Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microscopic imaging techniques for drug discovery

Key Points

  • Recently disclosed microscopic imaging techniques are helping to better describe how disease processes unfold and how potential therapies might intervene. Innovative technologies are improving spatial resolution, increasing tissue penetration, overcoming physical access issues and enhancing experimental throughput.

  • Notable recent trends include the development of super-resolution microscopes, the incorporation of multiphoton techniques into intravital and fibre-optic microscopy, and the automation of microscopy and image analysis for high-content screening.

  • A renaissance in intravital or in vivo microscopy is helping to better characterize disease states and assess the efficacy of therapeutic interventions. In particular, in vivo microscopies are achieving better resolution at greater depths or from within less accessible tissues. This renaissance is helping to emphasize both pharmacological and clinical relevance in animal and tissue models.

  • The miniaturization of fluorescence microscopy by fibre-optic technologies is also helping to implement less invasive optical readouts and thereby enable the development of improved chronic or long-term animal models.

  • The capability to image the in vivo treatment response to test compounds, especially in animal models of disease, is likely to be an important addition to the toolbox of discovery scientists. In particular, imaging the whole-body treatment response is a useful way of simultaneously quantifying the efficacy, time course and the specificity of therapeutic candidates. It is also potentially useful in identifying off-target effects and liabilities.

Abstract

Microscopic imaging can enhance the drug discovery process by helping to describe how disease processes unfold and how potential therapies might intervene. Recently introduced technologies, and enhancements to existing techniques, are addressing technical issues that have limited the usefulness of microscopic imaging in the past. In particular, these innovations are improving spatial resolution, increasing tissue penetration, overcoming physical access issues and enhancing experimental throughput. Notable recent trends, which are discussed in this article, include the development of super-resolution microscopes, the incorporation of multiphoton techniques into intravital and fibre-optic microscopy and the automation of microscopy and image analysis for high-content screening. Together, these developments are augmenting the existing assays and disease models that are used in early drug discovery and, in some cases, enabling new ones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microscopic imaging technologies for drug discovery.
Figure 2: Super-resolution microscopes.
Figure 3: New optics for intravital microscopy.
Figure 4: Disease biology applications of intravital microscopy.
Figure 5: Fibre-optic imaging technique hierarchy.
Figure 6: Fibre-optic fluorescence imaging technology and applications.

Similar content being viewed by others

References

  1. Langenau, D. M. & Zon, L. I. The zebrafish: a new model of T-cell and thymic development. Nature Rev. Immunol. 5, 307–317 (2005).

    CAS  Google Scholar 

  2. Zon, L. I. & Peterson, R. T. In vivo drug discovery in the zebrafish. Nature Rev. Drug Discov. 4, 35–44 (2005).

    CAS  Google Scholar 

  3. Moy, T. I. et al. Identification of novel antimicrobials using a live-animal infection model. Proc. Natl Acad. Sci. USA 103, 10414–10419 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotech. 23, 313–320 (2005).

    CAS  Google Scholar 

  5. Borsook, D., Becerra, L. & Hargreaves, R. A role for fMRI in optimizing CNS drug development. Nature Rev. Drug Discov 5, 411–425 (2006).

    CAS  Google Scholar 

  6. McConville, P., Moody, J. B. & Moffat, B. A. High-throughput magnetic resonance imaging in mice for phenotyping and therapeutic evaluation. Curr. Opin. Chem. Biol. 9, 413–420 (2005).

    CAS  PubMed  Google Scholar 

  7. Rudin, M. & Weissleder, R. Molecular imaging in drug discovery and development. Nature Rev. Drug Discov. 2, 123–131 (2003).

    CAS  Google Scholar 

  8. Hell, S. W., Dyba, M. & Jakobs, S. Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobiol. 14, 599–609 (2004).

    CAS  PubMed  Google Scholar 

  9. Gustafsson, M. G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Garini, Y., Vermolen, B. J. & Young, I. T. From micro to nano: recent advances in high-resolution microscopy. Curr. Opin. Biotechnol. 16, 3–12 (2005).

    CAS  PubMed  Google Scholar 

  11. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007). A summary of an array of recent improvements in light microscopy that have driven the spatial resolution below the diffraction limit possible.

    CAS  PubMed  Google Scholar 

  12. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Schneckenburger, H. Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr. Opin. Biotechnol. 16, 13–18 (2005).

    CAS  PubMed  Google Scholar 

  14. Fedosseev, R., Belyaev, Y., Frohn, J. & Stemmer, A. Structured light illumination for extended resolution in fluorescence microscopy. Opt. Las. Eng. 43, 403–414 (2005).

    Google Scholar 

  15. Krzewina, L. G. & Kim, M. K. Single-exposure optical sectioning by color structured illumination microscopy. Opt. Lett. 31, 477–479 (2006).

    PubMed  Google Scholar 

  16. Pitris, C. & Eracleous, P. Transillumination spatially modulated illumination microscopy. Opt. Lett. 30, 2590–2592 (2005).

    PubMed  Google Scholar 

  17. Tkaczyk, T. et al. High resolution, molecular-specific, reflectance imaging in optically dense tissue phantoms with structured-illumination. Opt. Express 12 3745–3758 (2004).

    PubMed  Google Scholar 

  18. Donnert, G. et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl Acad. Sci. USA 103, 11440–11445 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kittel, R. J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    CAS  PubMed  Google Scholar 

  20. Willig, K. I. et al. Nanoscale resolution in GFP-based microscopy. Nature Methods 3, 721–723 (2006).

    CAS  PubMed  Google Scholar 

  21. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  PubMed  Google Scholar 

  22. Lukyanov, K. A., Chudakov, D. M., Lukyanov, S. & Verkhusha, V. V. Photoactivatable fluorescent proteins. Nature Rev. Mol. Cell Biol. 6, 885–891 (2005).

    CAS  Google Scholar 

  23. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793–796 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nature Rev. Immunol. 2, 872–880 (2002).

    CAS  Google Scholar 

  25. Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Real-time imaging of lymphocytes in vivo. Curr. Opin. Immunol. 15, 372–377 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Condeelis, J. & Segall, J. E. Intravital imaging of cell movement in tumours. Nature Rev. Cancer 3, 921–930 (2003).

    CAS  Google Scholar 

  27. Germain, R. N., Miller, M. J., Dustin, M. L. & Nussenzweig, M. C. Dynamic imaging of the immune system: progress, pitfalls and promise. Nature Rev. Immunol. 6, 497–507 (2006).

    CAS  Google Scholar 

  28. Jain, R. K., Munn, L. L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nature Rev. Cancer 2, 266–276 (2002).

    CAS  Google Scholar 

  29. Misgeld, T. & Kerschensteiner, M. In vivo imaging of the diseased nervous system. Nature Rev. Neurosci. 7, 449–463 (2006).

    CAS  Google Scholar 

  30. Molitoris, B. A. & Sandoval, R. M. Intravital multiphoton microscopy of dynamic renal processes. Am. J. Physiol. Renal. Physiol. 288, F1084–F1089 (2005). References 24–30 summarize advances in the application of in vivo imaging technologies, especially multiphoton imaging, to the study of disease processes in several key physiological systems.

    CAS  PubMed  Google Scholar 

  31. Rubart, M. Two-photon microscopy of cells and tissue. Circ. Res. 95, 1154–1166 (2004).

    CAS  PubMed  Google Scholar 

  32. Sumen, C., Mempel, T. R., Mazo, I. B. & von Andrian, U. H. Intravital microscopy: visualizing immunity in context. Immunity 21, 315–329 (2004).

    CAS  PubMed  Google Scholar 

  33. Yamaguchi, H., Wyckoff, J. & Condeelis, J. Cell migration in tumors. Curr. Opin. Cell Biol. 17, 559–564 (2005).

    CAS  PubMed  Google Scholar 

  34. Alencar, H., Mahmood, U., Kawano, Y., Hirata, T. & Weissleder, R. Novel multiwavelength microscopic scanner for mouse imaging. Neoplasia 7, 977–983 (2005).

    PubMed  PubMed Central  Google Scholar 

  35. Jung, J. C., Mehta, A. D., Aksay, E., Stepnoski, R. & Schnitzer, M. J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).

    PubMed  Google Scholar 

  36. Levene, M. J., Dombeck, D. A., Kasischke, K. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).

    PubMed  Google Scholar 

  37. Jung, J. C. & Schnitzer, M. J. Multiphoton endoscopy. Opt. Lett. 28, 902–904 (2003).

    PubMed  Google Scholar 

  38. Helmchen, F. & Denk, W. New developments in multiphoton microscopy. Curr. Opin. Neurobiol. 12, 593–601 (2002).

    CAS  PubMed  Google Scholar 

  39. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotech. 21, 1369–1377 (2003).

    CAS  Google Scholar 

  40. Mertz, J. Nonlinear microscopy: new techniques and applications. Curr. Opin. Neurobiol. 14, 610–616 (2004).

    CAS  PubMed  Google Scholar 

  41. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Methods 2, 932–940 (2005).

    CAS  PubMed  Google Scholar 

  42. Ragan, T. M., Huang, H. & So, P. T. In vivo and ex vivo tissue applications of two-photon microscopy. Methods Enzymol. 361, 481–505 (2003).

    CAS  PubMed  Google Scholar 

  43. Bousso, P. & Robey, E. A. Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy. Immunity 21, 349–355 (2004).

    CAS  PubMed  Google Scholar 

  44. Dunn, K. W. & Young, P. A. Principles of multiphoton microscopy. Nephron Exp. Nephrol. 103, e33–e40 (2006).

    PubMed  Google Scholar 

  45. Lendvai, B., Szabo, S. I., Barth, A. I., Zelles, T. & Vizi, E. S. Application of two-photon microscopy to the study of cellular pharmacology of central neurons. Adv. Drug Deliv. Rev. 58, 841–849 (2006).

    CAS  PubMed  Google Scholar 

  46. Molitoris, B. A. & Sandoval, R. M. Pharmacophotonics: utilizing multi-photon microscopy to quantify drug delivery and intracellular trafficking in the kidney. Adv. Drug Deliv. Rev. 58, 809–823 (2006). References 45 and 46 are landmark papers that illustrate the potential impact of advanced imaging methods for in situ pharmacology in the brain and kidney.

    CAS  PubMed  Google Scholar 

  47. St Croix, C. M., Leelavanichkul, K. & Watkins, S. C. Intravital fluorescence microscopy in pulmonary research. Adv. Drug Deliv. Rev. 58, 834–840 (2006).

    CAS  PubMed  Google Scholar 

  48. Gobel, W., Kampa, B. M. & Helmchen, F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods 4, 73–79 (2007).

    PubMed  Google Scholar 

  49. Hell, S. W. & Andresen, V. Space-multiplexed multifocal nonlinear microscopy. J. Microsc. 202, 457–463 (2001).

    CAS  PubMed  Google Scholar 

  50. Nielsen, T., Fricke, M., Hellweg, D. & Andresen, P. High efficiency beam splitter for multifocal multiphoton microscopy. J. Microsc. 201, 368–376 (2001).

    CAS  PubMed  Google Scholar 

  51. Straub, M., Lodemann, P., Holroyd, P., Jahn, R. & Hell, S. W. Live cell imaging by multifocal multiphoton microscopy. Eur. J. Cell Biol. 79, 726–734 (2000).

    CAS  PubMed  Google Scholar 

  52. Witt, C. M., Raychaudhuri, S., Schaefer, B., Chakraborty, A. K. & Robey, E. A. Directed migration of positively selected thymocytes visualized in real time. PLoS Biol. 3, e160 (2005).

    PubMed  PubMed Central  Google Scholar 

  53. Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    PubMed  PubMed Central  Google Scholar 

  54. Frevert, U. et al. Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol. 3, e192 (2005).

    PubMed  PubMed Central  Google Scholar 

  55. Mansson, L. E. et al. Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell. Microbiol. 9, 413–424 (2007).

    PubMed  Google Scholar 

  56. Brown, E. B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Med. 7, 864–868 (2001).

    CAS  PubMed  Google Scholar 

  57. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    CAS  PubMed  Google Scholar 

  58. Larson, D. R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).

    CAS  PubMed  Google Scholar 

  59. Flusberg, B. A. et al. Fiber-optic fluorescence imaging. Nature Methods 2, 941–950 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Vincent, P. et al. Live imaging of neural structure and function by fibred fluorescence microscopy. EMBO Rep. 7, 1154–1161 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Al-Gubory, K. H. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo. Exp. Cell Res. 310, 474–481 (2005).

    CAS  PubMed  Google Scholar 

  62. Delany, P. & Harris, M. in Handbook of Biological Confocal Microscopy (ed. Pawley, J.) 501–515 (Springer, New York, 2006).

    Google Scholar 

  63. Flusberg, B. A., Jung, J. C., Cocker, E. D., Anderson, E. P. & Schnitzer, M. J. In vivo brain imaging using a porTABLE 3.9 gram two-photon fluorescence microendoscope. Opt. Lett. 30, 2272–2274 (2005).

    PubMed  Google Scholar 

  64. Fu, L. & Gu, M. Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging. Opt. Lett. 31, 1471–1473 (2006).

    PubMed  Google Scholar 

  65. Myaing, M. T., MacDonald, D. J. & Li, X. Fiber-optic scanning two-photon fluorescence endoscope. Opt. Lett. 31, 1076–1078 (2006).

    PubMed  Google Scholar 

  66. Piyawattanametha, W. et al. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror. Opt. Lett. 31, 2018–2020 (2006).

    PubMed  PubMed Central  Google Scholar 

  67. Helmchen, F. Miniaturization of fluorescence microscopes using fibre optics. Exp. Physiol. 87, 737–745 (2002).

    PubMed  Google Scholar 

  68. Laemmel, E. et al. Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy. J. Vasc. Res. 41, 400–411 (2004).

    PubMed  Google Scholar 

  69. D'Hallewin, M. A., El Khatib, S., Leroux, A., Bezdetnaya, L. & Guillemin, F. Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder. J. Urol. 174, 736–740 (2005).

    PubMed  Google Scholar 

  70. Al-Gubory, K. H. & Houdebine, L. M. In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy. Eur. J. Cell Biol. 85, 837–845 (2006).

    CAS  PubMed  Google Scholar 

  71. Gobel, W., Kerr, J. N., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29, 2521–2523 (2004).

    PubMed  Google Scholar 

  72. Russell, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    CAS  PubMed  Google Scholar 

  73. Gobel, W., Nimmerjahn, A. & Helmchen, F. Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber. Opt. Lett. 29, 1285–1287 (2004).

    PubMed  Google Scholar 

  74. Helmchen, F., Tank, D. W. & Denk, W. Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core. Appl. Opt. 41, 2930–2934 (2002).

    PubMed  Google Scholar 

  75. Ouzounov, D. et al. Delivery of nanojoule femtosecond pulses through large-core microstructured fibers. Opt. Lett. 27, 1513–1515 (2002).

    CAS  PubMed  Google Scholar 

  76. Ramachandran, S. et al. High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber. Opt. Lett. 30, 3225–3227 (2005).

    CAS  PubMed  Google Scholar 

  77. Yablonovitch, E. Photonic crystals: semiconductors of light. Sci. Am. 285, 47–55 (2001).

    CAS  PubMed  Google Scholar 

  78. McConnell, G. & Riis, E. Two-photon laser scanning fluorescence microscopy using photonic crystal fiber. J. Biomed. Opt. 9, 922–927 (2004).

    CAS  PubMed  Google Scholar 

  79. Kim, D., Kim, K. H., Yazdanfar, S. & So, P. T. C. in Multiphoton Microscopy in Biomedical Science (eds Periasamy, A. & So, P. T. C.) 14–22 (SPIE, Bellingham, 2005).

    Google Scholar 

  80. Thiagarajah, J. R., Kim, J. K., Magzoub, M. & Verkman, A. S. Slowed diffusion in tumors revealed by microfiberoptic epifluorescence photobleaching. Nature Methods 3, 275–280 (2006).

    CAS  PubMed  Google Scholar 

  81. Abraham, V. C., Taylor, D. L. & Haskins, J. R. High content screening applied to large-scale cell biology. Trends Biotechnol. 22, 15–22 (2004).

    CAS  PubMed  Google Scholar 

  82. Carpenter, A. E. Image-based chemical screening. Nature Chem. Biol. 3, 461–465 (2007).

    CAS  Google Scholar 

  83. Howell, B. J., Lee, S. & Sepp-Lorenzino, L. Development and implementation of multiplexed cell-based imaging assays. Methods Enzymol. 414, 284–300 (2006).

    CAS  PubMed  Google Scholar 

  84. Haney, S. A., LaPan, P., Pan, J. & Zhang, J. High-content screening moves to the front of the line. Drug Discov. Today 11, 889–894 (2006).

    CAS  PubMed  Google Scholar 

  85. Gough, A. H. & Johnston, P. A. Requirements, features, and performance of high content screening platforms. Methods Mol. Biol. 356, 41–61 (2007).

    PubMed  Google Scholar 

  86. Lee, S. & Howell, B. J. High-content screening: emerging hardware and software technologies. Methods Enzymol. 414, 468–483 (2006).

    CAS  PubMed  Google Scholar 

  87. George, T. C. et al. Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer. Cytometry A 59, 237–245 (2004).

    PubMed  Google Scholar 

  88. Ortyn, W. E. et al. Sensitivity measurement and compensation in spectral imaging. Cytometry A 69, 852–862 (2006).

    PubMed  Google Scholar 

  89. George, T. C. et al. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J. Immunol. Methods 311, 117–129 (2006).

    CAS  PubMed  Google Scholar 

  90. Pepperkok, R. & Ellenberg, J. High-throughput fluorescence microscopy for systems biology. Nature Rev. Mol. Cell Biol. 7, 690–696 (2006).

    CAS  Google Scholar 

  91. Eggert, U. S. & Mitchison, T. J. Small molecule screening by imaging. Curr. Opin. Chem. Biol. 10, 232–237 (2006).

    CAS  PubMed  Google Scholar 

  92. Loo, L. H., Wu, L. F. & Altschuler, S. J. Image-based multivariate profiling of drug responses from single cells. Nature Methods 4, 445–453 (2007).

    CAS  PubMed  Google Scholar 

  93. Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

    CAS  PubMed  Google Scholar 

  94. Yu, H. et al. Measuring drug action in the cellular context using protein-fragment complementation assays. Assay Drug Dev. Technol. 1, 811–822 (2003).

    CAS  PubMed  Google Scholar 

  95. MacDonald, M. L. et al. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nature Chem. Biol. 2, 329–337 (2006). References 92, 93 and 95 describe advances in automated microscopy and image processing, and illustrate how these techniques can be applied in drug discovery.

    CAS  Google Scholar 

  96. Oheim, M. et al. Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches. Adv. Drug Delev. Rev. 58, 788–808 (2006).

    CAS  Google Scholar 

  97. Steele, R. The story of a new light source. Nature Photonics 1, 25–26 (2007).

    CAS  Google Scholar 

  98. Salzberg, B. M. et al. An ultra-stable non-coherent light source for optical measurements in neuroscience and cell physiology. J. Neurosci. Methods 141, 165–169 (2005).

    CAS  PubMed  Google Scholar 

  99. Kuo, J. S. et al. High-power blue/UV light-emitting diodes as excitation sources for sensitive detection. Electrophoresis 25, 3796–3804 (2004).

    CAS  PubMed  Google Scholar 

  100. Moser, C., Mayr, T. & Klimant, I. Filter cubes with built-in ultrabright light-emitting diodes as exchangeable excitation light sources in fluorescence microscopy. J. Microsc. 222, 135–140 (2006).

    CAS  PubMed  Google Scholar 

  101. Alfano, R. R. The ultimate white light. Sci. Am. 295, 86–93 (2006).

    PubMed  Google Scholar 

  102. Betz, T. et al. Excitation beyond the monochromatic laser limit: simultaneous 3-D confocal and multiphoton microscopy with a tapered fiber as white-light laser source. J. Biomed. Opt. 10, 054009 (2005).

    PubMed  Google Scholar 

  103. McConnell, G. Confocal laser scanning fluorescence microscopy with a visible continuum source. Opt. Express 12, 2844–2850 (2004).

    PubMed  Google Scholar 

  104. McConnell, G. Sequential confocal and multiphoton laser scanning microscopy using a single photonic crystal fiber based light source. Appl. Phys. B 81, 783–786 (2005).

    CAS  Google Scholar 

  105. Theer, P., Hasan, M. T. & Denk, W. Two-photon imaging to a depth of 1000 mm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).

    CAS  PubMed  Google Scholar 

  106. McConnell, G. Improving the penetration depth in multiphoton excitation laser scanning microscopy. J. Biomed. Opt. 11, 054020 (2006).

    CAS  PubMed  Google Scholar 

  107. Dela Cruz, J., Lozovoy, V. & Dantus, M. Coherent control improves biomedical imaging with ultrashort shaped pulses. J. Photochem. Photobiol. A Chem. 180, 307–313 (2006).

    CAS  Google Scholar 

  108. Schelhas, L. T., Shane, J. C. & Dantus, M. Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging. Nanomedicine 2, 177–181 (2006).

    CAS  PubMed  Google Scholar 

  109. Dela Cruz, J. M., Pastirk, I., Comstock, M., Lozovoy, V. V. & Dantus, M. Use of coherent control methods through scattering biological tissue to achieve functional imaging. Proc. Natl Acad. Sci. USA 101, 16996–17001 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ogilvie, J. et al. Use of coherent control for selective two-photon fluorescence microscopy in live organisms. Opt. Express 14, 759–766 (2006).

    PubMed  Google Scholar 

  111. Durst, M. E., Zhu, G. & Xu, C. Simultaneous spatial and temporal focusing for axial scanning. Opt. Express 14, 12243–12254 (2006).

    PubMed  Google Scholar 

  112. Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005).

    PubMed  Google Scholar 

  113. Tal, E., Oron, D. & Silberberg, Y. Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing. Opt. Lett. 30, 1686–1688 (2005).

    PubMed  Google Scholar 

  114. Donnert, G., Eggeling, C. & Hell, S. W. Major signal increase in fluorescence microscopy through dark-state relaxation. Nature Methods 4, 81–86 (2007).

    CAS  PubMed  Google Scholar 

  115. Bacskai, B. J. et al. Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nature Med. 7, 369–372 (2001).

    CAS  PubMed  Google Scholar 

  116. Christie, R. H. et al. Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy. J. Neurosci. 21, 858–864 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Skoch, J., Hickey, G. A., Kajdasz, S. T., Hyman, B. T. & Bacskai, B. J. In vivo imaging of amyloid-β deposits in mouse brain with multiphoton microscopy. Methods Mol. Biol. 299, 349–363 (2005).

    CAS  PubMed  Google Scholar 

  118. Bacskai, B. J., Klunk, W. E., Mathis, C. A. & Hyman, B. T. Imaging amyloid-β deposits in vivo. J. Cereb. Blood. Flow Metab. 22, 1035–1041 (2002).

    CAS  PubMed  Google Scholar 

  119. Bacskai, B. J. et al. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-β ligand in transgenic mice. Proc. Natl Acad. Sci. USA 100, 12462–12467 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Spires, T. L. et al. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J. Neurosci. 25, 7278–7287 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Robbins, E. M. et al. Kinetics of cerebral amyloid angiopathy progression in a transgenic mouse model of Alzheimer disease. J. Neurosci. 26, 365–371 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Prada, C. M. et al. Antibody-mediated clearance of amyloid-β peptide from cerebral amyloid angiopathy revealed by quantitative in vivo imaging. J. Neurosci. 27, 1973–1980 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. No author. Tracking the details of an immune cell rendezvous in 3-D. PLoS Biol. 3, e206 (2005).

  124. No author. Tracking a killer: in vivo microscopy reveals details on the life cycle of malarial parasites. PLoS Biol. 3, e215 (2005).

Download references

Acknowledgements

The author would like to thank B. Brission and A. Goodacre for their assistance in providing material for this Review. The editorial assistance of P. Prack and V. Shen is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

UCSF Biological Imaging Development Center

Glossary

Numerical aperture

The numerical aperture is a measure of the light-gathering capability of an objective lens.

Moiré fringe

The Moiré effect is a well-known phenomenon that occurs when repetitive structures such as screens, grids or gratings are superposed or viewed against each other.

Multiphoton microscopy

This is also called two-photon excitation microscopy or nonlinear optical microscopy.

CCR7

CCR7 is a chemokine receptor involved in the trafficking of B and T lymphocytes and dendritic cells.

Pyelonephritis

This is an infectious condition of the kidney whereby bacteria spread throughout the lumen of infected nephrons into surrounding tissues. It is accompanied by an acute inflammatory response and can result in significant tissue damage.

PET

Positron-emission tomography. A noninvasive, molecular imaging technique of high sensitivity that detects species labelled with positron-emitting radionuclides in vivo.

MRI

Magnetic resonance imaging. The use of radio waves in the presence of a magnetic field to extract information from certain atomic nuclei (most commonly hydrogen, for example, in water). Tissues can be differentiated by differences in their water densities.

Flow cytometry

Flow cytometry is a well-established technique that is used to count, characterize and sometimes sort cells that are suspended in a stream of fluid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullen, A. Microscopic imaging techniques for drug discovery. Nat Rev Drug Discov 7, 54–67 (2008). https://doi.org/10.1038/nrd2446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2446

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing