Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

How molecular profiling could revolutionize drug discovery

Abstract

Information from genomic, proteomic and metabolomic measurements has already benefited target discovery and validation, assessment of efficacy and toxicity of compounds, identification of disease subgroups and the prediction of responses of individual patients. Greater benefits can be expected from the application of these technologies on a significantly larger scale; by simultaneously collecting diverse measurements from the same subjects or cell cultures; by exploiting the steadily improving quantitative accuracy of the technologies; and by interpreting the emerging data in the context of underlying biological models of increasing sophistication. The benefits of applying molecular profiling to drug discovery and development will include much lower failure rates at all stages of the drug development pipeline, faster progression from discovery through to clinical trials and more successful therapies for patient subgroups. Upheavals in existing organizational structures in the current 'conveyor belt' models of drug discovery might be required to take full advantage of these methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular profiling and drug toxicity.
Figure 2: Coherent analysis of expression profiles, genotype scans and phenotypic data from cross-bred mice.
Figure 3: Integrated use of molecular profiling and clinical data.

Similar content being viewed by others

References

  1. Stoughton, R. Applications of DNA microarrays in biology. Annu. Rev. Biochem. 13 Jan 2005 (10.1146/annurev.biochem.74.082803.133212).

  2. de Hoog, C. L. & Mann, M. Proteomics. Annu. Rev. Genomics Hum. Genet. 5, 267–293 (2004).

    Article  CAS  Google Scholar 

  3. Lindon, J. C., Holmes, E., Bollard, M. E., Stanley, E. G. & Nicholson, J. K. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 9, 1–31 (2004).

    Article  CAS  Google Scholar 

  4. Nicholson, J. K. & Wilson, I. D. Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nature Rev. Drug Discov. 2, 668–676 (2003).

    Article  CAS  Google Scholar 

  5. Lindsay, M. A. Target discovery. Nature Rev. Drug Discov. 2, 831–838 (2003).

    Article  CAS  Google Scholar 

  6. Weinshilboum, R. & Wang, L. Pharmacogenomics: bench to bedside. Nature Rev. Drug Discov. 3, 739–748 (2004).

    Article  CAS  Google Scholar 

  7. Roth, A., Gill, R. & Certa, U. Temporal and spatial gene expression patterns after experimental stroke in a rat model and characterization of PC4, a potential regulator of transcription. Mol. Cell. Neurosci. 22, 353–364 (2003).

    Article  CAS  Google Scholar 

  8. Chuaqui, R. F. et al. Post-analysis follow-up and validation of microarray experiments. Nature Genet. 32 (Suppl.), 509–514 (2002).

    Article  CAS  Google Scholar 

  9. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med. 8, 500–508 (2002).

    Article  CAS  Google Scholar 

  10. Clare, A. & King, R. D. How well do we understand the clusters found in microarray data? In Silico Biol 2, 511–522 (2002).

    CAS  PubMed  Google Scholar 

  11. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  12. Hardwick, J. et al. Identification of biomarkers for tumor endothelial cell proliferation through gene expression profiling. Mol. Canc. Ther. (in the press).

  13. Waring, J. F. et al. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol. Appl. Pharmacol. 175, 28–42 (2001).

    Article  CAS  Google Scholar 

  14. Waring, J. F. et al. Identifying toxic mechanisms using DNA microarrays: evidence that an experimental inhibitor of cell adhesion molecule expression signals through the aryl hydrocarbon nuclear receptor. Toxicology 181–182, 537–550 (2002).

    Article  Google Scholar 

  15. Zielinski, N. et al. Expression profiling using DNA microarray reveals a functional antagonism of the peroxisome proliferator activated receptor alpha by the protease inhibitor, Ritonavir. Conf. Antimicrobial Agents Chemother. Chicago, Illinois (2001).

  16. Engelberg, A. Iconix Pharmaceuticals, Inc. - removing barriers to efficient drug discovery through chemogenomics. Pharmacogenomics 5, 741–744 (2004).

    Article  Google Scholar 

  17. Waring, J. F. et al. Development of a DNA microarray for toxicology based on hepatotoxin-regulated sequences. EHP Toxicogenomics 111, 53–60 (2003).

    CAS  PubMed  Google Scholar 

  18. Steiner, G. et al. Discriminating different classes of toxicants by transcript profiling. Environ. Health Perspect. 112, 1236–1248 (2004).

    Article  CAS  Google Scholar 

  19. Gunther, E. C., Stone, D. J., Gerwien, R. W., Bento, P. & Heyes, M. P. Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc. Natl Acad. Sci. USA 100, 9608–9613 (2003).

    Article  CAS  Google Scholar 

  20. Marton, M. J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med. 4, 1293–1301 (1998).

    Article  CAS  Google Scholar 

  21. Roberts, C. J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880 (2000).

    Article  CAS  Google Scholar 

  22. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  23. van 't Veer, L. J. et al. Expression profiling predicts outcome in breast cancer. Breast Cancer Res. 5, 57–58 (2003).

    Article  Google Scholar 

  24. Petricoin, E. F. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002).

    Article  CAS  Google Scholar 

  25. Mariadason, J. M. et al. Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res. 63, 8791–8812 (2003).

    CAS  PubMed  Google Scholar 

  26. Ochi, K. et al. Prediction of response to neoadjuvant chemotherapy for osteosarcoma by gene-expression profiles. Int. J. Oncol. 24, 647–655 (2004).

    CAS  PubMed  Google Scholar 

  27. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  Google Scholar 

  28. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  Google Scholar 

  29. Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997).

    Article  CAS  Google Scholar 

  30. Houshmand, P. & Zlotnik, A. Targeting tumor cells. Curr. Opin. Cell Biol. 15, 640–644 (2003).

    Article  CAS  Google Scholar 

  31. Christopher, R. et al. Data-driven computer simulation of human cancer cell. Ann. NY Acad. Sci. 1020, 132–153 (2004).

    Article  CAS  Google Scholar 

  32. Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  Google Scholar 

  33. Schadt, E. E., Monks, S. A. & Friend, S. H. A new paradigm for drug discovery: integrating clinical, genetic, genomic and molecular phenotype data to identify drug targets. Biochem. Soc. Trans. 31, 437–443 (2003).

    Article  CAS  Google Scholar 

  34. Franke, L. et al. TEAM: a tool for the integration of expression, and linkage and association maps. Eur. J. Hum. Genet. 12, 633–638 (2004).

    Article  CAS  Google Scholar 

  35. Boess, F. et al. Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems. Toxicol. Sci. 73, 386–402 (2003).

    Article  CAS  Google Scholar 

  36. Clish, C. B. et al. Integrative biological analysis of the APOE*3-leiden transgenic mouse. Omics 8, 3–13 (2004).

    Article  CAS  Google Scholar 

  37. Neumann, E. & Thomas, J. Knowledge assembly for the life sciences. Drug Discov. Today 7, S160–S162 (2002).

    Article  Google Scholar 

  38. Ekins, S. Predicting undesirable drug interactions with promiscuous proteins in silico. Drug Discov. Today 9, 276–285 (2004).

    Article  CAS  Google Scholar 

  39. Wilson, A. G., White, A. C. & Mueller, R. A. Role of predictive metabolism and toxicity modeling in drug discovery — a summary of some recent advancements. Curr. Opin. Drug Discov. Devel. 6, 123–128 (2003).

    CAS  PubMed  Google Scholar 

  40. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  41. Deroubaix, X. & Coquette, A. The ins and outs of human ADME studies. Business Briefing: Pharmatech 2004 (2004).

  42. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  Google Scholar 

  43. Hongyue, D. et al. A cell proliferation signature is a marker of extremely poor outcomes in a subpopulation of breast cancer patients. Cancer Res. (in the press).

  44. Issa, A. M. Ethical perspectives on pharmacogenomic profiling in the drug development process. Nature Rev. Drug Discov. 1, 300–308 (2002).

    Article  CAS  Google Scholar 

  45. Petricoin, E. F., 3rd et al. Medical applications of microarray technologies: a regulatory science perspective. Nature Genet. 32 (Suppl.), 474–479 (2002).

    Article  CAS  Google Scholar 

  46. Christensen, C. M. The Innovator's Dilemma 252 (Harvard Business School Press, Boston, 1997).

    Google Scholar 

Download references

Acknowledgements

The authors thank P. Linsley and G. Cavet of Merck/Rosetta, and I. Khalil of Gene Network Sciences, for granting permission to describe the unpublished work on comparison of model predictions to siRNA gene-knockout experiments. The authors also thank H. Dai of Merck/Rosetta for granting permission to describe in advance of its publication the work in reference 43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland B. Stoughton.

Ethics declarations

Competing interests

R.B.S. is an employee of GHC Technologies, Inc. and S.H.F. is an employee of Merck & Co., Inc., which uses molecular-profiling technology; some of the research summarized in this article derives from worked conducted at Merck.

Related links

Related links

DATABASES

Entrez Gene

PPARα

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoughton, R., Friend, S. How molecular profiling could revolutionize drug discovery. Nat Rev Drug Discov 4, 345–350 (2005). https://doi.org/10.1038/nrd1696

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1696

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing