Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

High-throughput kinase profiling as a platform for drug discovery

Abstract

To fully exploit the potential of kinases as drug targets, novel strategies for the efficient discovery of inhibitors are required. In contrast to the traditional, linear process of inhibitor discovery, high-throughput kinase profiling enables a parallel approach by interrogating compounds against hundreds of targets in a single screen. Compound potency and selectivity are determined simultaneously, providing a choice of targets to pursue that is guided by the quality of lead compounds available, rather than by target biology alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A novel approach to kinase-inhibitor discovery.
Figure 2: Characterization and annotation of compound libraries.
Figure 3: Identification of high-quality lead compounds.
Figure 4: Scheme for identifying multitargeted yet selective inhibitors.

Similar content being viewed by others

References

  1. Schiffer, C. A. BCR–ABL tyrosine kinase inhibitors for chronic myelogenous leukemia. N. Engl. J. Med. 357, 258–265 (2007).

    Article  CAS  Google Scholar 

  2. Baselga, J. Targeting tyrosine kinases in cancer: the second wave. Science 312, 1175–1178 (2006).

    Article  CAS  Google Scholar 

  3. Collins, I. & Workman, P. New approaches to molecular cancer therapeutics. Nature Chem. Biol. 2, 689–700 (2006).

    Article  CAS  Google Scholar 

  4. Sebolt-Leopold, J. S. & English, J. M. Mechanisms of drug inhibition of signalling molecules. Nature 441, 457–462 (2006).

    Article  CAS  Google Scholar 

  5. Verweij, J. & de Jonge, M. Multitarget tyrosine kinase inhibition: [and the winner is...]. J. Clin. Oncol. 25, 2340–2342 (2007).

    Article  CAS  Google Scholar 

  6. Boehm, J. S. et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129, 1065–1079 (2007).

    Article  CAS  Google Scholar 

  7. Buckbinder, L. et al. Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc. Natl Acad. Sci. USA 104, 10619–10624 (2007).

    Article  CAS  Google Scholar 

  8. Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007).

    Article  CAS  Google Scholar 

  9. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  Google Scholar 

  10. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  Google Scholar 

  11. Mahajan, N. P. et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc. Natl Acad. Sci. USA 104, 8438–8443 (2007).

    Article  CAS  Google Scholar 

  12. Ruckle, T., Schwarz, M. K. & Rommel, C. PI3Kγ inhibition: towards an 'aspirin of the 21st century'? Nature Rev. Drug Discov. 5, 903–918 (2006).

    Article  Google Scholar 

  13. Smith, W. W. et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nature Neurosci. 9, 1231–1233 (2006).

    Article  CAS  Google Scholar 

  14. Soda, M. et al. Identification of the transforming EML4ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  Google Scholar 

  15. Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nature Rev. Cancer 6, 321–330 (2006).

    Article  CAS  Google Scholar 

  16. Tefferi, A. JAK2 mutations in polycythemia vera — molecular mechanisms and clinical applications. N. Engl. J. Med. 356, 444–445 (2007).

    Article  CAS  Google Scholar 

  17. Tse, A. N., Carvajal, R. & Schwartz, G. K. Targeting checkpoint kinase 1 in cancer therapeutics. Clin. Cancer Res. 13, 1955–1960 (2007).

    Article  CAS  Google Scholar 

  18. Hayashi, M. L. et al. Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc. Natl Acad. Sci. USA 104, 11489–11494 (2007).

    Article  CAS  Google Scholar 

  19. Whartenby, K. A. et al. Inhibition of FLT3 signaling targets DCs to ameliorate autoimmune disease. Proc. Natl Acad. Sci. USA 102, 16741–16746 (2005).

    Article  CAS  Google Scholar 

  20. Changelian, P. S. et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875–878 (2003).

    Article  CAS  Google Scholar 

  21. Solinas, G. et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab. 6, 386–397 (2007).

    Article  CAS  Google Scholar 

  22. Morwick, T. et al. Evolution of the thienopyridine class of inhibitors of IκB kinase-β: part I: hit-to-lead strategies. J. Med. Chem. 49, 2898–2908 (2006).

    Article  CAS  Google Scholar 

  23. Pevarello, P. et al. 3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 1. Lead finding. J. Med. Chem. 47, 3367–3380 (2004).

    Article  CAS  Google Scholar 

  24. Wittman, M. et al. Discovery of a (1H-benzoimidazol-2-yl)-1H-pyridin-2-one (BMS-536924) inhibitor of insulin-like growth factor I receptor kinase with in vivo antitumor activity. J. Med. Chem. 48, 5639–5643 (2005).

    Article  CAS  Google Scholar 

  25. Bach, S. et al. Roscovitine targets, protein kinases and pyridoxal kinase. J. Biol. Chem. 280, 31208–31219 (2005).

    Article  CAS  Google Scholar 

  26. Bain, J. et al. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408, 297–315 (2007).

    Article  CAS  Google Scholar 

  27. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature Biotech. 25, 1035–1044 (2007).

    Article  CAS  Google Scholar 

  28. Fedorov, O. et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc. Natl Acad. Sci. USA 104, 20523–20528 (2007).

    Article  CAS  Google Scholar 

  29. Goldstein, D. M. & Gabriel, T. Pathway to the clinic: inhibition of P38 MAP kinase. A review of ten chemotypes selected for development. Curr. Top. Med. Chem. 5, 1017–1029 (2005).

    Article  CAS  Google Scholar 

  30. Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nature Biotech. 26, 127–132 (2008).

    Article  CAS  Google Scholar 

  31. Manfredi, M. G. et al. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc. Natl Acad. Sci. USA 104, 4106–4111 (2007).

    Article  CAS  Google Scholar 

  32. Melnick, J. S. et al. An efficient rapid system for profiling the cellular activities of molecular libraries. Proc. Natl Acad. Sci. USA 103, 3153–3158 (2006).

    Article  CAS  Google Scholar 

  33. Berman, E. et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N. Engl. J. Med. 354, 2006–2013 (2006).

    Article  CAS  Google Scholar 

  34. McDermott, U. et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl Acad. Sci. USA 104, 19936–19941 (2007).

    Article  CAS  Google Scholar 

  35. Seggewiss, R. et al. Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood 105, 2473–2479 (2005).

    Article  CAS  Google Scholar 

  36. Force, T., Krause, D. S. & Van Etten, R. A. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Rev. Cancer 7, 332–344 (2007).

    Article  CAS  Google Scholar 

  37. Verheul, H. M. & Pinedo, H. M. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nature Rev. Cancer 7, 475–485 (2007).

    Article  CAS  Google Scholar 

  38. Carter, T. A. et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc. Natl Acad. Sci. USA 102, 11011–11016 (2005).

    Article  CAS  Google Scholar 

  39. Giles, F. J. et al. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR–ABL mutation. Blood 109, 500–502 (2007).

    Article  CAS  Google Scholar 

  40. Joensuu, H. et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med. 344, 1052–1056 (2001).

    Article  CAS  Google Scholar 

  41. Li, B., Liu, Y., Uno, T. & Gray, N. Creating chemical diversity to target protein kinases. Comb. Chem. High Throughput Screen. 7, 453–472 (2004).

    Article  CAS  Google Scholar 

  42. Benson, J. D. et al. Validating cancer drug targets. Nature 441, 451–456 (2006).

    Article  CAS  Google Scholar 

  43. Fitzgerald, J. B., Schoeberl, B., Nielsen, U. B. & Sorger, P. K. Systems biology and combination therapy in the quest for clinical efficacy. Nature Chem. Biol. 2, 458–466 (2006).

    Article  CAS  Google Scholar 

  44. Smolen, G. A. et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc. Natl Acad. Sci. USA 103, 2316–2321 (2006).

    Article  CAS  Google Scholar 

  45. Kamb, A., Wee, S. & Lengauer, C. Why is cancer drug discovery so difficult? Nature Rev. Drug Discov. 6, 115–120 (2007).

    Article  CAS  Google Scholar 

  46. Stommel, J. M. et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318, 287–290 (2007).

    Article  CAS  Google Scholar 

  47. Wood, E. R. et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 64, 6652–6659 (2004).

    Article  CAS  Google Scholar 

  48. Caron, P. R. et al. Chemogenomic approaches to drug discovery. Curr. Opin. Chem. Biol. 5, 464–470 (2001).

    Article  CAS  Google Scholar 

  49. Vieth, M. et al. Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim. Biophys. Acta 1697, 243–257 (2004).

    Article  CAS  Google Scholar 

  50. Stamos, J., Sliwkowski, M. X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).

    Article  CAS  Google Scholar 

  51. Knowles, P. P. et al. Structure and chemical inhibition of the RET tyrosine kinase domain. J. Biol. Chem. 281, 33577–33587 (2006).

    Article  CAS  Google Scholar 

  52. Heron, N. M. et al. SAR and inhibitor complex structure determination of a novel class of potent and specific Aurora kinase inhibitors. Bioorg. Med. Chem. Lett. 16, 1320–1323 (2006).

    Article  CAS  Google Scholar 

  53. Pandey, A. et al. Identification of orally active, potent, and selective 4-piperazinylquinazolines as antagonists of the platelet-derived growth factor receptor tyrosine kinase family. J. Med. Chem. 45, 3772–3793 (2002).

    Article  CAS  Google Scholar 

  54. Liu, Y. & Gray, N. S. Rational design of inhibitors that bind to inactive kinase conformations. Nature Chem. Biol. 2, 358–364 (2006).

    Article  CAS  Google Scholar 

  55. Pargellis, C. et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nature Struct. Biol. 9, 268–272 (2002).

    Article  CAS  Google Scholar 

  56. Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    Article  CAS  Google Scholar 

  57. Flaherty, K. T. Sorafenib in renal cell carcinoma. Clin. Cancer Res. 13, 747S–752S (2007).

    Article  CAS  Google Scholar 

  58. Araujo, R. P., Liotta, L. A. & Petricoin, E. F. Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nature Rev. Drug Discov. 6, 871–880 (2007).

    Article  CAS  Google Scholar 

  59. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  Google Scholar 

  60. Schmit, T. L. & Ahmad, N. Regulation of mitosis via mitotic kinases: new opportunities for cancer management. Mol. Cancer Ther. 6, 1920–1931 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Herrgard for creating figures, N. Lydon for helpful discussions, M. Williams for suggesting this article, and W. Wierenga, S. Bhagwat, S. Keane, D. Treiber, Y. Liu and U. Eggert for their critical reading of the manuscript. The phylogenetic tree of the human kinome in Boxes 1 and 2 is used with permission from Science and Cell Signaling Technology, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick P. Zarrinkar.

Ethics declarations

Competing interests

Patrick Zarrinkar is an employee of Ambit Biosciences. Nathanael Gray receives research funding from Novartis.

Related links

Related links

DATABASES

OMIM

Chronic myeloid leukaemia

FURTHER INFORMATION

The Human Kinome

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, D., Gray, N. & Zarrinkar, P. High-throughput kinase profiling as a platform for drug discovery. Nat Rev Drug Discov 7, 391–397 (2008). https://doi.org/10.1038/nrd2541

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2541

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing