Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Model organisms

Drug discovery in dementia: the role of rodent models

Key Points

  • Alzheimer's disease (AD), including both early-onset familial and late-onset senile dementia of the Alzheimer type, accounts for the major proportion of dementia cases and neurodegenerative diseases.

  • AD is characterized by progressive cognitive, functional and behavioural impairment, evolving into a dramatic loss of most cortical and subcortical functions, and ultimately death. The major pathological hallmarks include amyloid plaques, neurofibrillary tangles and neuronal cell loss.

  • Valid animal models for AD could help to further unravel underlying degenerative processes and discover therapeutic strategies to alleviate and/or prevent this devastating condition. We describe the major rodent models of AD and evaluate their effectiveness for drug discovery research.

  • For a therapeutic intervention to slow down or halt disease progression — that is, to be disease-modifying — it must interfere with a central pathophysiological pathway.

  • Rodent models have acquired a strong position in the evaluation of the preventive and disease-modifying efficacy of potential therapeutics because they rapidly develop symptoms and/or pathology, allow the assessment of large groups of subjects, improve accessibility to early-stage CNS changes and enable time-linked observations.

  • Non-cognitive symptoms represent a major source of physical and psychological caregiver burden often motivating institutionalization of the patient. Animal models mimicking these symptoms are indispensable tools for evaluating new psychopharmacological strategies

  • We empahsize the need for validation of all new models and thorough standardization of procedures, good knowledge of strains, compounds and paradigm characteristics, and skilled personnel.

  • The implementation of a multidisciplinary approach combining valid animal models with new technologies improving biomarker profiling and early diagnosis of dementia subtypes, as well as prediction of patient-specific treatment outcome, will create new paths for improved treatment and prevention of AD.

Abstract

Recent advances in the understanding of the pathophysiological mechanisms underlying Alzheimer's disease have pointed to novel strategies for drug development. Animal models have contributed considerably to these advances, and will have a key role in the evaluation of therapeutics that could have the potential not just to alleviate the dementia associated with Alzheimer's disease, but to modify the disease process. Here, we summarize and critically evaluate current rodent models of dementia, and discuss their role in drug discovery and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: APP processing and APP mutations associated with early-onset Alzheimer's disease.
Figure 2: Theoretical possibilities of treatment outcome in Alzheimer's disease.
Figure 3: General treatment schedules in preclinical evaluation.
Figure 4: Examples of biomarkers of pathology in Alzheimer's disease.
Figure 5: Assessing disease-modifying efficacy in rodent models of Alzheimer's disease.

Similar content being viewed by others

References

  1. Wimo, A., Winblad, B., Aguero-Torres, H. & von Strauss, E. The magnitude of dementia occurrence in the world. Alzheimer Dis. Assoc. Dis. 17, 63–67 (2003). Provides a detailed estimate of current and future impact of dementia, based on worldwide demographics and age-dependent prevalence and incidence figures of dementia.

    Article  Google Scholar 

  2. De Deyn, P. P., D'Hooge, R. & van Zutphen, L. F. M. Animal models of human disorders — general aspects. Neurosci. Res. Commun. 26, 141–148 (2000).

    Article  Google Scholar 

  3. Cummings, B. J., Head, E., Ruehl, W., Milgram, N. W. & Cotman, C. W. The canine as an animal model of human aging and dementia. Neurobiol. Aging 17, 259–268 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Head, E. et al. β-amyloid deposition and tau phosphorylation in clinically characterized aged cats. Neurobiol. Aging 26, 749–763 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Uchida, K. et al. Senile plaques and other senile changes in the brain of an American black bear. Vet. Pathol. 32, 412–414 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Braak, H., Braak, E. & Strothjohann, M. Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat. Neurosci. Lett. 171, 1–4 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Gearing, M., Tigges, J., Mori, H. & Mirra, S. S. β-amyloid (Aβ) deposition in the brains of aged orangutans. Neurobiol. Aging 18, 139–146 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Gearing, M., Rebeck, G. W., Hyman, B. T., Tigges, J. & Mirra, S. S. Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer's disease. Proc. Natl Acad. Sci. USA 91, 9382–9386 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sani, S. et al. Distribution, progression and chemical composition of cortical amyloid-β deposits in aged rhesus monkeys: similarities to the human. Acta Neuropathol. (Berlin) 105, 145–156 (2003).

    CAS  Google Scholar 

  10. Erickson, C. A. & Barnes, C. A. The neurobiology of memory changes in normal aging. Exp. Gerontol. 38, 61–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Sherman, K. A. & Friedman, E. Pre- and post-synaptic cholinergic dysfunction in aged rodent brain regions: new findings and an interpretive review. Int. J. Dev.Neurosci. 8, 689–708 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Butterfield, D. A. & Poon, H. F. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Exp. Gerontol. 40, 774–783 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Ebert, U. & Kirch, W. Scopolamine models of dementia: electroencephalogram findings and cognitive performance. Eur. J. Clin. Invest. 28, 944–949 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Toledano, A. & Alvarez, M. I. Lesions and dysfunctions of the nucleus basalis as Alzheimer's disease models: general and critical overview and analysis of the long-term changes in several excitotoxic models. Curr. Alzheimer Res. 1, 189–214 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Gray, J. A. & McNaughton, N. Comparison between the behavioural effects of septal and hippocampal lesions: a review. Neurosci. Biobehav. Rev. 7, 119–188 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Jarrard, L. E. On the role of the hippocampus in learning and memory in rat. Behav. Neural Biol. 60, 9–26 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Sloan, H. L., Good, M. & Dunnett, S. B. Double dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory task. Behav. Brain Res. 171, 116–126 (2006).

    Article  PubMed  Google Scholar 

  18. Harkany, T. et al. β-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur. J. Neurosci. 12, 2735–2745 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Harkany, T. et al. β-amyloid(Phe(SO3H)24)25–35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behav. Brain Res. 90, 133–145 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Yamada, M. et al. Implanted cannula-mediated repetitive administration of Aβ25–35 into the mouse cerebral ventricle effectively impairs spatial working memory. Behav. Brain Res. 164, 139–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura, S., Murayama, N., Noshita, T., Annoura, H. & Ohno, T. Progressive brain dysfunction following intracerebroventricular infusion of β1–42-amyloid peptide. Brain Res. 912, 128–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Olariu, A., Yamada, K., Mamiya, T., Hefco, V. & Nabeshima, T. Memory impairment induced by chronic intracerebroventricular infusion of β-amyloid (1–40) involves downregulation of protein kinase C. Brain Res. 957, 278–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Nag, S., Yee, B. K. & Tang, F. Reduction in somatostatin and substance P levels and choline acetyltransferase activity in the cortex and hippocampus of the rat after chronic intracerebroventricular infusion of β-amyloid (1–40). Brain Res. Bull. 50, 251–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Vickers, J. C. et al. The cause of neuronal degeneration in Alzheimer's disease. Prog. Neurobiol. 60, 139–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Hauss-Wegrzyniak, B., Dobrzanski, P., Stoehr, J. D. & Wenk, G. L. Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer's disease. Brain Res. 780, 294–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Wenk, G. L., McGann, K., Hauss-Wegrzyniak, B. & Rosi, S. The toxicity of tumor necrosis factor-α upon cholinergic neurons within the nucleus basalis and the role of norepinephrine in the regulation of inflammation: implications for Alzheimer's disease. Neuroscience 121: 719–729 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Melov, S. Modeling mitochondrial function in aging neurons. Trends Neurosci. 27, 601–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Nitsch, R. & Hoyer, S. Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neurosci. Lett. 128, 199–202 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Stürchler-Pierrat, C. et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl Acad. Sci. USA 94, 13287–13292 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  32. McGowan, E., Eriksen, J. & Hutton, M. A decade of modeling Alzheimer's disease in transgenic mice. Trends Genet. 22, 281–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Huber, G. et al. Characterization of transgenic mice expressing apolipoprotein E4(C112R) and apolipoprotein E4(L28P;C112R). Neuroscience 101, 211–218 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Freichel, C. et al. Age-dependent cognitive decline and amygdala pathology in α-synuclein transgenic mice. Neurobiol. Aging 2006 July 25 [epub ahead of print].

  35. Andreasson, K. I. et al. Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J. Neurosci. 21, 8198–8209 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Capsoni, S. et al. Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc. Natl Acad. Sci. USA 97, 6826–6831 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iwata, N. et al. Metabolic regulation of brain Aβ by neprilysin. Science 292, 1550–1552 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Farris, W. et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl Acad. Sci. USA 100, 4162–4167 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Götz, J., Schild, A., Hoerndli, F. & Pennanen, L. Amyloid-induced neurofibrillary tangle formation in Alzheimer's disease: insight from transgenic mouse and tissue-culture models. Int. J. Dev.Neurosci. 22, 453–465 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Perez, M. et al. Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neuroscience 130, 339–347 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Oddo, S., Caccamo, A., Kitazawa, M., Tseng, B. P. & LaFerla, F. M. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer's disease. Neurobiol. Aging 24, 1063–1070 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003)

    Article  CAS  PubMed  Google Scholar 

  43. Janelsins, M. C. et al. Early correlation of microglial activation with enhanced tumor necrosis factor-α and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice. J. Neuroinflammation 2, 23 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L. & LaFerla, F. M. Intraneuronal Aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 45, 675–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. De Deyn, P. P. Dementie: Medisch, Psychosocial, Ethisch en Preventief [In Dutch] (Kluwer, Mechelen, Belgium, 2004).

    Google Scholar 

  46. Sarter, M. Animal cognition: defining the issues. Neurosci. Biobehav. Rev. 28, 645–650 (2004).

    Article  PubMed  Google Scholar 

  47. Pellow, S. & File, S. E. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol. Biochem. Behav. 24, 525–529 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Bensadoun, J. C., Brooks, S. P. & Dunnett, S. B. Free operant and discrete trial performance of mice in the nine-hole box apparatus: validation using amphetamine and scopolamine. Psychopharmacology (Berlin). 174, 396–405 (2004).

    Article  CAS  Google Scholar 

  49. D'Hooge, R. & De Deyn, P. P. Applications of the Morris water maze in learning and memory. Brain Res. Rev. 36, 60–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Klapdor, K. & van der Staay, F. J. The Morris-water maze task in mice: strain differences and effects of intra-maze contrast and brightness. Physiol. Behav. 60, 1247–1254 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Van Dam, D., Lenders, G. & De Deyn, P. P. Effect of Morris water maze diameter on visual-spatial learning in different mouse strains. Neurobiol. Learn. Mem. 85, 164–172 (2006).

    Article  PubMed  Google Scholar 

  52. Wahlsten, D. Standardizing tests of mouse behaviour: Reasons, recommendations, and reality. Physiol. Behav. 73, 695–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Janas, A. M. et al. The cholinesterase inhibitor, phen-serine, improves Morris water maze performance of scop-olamine-treated rats. Life Sci. 76, 1073–1081 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Crawley, J. N. What's Wrong With My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice (Wiley-Liss, USA, 2000). Written by an expert in the field, this book provides an excellent introduction to the cognitive and behavioural phenotyping of genetically engineered mouse models.

    Google Scholar 

  55. Tokita, K. et al. FK962, a novel enhancer of somatostatin release, exerts cognitive enhancing actions in rats. Eur. J. Pharmacol. 527, 111–120 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Stäubli, U., Izreal, Z. & Xu, F. Remembrance of odors past: Enhancement by central facilitation of AMPA receptors. Behav. Neurosci. 110, 1067–1073 (1996).

    Article  PubMed  Google Scholar 

  57. Patel, N. V. et al. Caloric restriction attenuates Aβ-deposition in Alzheimer transgenic models. Neurobiol. Aging 26, 995–1000 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. De Deyn, P. P. et al. A randomized trial of risperidone, placebo, and haloperidol for behavioral symptoms of dementia. Neurology 53, 899–901 (1999).

    Article  Google Scholar 

  59. De Deyn, P. P., Katz, I. R., Brodathy, H., Lyons, B., Greenspan, A. & Burns, A. Management of agitation, aggression, and psychosis associated with dementia: a pooled analysis including three randomized, placebo-controlled double-blind trials in nursing home residents treated with risperidone. Clin. Neurol. Neurosurg. 107, 497–508 (2005).

    Article  PubMed  Google Scholar 

  60. Navarro, J. F. & Manzaneque, J. M. Acute and subchronic effects of tiapride on isolation-induced aggression in male mice. Pharmacol. Biochem. Behav. 58, 255–259 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Chourbaji, S. et al. Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res. Protoc. 16, 70–78 (2005).

    Article  CAS  Google Scholar 

  62. Sanchis-Segura, C., Spanagel, R., Henn, F. A. & Vollmayr, B. Reduced sensitivity to sucrose in rats bred for helplessness: a study using the matching law. Behav. Pharmacol. 16, 267–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Gelinas, D. S., DaSilva, K., Fenili, D., St. George-Hyslop, P. & McLaurin, J. Immunotherapy for Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 14657–14662 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. DeMattos, R. B., Bales, K. R., Cummins, D. J., Dodart, J.-C., Paul, S. M. & Holtzman, D. M. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 8850–8855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dodart, J.-C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nature Neurosci. 5, 452–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Chishti, M. A. et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 276, 21562–21570 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Gervais, F., Garceau, D., Aisen, P. & Gauthier, S. in Alzheimer's Disease and Related Disorders Annual 5 (eds Gauthier, S., Scheltens, P. & Cummings, J.) 63–72 (Taylor & Francis, London, 2005).

    Book  Google Scholar 

  68. Eriksen, J. L. et al. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ 42 in vivo. J. Clin. Invest. 112, 440–449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Migliore, L. et al. Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer's disease and in other neurodegenerative diseases. Neurobiol. Aging 26, 587–595 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Sung, S. et al. Early Vitamin E supplementation in young but not aged mice reduces Aβ levels and amyloid deposition in a transgenic model of Alzheimer's disease. FASEB J. 18, 323–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. McGeer, E. G. & McGeer, P. L. Inflammatory processes in Alzheimer's disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 741–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Heneka, M. T. et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1–42 levels in APPV717I transgenic mice. Brain 128, 1442–1453 (2005).

    Article  PubMed  Google Scholar 

  73. Stackman, R. W., Eckenstein, F., Frei, B., Kulhanek, D., Nowlin, J. & Quinn, J. F. Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer's disease by chronic Ginkgo biloba treatment. Exp. Neurol. 184, 510–520 (2003).

    Article  PubMed  Google Scholar 

  74. Van Dam, D. & De Deyn, P. P. Cognitive evaluation of disease-modifying efficacy of galantamine and memantine in the APP23 model. Eur. Neuropsychopharmacol. 16, 59–69 (2006). This paper proposes a treatment schedule based on a clinical-withdrawal design for the analysis of disease-modifying efficacy in a transgenic mouse model with age-dependent development of cognitive/behavioural alterations.

    Article  CAS  PubMed  Google Scholar 

  75. Van Dam, D., Abramowski, D., Staufenbiel, M. & De Deyn, P. P. Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology 180, 177–190 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Monsonego, A. & Weiner, H. L. Immunotherapeutic approaches to Alzheimer's disease. Science 302, 834–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Furlan, R. et al. Vaccination with amyloid-β peptide induces autoimmune encephalomyelitis in C57/BL6 mice. Brain 126, 285–291 (2003).

    Article  PubMed  Google Scholar 

  79. Crentsil, V. The pharmacogenomics of Alzheimer's disease. Ageing Res. Rev. 3, 153–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Squire, L. R. & Kandel, E. R. Memory. From mind to molecules. Scientific American Library, New York, United States of America (2000).

  81. Engelborghs, S. et al. Neuropsychiatric symptoms of dementia: cross-sectional analysis from a prospective, longitudinal Belgian study. International Journal of Geriatric Psychiatry. 20, 1028–1037 (2005).

    Article  PubMed  Google Scholar 

  82. St George-Hyslop, P. H. Molecular genetics of Alzheimer's disease. Biol. Psychiatry 47, 183–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Brunkan, A. L. & Goate, A. M. Presenilin function and γ-secretase activity. J. Neurochem. 93, 769–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Lacor, P. N. et al. Synaptic targeting by Alzheimer's-related amyloid β oligomers. J. Neurosci. 24, 10191–10200 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moreira, P. I., Smith, M. A., Zhu, X., Nunomura, A., Castellani, R. J. & Perry, G. Oxidative stress and neurodegeneration. Ann. NY Acad. Sci. 1043, 545–552 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Smith, M. A., Casadesus, G., Joseph, J. A. & Perry, G. Amyloid-β and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic. Biol. Med. 33, 1194–1199 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Akiyama, H. et al. for the Neuroinflammation Working Group. Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383–421 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aisen, P. S. et al. A randomized controlled trial of prednisone in Alzheimer's disease. Alzheimer's disease Cooperative study. Neurology 54, 588–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Van Gool, W. A., Weinstein, H. C., Scheltens, P. & Walstra, G. J. Effect of hydroxychloroquine on progression of dementia in early Alzheimer's disease: an 18-month randomised, double-blind, placebo-controlled study. Lancet 358, 455–460 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Weggen, S. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Poirier, J. Apolipoprotein E, cholesterol transport and synthesis in sporadic Alzheimer's disease. Neurobiol. Aging 26, 355–361 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Sparks, D. L., Scheff, S. W., Hunsaker, J. C. 3rd, Liu, H., Landers, T. & Gross, D. R. Induction of Alzheimer-like β-immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol. 126, 88–94 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 5856–5861 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Coleman, P., Federoff, H., Kurlan, R. A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 63, 1155–1162 (2004).

    Article  PubMed  Google Scholar 

  95. Seabrook, T. J., Iglesias, M., Bloom, J. K., Spooner, E. T. & Lemere, C. A. Differences in the immune response to long term Aβ vaccination in C57BL/6 and B6D2F1 mice. Vaccine 22, 4075–4083 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Van Dam, D., D'Hooge, R., Staufenbiel, M., Van Ginneken, C., Van Meir, F. & De Deyn, P. P. Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur. J. Neurosci. 17, 388–396 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by the Fund for Scientific Research–Flanders, Agreement between the University of Antwerp and the Institute Born-Bunge, Neurosearch Antwerp, the Antwerp Medical Research Foundation, and the Thomas Riellaerts Research fund.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

FURTHER INFORMATION

The Alzheimer Disease and Frontotemporal Dementia Mutations Database

The Alzheimer Research Forum

International Federation of Pharmaceutical Manufacturers & Associations Clinical Trials Portal

Glossary

Anomia

Impaired recall of words with no impairment of comprehension or the capacity to repeat the words.

Aphasia

Loss or impairment of the ability to produce and/or comprehend language.

Perseveration

Uncontrollable repetition of a particular response — for example, a word, phrase or gesture — despite the absence or cessation of a stimulus.

Paraphasia

The production of unintended syllables, words or phrases during the effort to speak.

Agnosia

Loss of ability to recognize objects, persons, sounds, shapes or smells while the specific sense is not defective.

Prosopganosia

Disorder of face perception with impairment of the ability to recognize faces.

Apraxia

Loss of the ability to execute or carry out learned movements, despite having the desire and the physical capacity to perform the movements.

Nucleus basalis of Meynert

Basal forebrain cholinergic neurons that primarily project to the cerebral cortex and amygdala.

Early-onset Alzheimer's disease

(EOAD). Refers to cases of AD in which disease onset occurs before the age of 65. EOAD represents approximately 5% of all AD cases.

Cholinomimetic

Having an action similar to that of acetylcholine.

Amyloid-derived diffusible ligands (ADDLs)

Soluble Aβ oligomers that directly inhibit long-term potentiation, and therefore synaptic plasticity, and which have been linked to synaptic loss and reversible memory failure in trangenic animal models.

Disease-modifying therapy

Therapy that can slow or halt the progression of a disease by interacting with a central pathophysiological pathway(s).

Memory consolidation

Molecular memory consolidation refers to molecular processes by which long-term conductivity of synapses is affected by training. Network consolidation describes the idea that episodic memories are initially stored in the hippocampus and are slowly moved to the neocortex.

Procedural memory

Refers to the memory for skills and procedures that are often not easily put into words and can be used without conscious recollection (for example, learning to ride a bike or touch typing).

Declarative memory

The aspect of (human) memory that stores facts and events that can be consciously recalled. It includes episodic memory and semantic memory, which refer to the memory of personal events and the memory of facts, meanings and understanding, respectively.

Theranostics

The identification and prediction of specific phenotypic characteristics associated with well-characterized biomarker profiles and monitoring or even prediction of the efficacy of disease-modifying drugs for a specific human condition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Dam, D., De Deyn, P. Drug discovery in dementia: the role of rodent models. Nat Rev Drug Discov 5, 956–970 (2006). https://doi.org/10.1038/nrd2075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing