. Interfering with chemokines and chemokine receptors as potential new therapeutic strategies. Exp. Opin. Therap. Pat. 18, 309–325 (2008).

    CAS  Google Scholar 

  72. Morphy, R., Kay, C. & Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today 9, 641–651 (2004).

    CAS  PubMed  Google Scholar 

  73. Murugesan, N. et al. Discovery of N-isoxazolyl biphenylsulfonamides as potent dual angiotensin II and endothelin A receptor antagonists. J. Med. Chem. 45, 3829–3835 (2002).

    CAS  PubMed  Google Scholar 

  74. Murugesan, N. et al. Dual angiotensin II and endothelin A receptor antagonists: synthesis of 2′-substituted N-3-isoxazolyl biphenylsulfonamides with improved potency and pharmacokinetics. J. Med. Chem. 48, 171–179 (2005).

    CAS  PubMed  Google Scholar 

  75. Kowala, M. C. et al. Novel dual action AT1 and ETA receptor antagonists reduce blood pressure in experimental hypertension. J. Pharmacol. Exp. Ther. 309, 275–284 (2004).

    CAS  PubMed  Google Scholar 

  76. Pharmacopeia. Pharmacopeia's First-In-Class Investigational Therapy PS433540 Achieves Statistically Significant Reductions in Blood Pressure in Hypertensive Patients Single Molecule with Dual Mechanism May Offer Novel Approach to Blood Pressure Management. Pharmacopeia web site [online], (2008).

  77. Schwartz, T. W. & Rosenkilde, M. M. Is there a 'lock' for all agonist 'keys' in 7TM receptors? Trends Pharmacol. Sci. 17, 213–216 (1996).

    CAS  PubMed  Google Scholar 

  78. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    CAS  PubMed  Google Scholar 

  79. Blanpain, C. et al. The core domain of chemokines binds CCR5 extracellular domains while their amino terminus interacts with the transmembrane helix bundle. J. Biol. Chem. 278, 5179–5187 (2003).

    CAS  PubMed  Google Scholar 

  80. Ji, T. H., Grossmann, M. & Ji, I. G protein-coupled receptors. I. Diversity of receptor–ligand interactions. J. Biol. Chem. 273, 17299–17302 (1998).

    CAS  PubMed  Google Scholar 

  81. Watson, C., Jenkinson, S., Kazmierski, W. & Kenakin, T. The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol. Pharmacol. 67, 1268–1282 (2005).

    CAS  PubMed  Google Scholar 

  82. Vaidehi, N. et al. Predictions of CCR1 chemokine receptor structure and BX 471 antagonist binding followed by experimental validation. J. Biol. Chem. 281, 27613–27620 (2006).

    CAS  PubMed  Google Scholar 

  83. de Mendonca, F. L. et al. Site-directed mutagenesis of CC chemokine receptor 1 reveals the mechanism of action of UCB 35625, a small molecule chemokine receptor antagonist. J. Biol. Chem. 280, 4808–4816 (2005).

    PubMed  Google Scholar 

  84. Vedani, A. et al. Novel ligands for the chemokine receptor-3 (CCR3): a receptor-modeling study based on 5D-QSAR. J. Med. Chem. 48, 1515–1527 (2005).

    CAS  PubMed  Google Scholar 

  85. Naya, A. et al. Structure–activity relationships of 2-(benzothiazolylthio)acetamide class of CCR3 Selective Antagonist. Chem. Pharm. Bull. (Tokyo) 51, 697–701 (2003).

    CAS  Google Scholar 

  86. Sabroe, I. et al. A small molecule antagonist of chemokine receptors CCR1 and CCR3. Potent inhibition of eosinophil function and CCR3-mediated HIV-1 entry. J. Biol. Chem. 275, 25985–25992 (2000).

    CAS  PubMed  Google Scholar 

  87. Baba, M. et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc. Natl Acad. Sci. USA 96, 5698–5703 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Seto, M. et al. Highly potent and orally active CCR5 antagonists as anti-HIV-1 agents: synthesis and biological activities of 1-benzazocine derivatives containing a sulfoxide moiety. J. Med. Chem. 49, 2037–2048 (2006).

    CAS  PubMed  Google Scholar 

  89. Walters, I. et al. Evaluation of a series of bicyclic CXCR2 antagonists. Bioorg. Med. Chem. Lett. 18, 798–803 (2008).

    CAS  PubMed  Google Scholar 

  90. Baggiolini, M. Chemokines and leukocyte traffic. Nature 392, 565–568 (1998).

    CAS  PubMed  Google Scholar 

  91. Allegretti, M. et al. 2-Arylpropionic CXC chemokine receptor 1 (CXCR1) ligands as novel noncompetitive CXCL8 inhibitors. J. Med. Chem. 48, 4312–4331 (2005).

    CAS  PubMed  Google Scholar 

  92. Villa, P. et al. The interleukin-8 (IL-8/CXCL8) receptor inhibitor reparixin improves neurological deficits and reduces long-term inflammation in permanent and transient cerebral ischemia in rats. Mol. Med. 13, 125–133 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dwyer, M. P. et al. Discovery of 2-hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5- methylfuran-2-yl)propyl]amino]-3,4-dioxocyclobut-1-enylamino}benzamide (SCH 527123): a potent, orally bioavailable CXCR2/CXCR1 receptor antagonist. J. Med. Chem. 49, 7603–7606 (2006).

    CAS  PubMed  Google Scholar 

  94. Gonsiorek, W. et al. Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist. J. Pharmacol. Exp. Ther. 322, 477–485 (2007).

    CAS  PubMed  Google Scholar 

  95. Chapman, R. W. et al. A novel, orally active CXCR1/2 receptor antagonist, Sch527123, inhibits neutrophil recruitment, mucus production, and goblet cell hyperplasia in animal models of pulmonary inflammation. J. Pharmacol. Exp. Ther. 322, 486–493 (2007).

    CAS  PubMed  Google Scholar 

  96. Gao, W. et al. Beneficial effects of targeting CCR5 in allograft recipients. Transplantation 72, 1199–1205 (2001).

    CAS  PubMed  Google Scholar 

  97. Hancock, W. W. et al. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J. Exp. Med. 192, 1515–1520 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Schnickel, G. T. et al. Combined CXCR3/CCR5 blockade attenuates acute and chronic rejection. J. Immunol. 180, 4714–4721 (2008).

    CAS  PubMed  Google Scholar 

  99. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

    CAS  PubMed  Google Scholar 

  100. Widney, D. P., Xia, Y. R., Lusis, A. J. & Smith, J. B. The murine chemokine CXCL11 (IFN-inducible T cell α chemoattractant) is an IFN-γ- and lipopolysaccharide-inducible glucocorticoid-attenuated response gene expressed in lung and other tissues during endotoxemia. J. Immunol. 164, 6322–6331 (2000).

    CAS  PubMed  Google Scholar 

  101. Lau, E. K. et al. Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: implications for structure and function in vivo. J. Biol. Chem. 279, 22294–22305 (2004).

    CAS  PubMed  Google Scholar 

  102. Loetscher, P., Seitz, M., Baggiolini, M. & Moser, B. Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. J. Exp. Med. 184, 569–577 (1996).

    CAS  PubMed  Google Scholar 

  103. Sica, A. et al. Bacterial lipopolysaccharide rapidly inhibits expression of C-C chemokine receptors in human monocytes. J. Exp. Med. 185, 969–974 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ogilvie, P., Bardi, G., Clark-Lewis, I., Baggiolini, M. & Uguccioni, M. Eotaxin is a natural antagonist for CCR2 and an agonist for CCR5. Blood 97, 1920–1924 (2001).

    CAS  PubMed  Google Scholar 

  105. Proudfoot, A. E. et al. Amino-terminally modified RANTES analogues demonstrate differential effects on RANTES receptors. J. Biol. Chem. 274, 32478–32485 (1999).

    CAS  PubMed  Google Scholar 

  106. Weber, M., Uguccioni, M., Baggiolini, M., Clark-Lewis, I. & Dahinden, C. A. Deletion of the NH2-terminal residue converts monocyte chemotactic protein 1 from an activator of basophil mediator release to an eosinophil chemoattractant. J. Exp. Med. 183, 681–685 (1996).

    CAS  PubMed  Google Scholar 

  107. Lambeir, A. M. et al. Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J. Biol. Chem. 276, 29839–29845 (2001).

    CAS  PubMed  Google Scholar 

  108. El-Asmar, L. et al. Evidence for negative binding cooperativity within CCR5–CCR2b heterodimers. Mol. Pharmacol. 67, 460–469 (2005).

    CAS  PubMed  Google Scholar 

  109. Cocchi, F. et al. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV- suppressive factors produced by CD8+ T cells. Science 270, 1811–1815 (1995).

    CAS  PubMed  Google Scholar 

  110. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996).

    CAS  PubMed  Google Scholar 

  111. Este, J. A. & Telenti, A. HIV entry inhibitors. Lancet 370, 81–88 (2007).

    CAS  PubMed  Google Scholar 

  112. Fatkenheuer, G. et al. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nature Med. 11, 1170–1172 (2005).

    PubMed  Google Scholar 

  113. Dorr, P. et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 49, 4721–4732 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Boyle, B. A. et al. Advances in HIV therapeutics: the 14th CROI. AIDS Read. 17, 268–270, 272–274, 283–286 (2007).

    PubMed  Google Scholar 

  115. Hitti, M. FDA OKs New HIV Drug Selzentry. WebMD web site [online], (2007).

    Google Scholar 

  116. Witherington, J. et al. Conformationally restricted indolopiperidine derivatives as potent CCR2B receptor antagonists. Bioorg. Med. Chem. Lett. 11, 2177–2180 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank the reviewers for improving the clarity of this article. Any factual errors remaining are mine.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

IUPHAR Receptor database

CCR1

CCR2

CCR3

CCR4

CCR5

CCR8

CCR9

CCR10

CXCR2

CXCR3

CXCR4

CX3CR1

FURTHER INFORMATION

ClinicalTrials.gov identifier NCT00542022

ClinicalTrials.gov identifier NCT00239655

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horuk, R. Chemokine receptor antagonists: overcoming developmental hurdles. Nat Rev Drug Discov 8, 23–33 (2009). https://doi.org/10.1038/nrd2734

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing