Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exploiting the PI3K/AKT Pathway for Cancer Drug Discovery

Key Points

  • The phosphatidylinositol-3-kinase (PI3K) pathway plays a crucial role in cell growth and survival and is activated in various cancers. Multiple components of the pathway are frequently targeted by amplification, mutation, and, less commonly, translocation in neoplasia; there is also crosstalk with the p53 and retinoblastoma pathways to comprise a signalling network that promotes tumour initiation and progression.

  • Despite major interest in this pathway for cancer drug discovery, no drugs have yet been approved that act specifically against PI3K or its downstream regulator, AKT. However, several drugs that were developed for other purposes either directly or indirectly target PI3K signaling, such as the rapamycin analogs, the ether lipids perifosine and miltefosine, and inhibitors of the epidermal growth factor receptor (EGFR), HER2, c-kit, platelet-derived growth factor receptor (PDGFR) and bcr–abl.

  • Because of the crucial role of the PI3K pathway in normal cell growth and in the cellular response to stress, the main challenge to developing PI3K pathway-targeted drugs is to identify inhibitors with a usable therapeutic index.

  • It is likely that PI3K inhibitors will need to be used in combination with other drugs that induce cell stress, such as other signaling inhibitors, radio- and chemotherapy.

  • Points at which therapeutic intervention might be useful in the PI3K pathway include PI3K itself, the downstream regulator AKT, although toxicity has thus far precluded use of specific inhibitors of this crucial signaling node, and other downstream components such as mTOR, integrin-linked kinase (ILK), phosphoinositide-dependent kinase-1 (PDK-1), p70S6 kinase, and Forkhead/FOXO1.

  • As with other molecularly targeted agents such as imatinib mesylate (Gleevec) and trastuzumab (Herceptin), the success of PI3K inhibitors will probably depend on the selection of cancer patients likely to be responders based on genomic aberrations. The co-development of molecular markers determining early response will allow triage of non-responders to other therapies and thereby increase the utility of targeted agents.

Abstract

Evolving studies with several different targeted therapeutic agents are demonstrating that patients with genomic alterations of the target, including amplification, translocation and mutation, are more likely to respond to the therapy. Recent studies indicate that numerous components of the phosphatidylinositol-3-kinase (PI3K)/AKT pathway are targeted by amplification, mutation and translocation more frequently than any other pathway in cancer patients, with resultant activation of the pathway. This warrants exploiting the PI3K/AKT pathway for cancer drug discovery.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic of signalling through the phosphatidylinositol-3-kinase (PI3K)/AKT pathway.
Figure 2: The structure of phosphatidylinositol.
Figure 3: Clinical syndromes associated with altered PI3K pathway signalling resulting from mutations in four tumour-suppressor genes.
Figure 4: The application of mathematical modeling to the study of the phosphatidylinositol-3-kinase (PI3K)/AKT pathway.
Figure 5: The role of AKT and mammalian target of rapamycin (mTOR) in glucose homeostasis.

References

  1. Fruman, D. A., Meyers, R. E. & Cantley, L. C. Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481–507 (1998). Excellent review of the structure and function of PI3Ks.

    CAS  Article  PubMed  Google Scholar 

  2. Hiles, I. D. et al. Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70, 419–429 (1992).

    CAS  PubMed  Google Scholar 

  3. Jimenez, C. et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J. 17, 743–753 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pawson, T. & Nash, P. Protein–protein interactions define specificity in signal transduction. Genes. Dev. 14, 1027–1047 (2000).

    CAS  PubMed  Google Scholar 

  5. Davies, S. P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Oudit, G. Y. et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J. Mol. Cell Cardiol. 37, 449–471 (2004).

    CAS  PubMed  Google Scholar 

  7. Bi, L., Okabe, I., Bernard, D. J., Wynshaw-Boris, A. & Nussbaum, R. L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem. 274, 10963–10968 (1999).

    CAS  PubMed  Google Scholar 

  8. Brachmann, S. M., Ueki, K., Engelman, J. A., Kahn, R. C. & Cantley, L. C. Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol. Cell. Biol. 25, 1596–1607 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  10. Bilancio, A. et al. Key role of the p110δ isoform of PI3K in B cell antigen and IL4 receptor signalling- comparative analysis of genetic and pharmacological interference with p110δ function in B cells. Blood. 2005 Sep 22; [Epub ahead of print].

  11. Northcott, C. A. et al. Upregulated function of phosphatidylinositol-3-kinase in genetically hypertensive rats: a moderator of arterial hypercontractility. Clin. Exp. Pharmacol. Physiol. 32, 851–858 (2005).

    CAS  PubMed  Google Scholar 

  12. Condliffe, A. M. et al. Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106, 1432–1440 (2005).

    CAS  PubMed  Google Scholar 

  13. Sujobert, P. et al. Essential role for the p110δ isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 106, 1063–1066 (2005).

    CAS  PubMed  Google Scholar 

  14. Yip, S. C. et al. Over-expression of the p110β but not p110α isoform of PI 3-kinase inhibits motility in breast cancer cells. Cell Motil. Cytoskeleton 59, 180–188 (2004).

    CAS  PubMed  Google Scholar 

  15. Geng, L. et al. A specific antagonist of the p110δ catalytic component of phosphatidylinositol 3′-kinase, IC486068, enhances radiation-induced tumor vascular destruction. Cancer Res. 64, 4893–4899 (2004)

    CAS  PubMed  Google Scholar 

  16. Campbell, M. et al. Glucose-potentiated chemotaxis in human vascular smooth muscle is dependent on cross-talk between the PI3K and MAPK signaling pathways. Circ. Res. 95, 380–388 (2004).

    CAS  PubMed  Google Scholar 

  17. Gukovsky, I. et al. Phosphatidylinositide 3-kinase γ regulates key pathologic responses to cholecystokinin in pancreatic acinar cells. Gastroenterology 126, 554–566 (2004).

    CAS  PubMed  Google Scholar 

  18. Leverrier, Y. et al. Class I phosphoinositide 3-kinase p110β is required for apoptotic cell and Fcγ receptor-mediated phagocytosis by macrophages. J. Biol. Chem. 278, 38437–38442 (2003).

    CAS  PubMed  Google Scholar 

  19. Chantry, D. et al. p110δ, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J. Biol. Chem. 272, 19236–19241 (1997).

    CAS  PubMed  Google Scholar 

  20. Perrino, C. et al. Targeted inhibition of β-adrenergic receptor kinase-1-associated phosphoinositide-3 kinase activity preserves β-adrenergic receptor signaling and prolongs survival in heart failure induced by calsequestrin overexpression. J. Am. Coll. Cardiol. 45, 1862–1870 (2005).

    CAS  PubMed  Google Scholar 

  21. Jackson, S. P. et al. PI3-kinase p110β: a new target for antithrombotic therapy. Nature Med. 11, 507–514 (2005).

    CAS  PubMed  Google Scholar 

  22. Coffer, P. J. & Woodgett, J. R. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur. J. Biochem. 201, 475–81 (1991).

    CAS  PubMed  Google Scholar 

  23. Bellacosa, A., Testa, J. R., Staal, S. P. & Tsichlis, P. N. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254, 274–77 (1991).

    CAS  PubMed  Google Scholar 

  24. Murthy, S. S., Tosolini, A., Taguchi, T. & Testa, J. R. Mapping of AKT3, encoding a member of the Akt/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization. Cytogenet. Cell Genet. 88, 39–40 (2000).

    Google Scholar 

  25. Alessi, D. R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541–551 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–65 (2001).

    CAS  PubMed  Google Scholar 

  27. Lynch, D. K., Ellis, C. A., Edwards, P. A. & Hiles, I. D. Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism. Oncogene 18, 8024–32 (1999).

    CAS  PubMed  Google Scholar 

  28. Kawakami, Y. et al. Protein kinase C βII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J. Biol. Chem. 279, 47720–5 (2004).

    CAS  PubMed  Google Scholar 

  29. Sarbassov dos, D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–101 (2005).

    Google Scholar 

  30. Arboleda, M. J. et al. Overexpression of AKT2/protein kinase Bβ leads to up-regulation of β1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. 63, 196–206 (2003).

    CAS  PubMed  Google Scholar 

  31. Yang, Z. Z. et al. Protein kinase B α/Akt1 regulates placental development and fetal growth. J. Biol. Chem. 278, 32124–31 (2003).

    CAS  PubMed  Google Scholar 

  32. Peng, X. D. et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 17, 1352–65 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F. & Birnbaum, M. J. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 276, 38349–52 (2001).

    CAS  PubMed  Google Scholar 

  34. Testa, J. R. & Bellacosa, A. AKT plays a central role in tumorigenesis. Proc. Natl Acad. Sci. USA 98, 10983–985 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    CAS  Google Scholar 

  36. Luo, J., Manning, B. D. & Cantley, L. C. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4, 257–62 (2003).

    CAS  PubMed  Google Scholar 

  37. Chen, X. et al. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 20, 6073–83 (2001).

    CAS  PubMed  Google Scholar 

  38. Wang, Q. et al. Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells. J. Biol. Chem. 277, 36602–610 (2002).

    CAS  PubMed  Google Scholar 

  39. Carroll, P. E. et al. Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18, 1935–44 (1999).

    CAS  PubMed  Google Scholar 

  40. Toi, M., Saji, S., Suzuki, A., Yamamoto, Y., Tominaga, T. MDM2 in Breast Cancer. Breast Cancer 25, 264–68 (1997).

    Google Scholar 

  41. Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).

    CAS  PubMed  Google Scholar 

  42. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–68 (1999). Excellent review of some of the downstream mechanisms of AKT action.

    CAS  PubMed  Google Scholar 

  43. Cahill, C. M. et al. Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14–3-3-dependent and 14–3-3-independent pathways. J. Biol. Chem. 276, 13402–10 (2001).

    CAS  PubMed  Google Scholar 

  44. Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

    CAS  PubMed  Google Scholar 

  45. Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. Cell 103, 253–262 (2000). Excellent review of mTOR and its activity.

    CAS  PubMed  Google Scholar 

  46. Lazaris-Karatzas, A., Montine, K. S. & Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345, 544–547 (1990).

    CAS  PubMed  Google Scholar 

  47. Polunovsky, V. A. et al. Translational control of the antiapoptotic function of Ras. J. Biol. Chem. 275, 24776–24780 (2000).

    CAS  PubMed  Google Scholar 

  48. Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nature Cell Biol. 4, 658–665 (2002).

    CAS  PubMed  Google Scholar 

  49. Tee, A. R. et al. Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Natl Acad. Sci. USA 99, 13571–576 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dan, H. C. et al. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J. Biol. Chem. 277, 35364–35370 (2002).

    CAS  PubMed  Google Scholar 

  51. Hengstschlager, M., Rosner, M., Fountoulakis, M. & Lubec, G. Tuberous sclerosis genes regulate cellular 14-3-3 protein levels. Biochem. Biophys. Res. Commun. 312, 676–83 (2003).

    CAS  PubMed  Google Scholar 

  52. Harrington, L. S. et al. The TSC1–2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166, 213–23 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, H. et al. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J. Clin. Invest. 112, 1223–1233 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun, S. Y. et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 65, 7052–7058 (2005).

    CAS  PubMed  Google Scholar 

  55. Hay, N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 8, 179–183 (2005).

    CAS  PubMed  Google Scholar 

  56. Hardie, D. G., Scott, J. W., Pan, D. A. & Hudson, E. R. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546, 113–120 (2003).

    CAS  PubMed  Google Scholar 

  57. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shaw, R. J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91–99 (2004).

    CAS  PubMed  Google Scholar 

  59. Fujita, N., Sato, S. & Tsuruo, T. Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization. J. Biol. Chem. 278, 49254–49260 (2003).

    CAS  PubMed  Google Scholar 

  60. Shin, I. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nature Med. 8, 1145–1152 (2002).

    CAS  PubMed  Google Scholar 

  61. Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol. 3, 245–252 (2001).

    CAS  PubMed  Google Scholar 

  62. Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499–3511 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, W. Y. & Kaelin, W. G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 22, 4991–5004 (2004).

    CAS  PubMed  Google Scholar 

  64. Skinner, H. D., Zheng, J. Z., Fang, J., Agani, F. & Jiang, B. H. Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J. Biol. Chem. 279, 45643–51 (2004).

    CAS  PubMed  Google Scholar 

  65. Zhang, D. & Brodt, P. Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling. Oncogene 22, 974–82 (2003).

    CAS  PubMed  Google Scholar 

  66. Kimura, A. et al. Induction of hTERT expression and phosphorylation by estrogen via Akt cascade in human ovarian cancer cell lines. Oncogene 23, 4505–15 (2004).

    CAS  PubMed  Google Scholar 

  67. Remy, I., Montmarquette, A. & Michnick, S. W. PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3. Nature Cell Biol. 6, 358–65 (2004).

    CAS  PubMed  Google Scholar 

  68. Shou, J. et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl Cancer Inst. 96, 926–35 (2004).

    CAS  PubMed  Google Scholar 

  69. Mondesire, W. H. et al. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin. Cancer Res. 10, 7031–42 (2004).

    CAS  PubMed  Google Scholar 

  70. Knuefermann, C. et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 22, 3205–12 (2003).

    CAS  PubMed  Google Scholar 

  71. Gupta, A. K. et al. Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int. J. Radiat. Oncol. Biol. Phys. 56, 846–53 (2003).

    CAS  PubMed  Google Scholar 

  72. Brognard, J., Clark, A. S., Ni, Y. & Dennis, P. A. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 61, 3986–97 (2001).

    CAS  PubMed  Google Scholar 

  73. Kim, D. et al. AKT/PKB signaling mechanisms in cancer and chemoresistance. Front Biosci. 10, 975–87 (2005).

    CAS  PubMed  Google Scholar 

  74. Stoica, G. E. et al. Effect of estradiol on estrogen receptor-α gene expression and activity can be modulated by the ErbB2/PI 3-K/Akt pathway. Oncogene 22, 7998–8011 (2003).

    PubMed  Google Scholar 

  75. Mendez, P., Azcoitia, I. & Garcia-Segura, L. M. Estrogen receptor α forms estrogen-dependent multimolecular complexes with insulin-like growth factor receptor and phosphatidylinositol 3-kinase in the adult rat brain. Brain Res. Mol. Brain Res. 112, 170–6 (2003).

    CAS  PubMed  Google Scholar 

  76. Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004). Excellent review of the role of PTEN in trastuzumab resistance in breast cancer.

    CAS  PubMed  Google Scholar 

  77. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000). Excellent review of neoplastic progression due to the collective role of multiple genetic and molecular abnormalities.

    CAS  PubMed  Google Scholar 

  78. Bachman, K. E. et al. The PIK3CA Gene is Mutated with High Frequency in Human Breast Cancers. Cancer Biol. Ther. 3, 772–775 (2004).

    CAS  PubMed  Google Scholar 

  79. Kang, S., Bader, A. G. & Vogt, P. K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. Natl Acad. Sci. USA 102, 802–807 (2005). Excellent paper which demonstrates that PI3K mutations are oncogenic in human cancers.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    CAS  PubMed  Google Scholar 

  81. Campbell, I. G. et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 64, 7678–7681 (2004).

    CAS  PubMed  Google Scholar 

  82. Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nature Genet. 21, 99–102 (1999).

    CAS  PubMed  Google Scholar 

  83. Woenckhaus, J. et al. Genomic gain of PIK3CA and increased expression of p110α are associated with progression of dysplasia into invasive squamous cell carcinoma. J. Pathol. 198, 335–342 (2002).

    CAS  PubMed  Google Scholar 

  84. Ma, Y. Y. et al. PIK3CA as an oncogene in cervical cancer. Oncogene 19, 2739–2744 (2000).

    CAS  PubMed  Google Scholar 

  85. Mizoguchi, M., Nutt, C. L., Mohapatra, G. & Louis, D. N. Genetic alterations of phosphoinositide 3-kinase subunit genes in human glioblastomas. Brain Pathol. 14, 372–377 (2004).

    CAS  PubMed  Google Scholar 

  86. Broderick, D. K. et al. Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res. 64, 5048–5050 (2004).

    CAS  PubMed  Google Scholar 

  87. Jucker, M. et al. Expression of a mutated form of the p85α regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO). Leukemia 16, 894–901 (2002).

    CAS  PubMed  Google Scholar 

  88. Cheng, J. Q. et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc. Natl Acad. Sci. USA 93, 3636–3341 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ruggeri, B. A., Huang, L., Wood, M., Cheng, J. Q. & Testa, J. R. Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol. Carcinog. 21, 81–86 (1998).

    CAS  PubMed  Google Scholar 

  90. Bellacosa, D. et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer 64, 280–285 (1995).

    CAS  PubMed  Google Scholar 

  91. Staal, S. P. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc. Natl Acad. Sci. USA 84, 5034–5037 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Eng, C. PTEN: one gene, many syndromes. Hum. Mutat. 22, 183–198 (2003).

    CAS  PubMed  Google Scholar 

  93. Li, Y. L., Tian, Z., Wu, D. Y., Fu, B. Y. & Xin, Y. Loss of heterozygosity on 10q23. 3 and mutation of tumor suppressor gene PTEN in gastric cancer and precancerous lesions. World J. Gastroenterol. 11, 285–288 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    CAS  PubMed  Google Scholar 

  95. Cairns, P. et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 57, 4997–5000 (1997).

    CAS  PubMed  Google Scholar 

  96. Garcia, J. M. et al. Allelic loss of the PTEN region (10q23) in breast carcinomas of poor pathophenotype. Breast Cancer Res. Treat. 57, 237–243 (1999).

    CAS  PubMed  Google Scholar 

  97. Khan, S. et al. PTEN promoter is methylated in a proportion of invasive breast cancers. Int. J. Cancer 112, 407–410 (2004).

    CAS  PubMed  Google Scholar 

  98. Goel, A. et al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res. 64, 3014–3021 (2004).

    CAS  PubMed  Google Scholar 

  99. Stephens, P. et al. A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nature Genet. 37, 590–592 (2005).

    CAS  PubMed  Google Scholar 

  100. Davies, H. et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 65, 7591–7595 (2005).

    CAS  PubMed  Google Scholar 

  101. Parsons, D. W. et al. Colorectal cancer: mutations in a signalling pathway. Nature 436, 792 (2005).

    CAS  PubMed  Google Scholar 

  102. Wang, Z. et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science. 304, 1164–1166 (2004).

    CAS  PubMed  Google Scholar 

  103. Rodriguez-Viciana, P. et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89, 457–467 (1997).

    CAS  PubMed  Google Scholar 

  104. Almoguera, C. et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53, 549–554 (1988).

    CAS  PubMed  Google Scholar 

  105. Yanez, L., Groffen, J. & Valenzuela, D. M. c-K-ras mutations in human carcinomas occur preferentially in codon 12. Oncogene 1, 315–318 (1987).

    CAS  PubMed  Google Scholar 

  106. Nelson, M. A., Wymer, J. & Clements, N. Jr. Detection of K-ras gene mutations in non-neoplastic lung tissue and lung cancers. Cancer Lett 103, 115–121 (1996).

    CAS  PubMed  Google Scholar 

  107. Davies, H. A. et al. Mutations of the BRAF gene in human cancer. Nature. 417, 949–954 (2002).

    CAS  PubMed  Google Scholar 

  108. Rolitsky, C. D., Theil, K. S., McGaughy, V. R., Copeland, L. J. & Niemann, T. H. HER-2/neu amplification and overexpression in endometrial carcinoma. Int. J. Gynecol. Pathol. 18, 138–143 (1999).

    CAS  PubMed  Google Scholar 

  109. Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    CAS  PubMed  Google Scholar 

  110. Stephens, P. et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431, 525–526 (2004). Excellent paper which demonstrates that HER2 mutations occur in 10% human lung cancers

    CAS  PubMed  Google Scholar 

  111. Klos, K. S. et al. Combined trastuzumab and paclitaxel treatment better inhibits ErbB-2-mediated angiogenesis in breast carcinoma through a more effective inhibition of Akt than either treatment alone. Cancer 98, 1377–1385 (2003).

    CAS  PubMed  Google Scholar 

  112. Nicholson, K. M., Streuli, C. H. & Anderson, N. G. Autocrine signalling through erbB receptors promotes constitutive activation of protein kinase B/Akt in breast cancer cell lines. Breast Cancer Res. Treat. 81, 117–128 (2003).

    CAS  PubMed  Google Scholar 

  113. Ekstrand, A. J., Sugawa, N., James, C. D. & Collins, V. P. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc. Natl Acad. Sci. USA 89, 4309–4313 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sordella, R., Bell, D. W., Haber, D. A. & Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163–1167 (2004).

    CAS  PubMed  Google Scholar 

  115. Tang, C. K., Gong, X. Q., Moscatello, D. K., Wong, A. J. & Lippman, M. E. Epidermal growth factor receptor vIII enhances tumorigenicity in human breast cancer. Cancer Res. 60, 3081–3087 (2000).

    CAS  PubMed  Google Scholar 

  116. Barber, T. D., Vogelstein, B., Kinzler, K. W. & Velculescu, V. E. Somatic mutations of EGFR in colorectal cancers and glioblastomas. N. Engl. J. Med. 351, 2883 (2004).

    CAS  PubMed  Google Scholar 

  117. Okamoto, I. et al. Expression of constitutively activated EGFRvIII in non-small cell lung cancer. Cancer Sci. 94, 50–56 (2003).

    CAS  PubMed  Google Scholar 

  118. Rosenzweig, K. E., Youmell, M. B., Palayoor, S. T. & Price, B. D. Radiosensitization of human tumor cells by the phosphatidylinositol-3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin. Cancer Res. 3, 1149–1156 (1997).

    CAS  PubMed  Google Scholar 

  119. Ng, S. S., Tsao, M. S., Nicklee, T. & Hedley, D. W. Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin. Cancer Res. 7, 3269–3275 (2001).

    CAS  PubMed  Google Scholar 

  120. Kim, S. H. et al. Potentiation of chemosensitivity in multidrug-resistant human leukemia CEM cells by inhibition of DNA-dependent protein kinase using wortmannin. Leuk. Res. 24, 917–925 (2000).

    CAS  PubMed  Google Scholar 

  121. Schultz, R. M. et al. In vitro and in vivo antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin. Anticancer Res. 15, 1135–1139 (1995).

    CAS  PubMed  Google Scholar 

  122. Hu, L., Zaloudek, C., Mills, G. B., Gray, J. & Jaffe, R. B. In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin. Cancer Res. 6, 880–886 (2000).

    CAS  PubMed  Google Scholar 

  123. Hu, L., Hofmann, J., Lu, Y., Mills, G. B. & Jaffe, R. B. Inhibition of phosphatidylinositol 3′-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res. 62, 1087–1092 (2002).

    CAS  PubMed  Google Scholar 

  124. Shokat, K. et al. Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. Bioorg. Med. Chem. 12, 4749–4759 (2004).

    PubMed  Google Scholar 

  125. Ward, S. G. & Finan, P. Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr. Opin. Pharmacol. 3, 426–434 (2003).

    CAS  PubMed  Google Scholar 

  126. Wymann, M. P., Zvelebil, M. & Laffargue, M. Phosphoinositide 3-kinase signalling — which way to target?, Trends. Pharmacol. Sci. 24, 366–376 (2003).

    CAS  PubMed  Google Scholar 

  127. Roberson, A., Jackson, S., Kenche, V., Yaip, C., Parbaharan, H. & Thompson, P. Therapeutic Morpholino-Substituted Compounds. WO 01/53266 A1, Thrombogenix, 2001.

  128. Giranda, V. et al. Novel ATP-competitive Akt inhibitors slow the progression of tumors in vivo. EORTC/AACR Molecular Therapeutics Geneva 2005 Abstract # 246

    Google Scholar 

  129. Defeo-Jones, D. et al. Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members. Mol. Cancer Ther. 4, 271–279 (2005).

    CAS  PubMed  Google Scholar 

  130. Lindsley, C. W. et al. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg. Med. Chem. Lett. 15, 761–764 (2005).

    CAS  PubMed  Google Scholar 

  131. Barnett, S. F. et al. Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem. J. 385, 399–408 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kondapaka, S. B., Singh, S. S., Dasmahapatra, G. P., Sausville, E. A. & Roy, K. K. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol. Cancer Ther. 2, 1093–1103 (2003).

    CAS  PubMed  Google Scholar 

  133. Van Ummersen, L. et al. A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin. Cancer Res. 10, 7450–7456 (2004).

    CAS  PubMed  Google Scholar 

  134. Eng, C. P., Sehgal, S. N. & Vezina, C. Activity of rapamycin (AY-22, 989) against transplanted tumors. J. Antibiot. (Tokyo) 37, 1231–1237 (1984).

    CAS  Google Scholar 

  135. Dudkin, L. et al. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin. Cancer Res. 7, 1758–1764 (2001).

    CAS  PubMed  Google Scholar 

  136. Shi, Y. et al. Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res. 55, 1982–1988 (1995).

    CAS  PubMed  Google Scholar 

  137. deGraffenried, L. A. et al. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin. Cancer Res. 10, 8059–8067 (2004).

    CAS  PubMed  Google Scholar 

  138. Atkins, M. B. et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 22, 909–918 (2004).

    CAS  PubMed  Google Scholar 

  139. Chan, S. et al. First report: a phase 2 study of the safety and activity of CCI-779 for patients with locally advanced or metastatic breast cancer failing prior chemotherapy. Proc. Am. Soc. Clin. Oncol. 21, abstract 175 (2002).

  140. Galanis, E. et al. NCCTG phase II trial of CCI-779 in recurrent glioblastoma multiforme (GBM). Proc. Am. Soc. Clin. Oncol. 22, 1503 (2004).

    Google Scholar 

  141. DeGraffenried, L. A. et al. Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann. Oncol. 15, 1510–1516 (2004).

    CAS  PubMed  Google Scholar 

  142. Mills, G. B., Lu, Y. & Kohn, E. C. Linking molecular therapeutics to molecular diagnostics: inhibition of the FRAP/RAFT/TOR component of the PI3K pathway preferentially blocks PTEN mutant cells in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 10031–10033 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kau, T. R. et al. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell. 4, 463–476 (2003).

    CAS  PubMed  Google Scholar 

  144. Kim, K. M. & Lee, Y. J. Amiloride augments TRAIL-induced apoptotic death by inhibiting phosphorylation of kinases and phosphatases associated with the P13K-Akt pathway. Oncogene. 24, 355–366 (2005).

    CAS  PubMed  Google Scholar 

  145. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Google Scholar 

  146. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    CAS  PubMed  Google Scholar 

  147. Mukohara, T. et al. Differential effects of gefitinib and cetuximab on non-small-cell lung cancers bearing epidermal growth factor receptor mutations. J. Natl. Cancer Inst. 97, 1185–1194 (2005).

    CAS  PubMed  Google Scholar 

  148. Haas-Kogan, D. A. et al. Biomarkers to predict response to epidermal growth factor receptor inhibitors. Cell Cycle. 4, (2005) [Epub ahead of print].

  149. Giaccone, G. et al. A phase III clinical trial of ZD 1839 ('Iressa') in combination with gemcitabine and cisplatin in chemotherapy-naïve patients with advanced non-small cell lung cancer (INTACT-1). Ann. Oncol. 13, 2 (2002).

    Google Scholar 

  150. Johnson, D. H. et al. ZD1839 ('Iressa') in combination with paclitaxel and carboplatin in chemotherapy-naïve patients with advanced non-small cell lung cancer (NSCLC): initial results from a phase III trial (INTACT-2). Ann. Oncol. 13, 127 (2002).

    Google Scholar 

  151. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    CAS  PubMed  Google Scholar 

  152. Shepherd, F. A. et al. A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC) following failure of 1st line or 2nd line chemotherapy. A National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) trial. Proc. Am. Soc. Clin. Oncol. 22, 7022 (2004).

    Google Scholar 

  153. Moore, M. J. et al. Erlotinib improves survival when added to gemcitabine in patients with advanced pancreatic cancer. A phase III trial of the National Cancer Institute of Canada Clinical Trials Group [NCIC-CTG]. ASCO Gastrointestinal Cancers Symposium abstract 77 (2005).

    Google Scholar 

  154. Kohn, E. C. et al. Targeted Therapeutics in Breast Cancer: Challenges to Success. Diseases of the Breast (Editor Marc Lippman) In Press.

  155. Kohn, E. C. et al. Molecular Therapeutics: promise and challenges. Semin Oncol 31, 39–53 (2004).

    CAS  PubMed  Google Scholar 

  156. Drees, B. E., Mills, G. B., Rommel, C. & Prestwich G. D. Therapeutic potential of phosphoinositide 3-kinase inhibitors. Expert Opinion on therapeutic patents In Press.

  157. Meric-Bernstam, F. & Mills, G. B. Mammalian target of rapamycin. Semin Oncol 31 (Suppl. 16), 10–17 (2004).

    CAS  PubMed  Google Scholar 

  158. Debiec-Rychter, M. et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 128, 270–279 (2005).

    CAS  PubMed  Google Scholar 

  159. Bhalla, U. S., Ram, P. T. & Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018–1023 (2002).

    CAS  PubMed  Google Scholar 

  160. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    CAS  PubMed  Google Scholar 

  161. Eker, S. et al. Pathway logic: symbolic analysis of biological signaling. Pac Symp Biocomput 400–412 (2002).

  162. Ferrell J. E. Jr., & Machleder, E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280, 895–898 (1998).

    CAS  PubMed  Google Scholar 

  163. Hoffman, A. et al. The IκB–NF–κB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).

    Google Scholar 

  164. Huang, C. Y. & Ferrell, J. E. Jr. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 93, 10078–10083 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Ma'ayan, A. et al. Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science 309, 1078–1083 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Park, C. S., Schneider, I. C. & Haugh, J. M. Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts. J. Biol. Chem. 278, 37064–37072 (2003).

    CAS  PubMed  Google Scholar 

  167. Sachs, K. et al. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    CAS  PubMed  Google Scholar 

  168. Liu, X. et al. Rapamycin inhibits Akt-mediated oncogenic transformation and tumor growth. Anticancer Res. 24, 2697–2704 (2004).

    CAS  PubMed  Google Scholar 

  169. Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

    CAS  PubMed  Google Scholar 

  170. Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl Acad. Sci. USA 98, 10320–10325 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Neshat, M. S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA 98, 10314–10319 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Pardanani, A. et al. FIP1L1-PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood 104, 3038–3045 (2004).

    CAS  PubMed  Google Scholar 

  173. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Med. 2, 561–566 (1996).

    CAS  PubMed  Google Scholar 

  174. Samuels, Y. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell. 7, 561–573 (2005).

    CAS  PubMed  Google Scholar 

  175. Lu, Y., Zi, X. & Pollak, M. Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int. J. Cancer 108, 334–341 (2004).

    CAS  PubMed  Google Scholar 

  176. Ritter, C. A. et al. Mechanisms of resistance development against trastuzumab (Herceptin) in an in vivo breast cancer model. Int. J. Clin. Pharmacol. Ther. 42, 642–643 (2004).

    CAS  PubMed  Google Scholar 

  177. Thompson, J. E. & Thompson, C. B. Putting the rap on Akt. J. Clin. Oncol. 22, 4217–4226 (2004). Excellent review of AKT involvement in cancer cell metabolism.

    CAS  PubMed  Google Scholar 

  178. Warburg, O., Posener, K. & Negelein, E. Uber den stoffwechsel der tumoren. Biochem. Z. 152, 319–344 (1924).

    Google Scholar 

  179. Rathmell, J. C. et al. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol. Cell. Biol. 23, 7315–7328 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Bomanji, J. B., Costa, D. C. & Ell, P. J. Clinical role of positron emission tomography in oncology. Lancet Oncol. 2, 157–164 (2001).

    CAS  PubMed  Google Scholar 

  181. Samuelson, A. V. & Lowe, S. W. Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. Proc. Natl Acad. Sci. USA 94, 12094–12099 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. George, D. J. & Kaelin, W. G. Jr. The von Hippel–Lindau protein, vascular endothelial growth factor, and kidney cancer. N. Engl. J. Med. 349, 419–421 (2003). Excellent review of roles of vHL and VEGF in renal cell carcinoma.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by National Institutes of Health (NIH) grants to G.B.M. as well as by a Department Of Defence grant to P.T.R., and Aventis Pharmaceutical M.D. Anderson fellowship award to B.T.H., and a training fellowship from the Keck Centern Pharmacoinformatic Training Program at the Gulf Coast Consortia (NIH grant) to D.L.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon B. Mills.

Ethics declarations

Competing interests

G.B.M. has financial relationships with QLT Inc., Semafore Pharmaceuticals, Eli Lilly & Co., Keryx Biopharmaceuticals and Abbott Laboratories.

Related links

Related links

DATABASES

Entrez Gene

AKT1

AKT2

AKT3

ATM

ATR

c-Kit

EGFR

HER2/neu

ILK

mTOR

p53

p55γ

p85α

p85β

p110α

p110β

p110γ

p110δ

PIK3CA

PDGFR

Rb

vHL

OMIM

CML

dermatofibrosarcoma protuberans

GIST

hypereosinophilic syndrome

FURTHER INFORMATION

Nucleic Acids Reaseach Database List

The Sanger Institute Catalogues of Somatic Mutations in Cancer

The Signalling Gateway

Glossary

HAMARTOMAS

Abnormal growth of mature normal cells and tissues in an organ composed of identical elements.

REVERSE PHASE PROTEIN ARRAY

An array that immobilizes the whole repertoire of patient proteins that represent the state of individual tissue cell populations undergoing disease transitions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hennessy, B., Smith, D., Ram, P. et al. Exploiting the PI3K/AKT Pathway for Cancer Drug Discovery. Nat Rev Drug Discov 4, 988–1004 (2005). https://doi.org/10.1038/nrd1902

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1902

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing