Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular, cellular and functional imaging of atherothrombosis

Key Points

  • Atherosclerosis is a systemic disease that is characterized by the build-up of lipid-rich plaques within the walls of large arteries, and underlies the clinical conditions of myocardial infarction, chronic stable angina, stroke and peripheral vascular disease.

  • However, until recently, there has been no effective way to detect the presence of atherosclerosis in patients until it has reached a relatively advanced stage, and so a large window of opportunity for primary prevention through lifestyle modification and drug therapy targeted at individuals with sub-clinical disease is missed.

  • The appreciation that a considerable atherosclerotic burden, including plaques vulnerable to rupture or susceptible to erosion, can be accommodated in the vessel wall without impingement on the lumen has led to a new imperative for direct plaque imaging. In addition, an increasing appreciation of the molecular and cellular events involved in atherothrombosis opens up new vistas for targeted imaging.

  • This article reviews approaches for imaging atherosclerosis, including magnetic resonance imaging and intravascular ultrasound. For both clinical and research applications, imaging techniques allow non-invasive appraisal of disease processes and provide the potential for serial monitoring in the same individual.

  • The careful selection of validated imaging endpoints will allow clinical trials to be conducted more quickly and often with many fewer patients than are required for conventional 'clinical outcome' studies.

Abstract

Recent years have seen a dramatic expansion in our knowledge of the events of atherogenesis and in the availability of drugs that can retard the progression — and even induce the regression — of this disease process. Our understanding has been advanced considerably by developments in genetics and molecular biology and by the use of genetically modified mouse models that have provided key mechanistic insights. Increasingly sophisticated imaging techniques will capitalize on these advances by bringing forward diagnosis, enhancing disease characterization and providing more precise evaluation of the effects of treatment. In this review, techniques for imaging atherosclerosis and thrombosis will be discussed. Particular attention will be given to magnetic resonance imaging techniques that enable lesion characterization and allow the targeted imaging of cells, molecules and biological processes. Emphasis is given to the potential contribution of magnetic resonance imaging methods to therapeutic monitoring, drug delivery and drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging targets in atherothrombosis.
Figure 2: Magnetic resonance imaging of atherosclerosis.
Figure 3: Coronary artery intravascular ultrasound.
Figure 4: Mouse models of atherosclerosis.
Figure 5: Generic model for contrast-targeted imaging.
Figure 6: Examples of targeted imaging using magnetic resonance.
Figure 7: Fluorescence imaging and positron emission tomography.

Similar content being viewed by others

References

  1. McGill, H. C. Jr. & McMahan, C. A. Determinants of atherosclerosis in the young. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Am. J. Cardiol. 82, 30T–36T (1998).

    Article  PubMed  Google Scholar 

  2. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. & Schwartz, S. M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Davies, M. J., Richardson, P. D., Woolf, N., Katz, D. R. & Mann, J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br. Heart J. 69, 377–381 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R. & Kolettis, G. J. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316, 1371–1375 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Glass, C. K. & Witztum, J. L. Atherosclerosis. the road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Fayad, Z. A. & Fuster, V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ. Res. 89, 305–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Nissen, S. E. & Yock, P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103, 604–616. (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Barnett, H. J. et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N. Engl. J. Med. 339, 1415–1425 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Excecutive Committee for the Asymtomatic Carotid Atherosclerosis Study. Endarterectomy for asymtomatic carotid stenosis. J. Am. Med. Assoc. 273, 1421–14228 (1995).

  11. Weinberger, J., Ramos, L., Ambrose, J. A. & Fuster, V. Morphologic and dynamic changes of atherosclerotic plaque at the carotid artery bifurcation: sequential imaging by real time B-mode ultrasonography. J. Am. Coll. Cardiol. 12, 1515–1521 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Pignoli, P., Tremoli, E., Poli, A., Oreste, P. & Paoletti, R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 74, 1399–1406 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Fazio, G. P., Redberg, R. F., Winslow, T. & Schiller, N. B. Transesophageal echocardiographically detected atherosclerotic aortic plaque is a marker for coronary artery disease. J. Am. Coll. Cardiol. 21, 144–150 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. O'Leary, D. H. et al. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N. Engl. J. Med. 340, 14–22. (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Khoury, Z. et al. Relation of coronary artery disease to atherosclerotic disease in the aorta, carotid, and femoral arteries evaluated by ultrasound. Am. J. Cardiol. 80, 1429–1433 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Burke, G. L. et al. Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke 26, 386–391 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Nagai, Y. et al. Increased carotid artery intimal-medial thickness in asymptomatic older subjects with exercise-induced myocardial ischemia. Circulation 98, 1504–1509 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Crouse, J. R. 3rd, Craven, T. E., Hagaman, A. P. & Bond, M. G. Association of coronary disease with segment-specific intimal-medial thickening of the extracranial carotid artery. Circulation 92, 1141–1147 (1995).

    Article  PubMed  Google Scholar 

  19. Salonen, R. et al. Kuopio Atherosclerosis Prevention Study (KAPS). A population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries. Circulation 92, 1758–1764 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. de Groot, E. et al. B-mode ultrasound assessment of pravastatin treatment effect on carotid and femoral artery walls and its correlations with coronary arteriographic findings: a report of the Regression Growth Evaluation Statin Study (REGRESS). J. Am. Coll. Cardiol. 31, 1561–1567 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Weinberger, J., Azhar, S., Danisi, F., Hayes, R. & Goldman, M. A new noninvasive technique for imaging atherosclerotic plaque in the aortic arch of stroke patients by transcutaneous real-time B-mode ultrasonography: an initial report. Stroke 29, 673–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. The French study of aortic plaques in stroke group. Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. N. Engl. J. Med. 334, 1216–1221 (1996).

  23. Cohen, A. et al. Aortic plaque morphology and vascular events: a follow-up study in patients with ischemic stroke. FAPS Investigators. French Study of Aortic Plaques in Stroke. Circulation 96, 3838–3841 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Parthenakis, F. et al. Absence of atherosclerotic lesions in the thoracic aorta indicates absence of significant coronary artery disease. Am. J. Cardiol. 77, 1118–1121 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Lanza, G. M. et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94, 3334–3340 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Lindner, J. R. et al. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 102, 2745–2750 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Demos, S. M. et al. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J. Am. Coll. Cardiol. 33, 867–875 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Tiukinhoy, S. D., Huang, S., Khan, A. A., MacDonald, R. C. & McPherson, D. D. Novel acoustic drug-encapsulated liposomes for site-specific delivery. J. Am. Coll. Cardiol. 37, 256A (2001).

    Article  Google Scholar 

  29. Tiukinhoy, S. D. et al. Development of echogenic, plasmid-incorporated, tissue-targeted cationic liposomes that can be used for directed gene delivery. Invest Radiol 35, 732–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Skinner, M. P. et al. Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo. Nat Med 1, 69–73 (1995).

    Article  PubMed  Google Scholar 

  31. Helft, G. et al. Atherosclerotic aortic component quantification by noninvasive magnetic resonance imaging: an in vivo study in rabbits. J. Am. Coll. Cardiol. 37, 1149–1154 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Fayad, Z. A. et al. In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 101, 2503–2509 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Toussaint, J. F., LaMuraglia, G. M., Southern, J. F., Fuster, V. & Kantor, H. L. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94, 932–938 (1996). This landmark paper demonstrated the ability of MRI to characterize atherosclerotic lesions in humans in vivo.

    Article  CAS  PubMed  Google Scholar 

  34. Hatsukami, T. S., Ross, R., Polissar, N. L. & Yuan, C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 102, 959–964 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Yuan, C. et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 104, 2051–2056 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Yuan, C. et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 105, 181–185 (2002).

    Article  PubMed  Google Scholar 

  37. Moody, A. R., Allder, S., Lennox, G., Gladman, J. & Fentem, P. Direct magnetic resonance imaging of carotid artery thrombus in acute stroke. Lancet 353, 122–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Botnar, R. M., Stuber, M., Danias, P. G., Kissinger, K. V. & Manning, W. J. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 99, 3139–3148 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Botnar, R. M. et al. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102, 2582–2587 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Fayad, Z. A. et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102, 506–510 (2000). This paper showed that is possible to overcome the many limitations to apply MRI to visualize coronary arterial wall.

    Article  CAS  PubMed  Google Scholar 

  41. Botnar, R. M. et al. 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn. Reson. Med. 46, 848–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Mani, V. et al. Rapid extended coverage (REX) simultaneous multislice black blood vessel wall imaging. Radiology 232, 281–288 (2004).

    Article  PubMed  Google Scholar 

  43. Itskovich, V. V. et al. Parallel and nonparallel simultaneous multislice black-blood double inversion recovery techniques for vessel wall imaging. J. Magn. Reson. Imaging 19, 459–467 (2004).

    Article  PubMed  Google Scholar 

  44. Worthley, S. G. et al. A novel nonobstructive intravascular MRI coil: in vivo imaging of experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 346–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Yuan, C. et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J. Magn. Reson. Imaging 15, 62–67 (2002).

    Article  PubMed  Google Scholar 

  46. Kerwin, W. et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation 107, 851–856 (2003).

    Article  PubMed  Google Scholar 

  47. Kramer, C. M. et al. Magnetic resonance imaging identifies the fibrous cap in atherosclerotic abdominal aortic aneurysm. Circulation 109, 1016–1021 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Barkhausen, J., Ebert, W., Heyer, C., Debatin, J. F. & Weinmann, H. -J. Detection of atherosclerotic plaque with gadofluorine-enhanced magnetic resonance imaging. Circulation 108, 605–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Topol, E. J. & Nissen, S. E. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92, 2333–2342 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Corti, R. et al. Lipid Lowering by simvastatin induces regression of human atherosclerotic lesions: two years' follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 106, 2884–2887 (2002). Second in a series of two papers using MRI to demonstrate human atherosclerosis regression with statin treatment.

    Article  CAS  PubMed  Google Scholar 

  51. Corti, R. et al. The selective peroxisomal proliferator-activated receptor-γ agonist has an additive effect on plaque regression in combination with simvastatin in experimental atherosclerosis: in vivo study by high-resolution magnetic resonance imaging. J. Am. Coll. Cardiol. 43, 464–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Nissen, S. E. et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291, 1071–1080 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Zhao, X. Q. et al. Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI: a case-control study. Arterioscler. Thromb. Vasc. Biol. 21, 1623–1629 (2001). Although a case-control study, in a relatively small number of patients, this report demonstrated that in addition to plaque size, it is also possible to quantify individual plaque components and to identify changes in plaque composition with intensive lipid-lowering therapy.

    Article  CAS  PubMed  Google Scholar 

  55. Plump, A. S., Scott, C. J. & Breslow, J. L. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc. Natl Acad. Sci. USA 91, 9607–9611 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Kusunoki, J. et al. Acyl-CoA:cholesterol acyltransferase inhibition reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 103, 2604–2609 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Shah, P. K. et al. High-dose recombinant apolipoprotein A-i(milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein E-deficient mice: potential implications for acute plaque stabilization. Circulation 103, 3047–3050 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Sparrow, C. P. et al. Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arterioscler. Thromb. Vasc. Biol. 21, 115–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Reis, E. D. et al. Dramatic remodeling of advanced atherosclerotic plaques of the apolipoprotein E-deficient mouse in a novel transplantation model. J. Vasc. Surg. 34, 541–547 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Rong, J. X. et al. Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content. Circulation 104, 2447–2452 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Fayad, Z. A. et al. Noninvasive In vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation 98, 1541–1547 (1998). Mice have become the pre-eminent animal model for the study of atherosclerosis. This was the first of a number of studies that identified atherosclerosis in mice in vivo using high-field-strength MRI.

    Article  CAS  PubMed  Google Scholar 

  63. Choudhury, R. P. et al. Atherosclerotic lesions in genetically modified mice quantified in vivo by non-invasive high-resolution magnetic resonance microscopy. Atherosclerosis 162, 315–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Aguinaldo, J. G. S. et al. Localization of a novel contrast agent gadofluorine on atheroslcerotic plaque of apolipoprotein E knockout mouse using in vivo magnetic resonance microscopy. Proc. Intl Soc. Magn. Reson. Med. A1699 (2004).

  65. Wiesmann, F. et al. High-resolution MRI with cardiac and respiratory gating allows for accurate in vivo atherosclerotic plaque visualization in the murine aortic arch. Magn. Reson. Med. 50, 69–74 (2003).

    Article  PubMed  Google Scholar 

  66. Hockings, P. D. et al. Repeated three-dimensional magnetic resonance imaging of atherosclerosis development in innominate arteries of low-density lipoprotein receptor-knockout mice. Circulation 106, 1716–1721 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Choudhury, R. P. et al. Serial, noninvasive, in vivo magnetic resonance microscopy detects the development of atherosclerosis in apolipoprotein E-deficient mice and its progression by arterial wall remodeling. J. Magn. Reson. Imaging 17, 184–189 (2003).

    Article  PubMed  Google Scholar 

  68. Litovsky, S. et al. Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-α, interleukin-1β, and interferon-γ. Circulation 107, 1545–1549 (2003).

    Article  PubMed  Google Scholar 

  69. McAteer, M. A. et al. Quantification and 3D reconstruction of atherosclerotic plaque components in apolipoprotein E knockout mice using ex vivo high-resolution MRI. Arterioscler. Thromb. Vasc. Biol. (in the press).

  70. Ross, R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gimbrone, M. A. Jr., Topper, J. N., Nagel, T., Anderson, K. R. & Garcia-Cardena, G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. NY Acad. Sci. 902, 230–239; discussion 239–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Celermajer, D. S. et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340, 1111–1115 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Sorensen, M. B. et al. Long-term use of contraceptive depot medroxyprogesterone acetate in young women impairs arterial endothelial function assessed by cardiovascular magnetic resonance. Circulation 106, 1646–1651 (2002).

    Article  PubMed  Google Scholar 

  75. Suwaidi, J. A. et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101, 948–954 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Halcox, J. P. et al. The effect of sildenafil on human vascular function, platelet activation, and myocardial ischemia. J. Am. Coll. Cardiol. 40, 1232–1240 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Heitzer, T., Schlinzig, T., Krohn, K., Meinertz, T. & Munzel, T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104, 2673–2678 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Bonetti, P. O., Lerman, L. O. & Lerman, A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 23, 168–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Haffner, S. M., Lehto, S., Ronnemaa, T., Pyorala, K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Steinberg, H. O. et al. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J. Clin. Invest. 97, 2601–2610 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. O'Driscoll, G. et al. Improvement in endothelial function by angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. J. Am. Coll. Cardiol. 33, 1506–1511 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Cheetham, C. et al. Losartan, an angiotensin type 1 receptor antagonist, improves endothelial function in non-insulin-dependent diabetes. J. Am. Coll. Cardiol. 36, 1461–1466 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Tsunekawa, T. et al. Cerivastatin, a hydroxymethylglutaryl coenzyme A reductase inhibitor, improves endothelial function in elderly diabetic patients within 3 days. Circulation 104, 376–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Avogaro, A. et al. Gemfibrozil improves insulin sensitivity and flow-mediated vasodilatation in type 2 diabetic patients. Eur. J. Clin. Invest. 31, 603–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Wilson, P. W., Abbott, R. D. & Castelli, W. P. High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis 8, 737–741 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Lupattelli, G. et al. Direct association between high-density lipoprotein cholesterol and endothelial function in hyperlipemia. Am. J. Cardiol. 90, 648–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Bisoendial, R. J. et al. Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein. Circulation 107, 2944–2948 (2003).

    Article  PubMed  Google Scholar 

  88. Weissleder, R. & Mahmood, U. Molecular imaging. Radiology 219, 316–333 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Wickline, S. A. & Lanza, G. M. Molecular imaging, targeted therapeutics, and nanoscience. J. Cell. Biochem. Suppl. 39, 90–97 (2002).

    Article  PubMed  CAS  Google Scholar 

  90. Wickline, S. A. & Lanza, G. M. Nanotechnology for molecular imaging and targeted therapy. Circulation 107, 1092–1095 (2003).

    Article  PubMed  Google Scholar 

  91. Rudin, M. & Weissleder, R. Molecular imaging in drug discovery and development. Nature Rev. Drug Discov. 2, 123–131 (2003).

    Article  CAS  Google Scholar 

  92. Jaffer, F. A. & Weissleder, R. Seeing within: molecular imaging of the cardiovascular system. Circ. Res. 94, 433–445 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Runge, V. M. & Nelson, K. M. in Magnetic Resonance Imaging Vol. 1 (eds Stark, D. D. & Bradley, W. G.) (Mosby, St Louis, 1999).

    Google Scholar 

  94. Merbach, A. E. & Toth, E. (eds). The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (John Wiley and Sons, Chichester, 2001).

    Google Scholar 

  95. Sipkins, D. A. et al. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nature Med. 4, 623–626 (1998). An early report of targeted molecular imaging using MRI.

    Article  CAS  PubMed  Google Scholar 

  96. Yu, X. et al. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn. Reson. Med. 44, 867–872 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Winter, P. M. et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-integrin-targeted nanoparticles. Circulation 108, 2270–2274 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Flacke, S. et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104, 1280–1285 (2001). An elegant demonstration of the use of gadolinium–DTPA-loaded nanoparticles to image fibrin and therefore identify thrombus in vivo.

    Article  CAS  PubMed  Google Scholar 

  99. Johansson, L. O., Bjornerud, A., Ahlstrom, H. K., Ladd, D. L. & Fujii, D. K. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J. Magn. Reson. Imaging 13, 615–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Fayad, Z. A. et al. Detection of arterial thrombi in vivo by MRI using a fibrin-targeted contrast agent. Circulation 106, AII-435 (2002).

  101. Cybulsky, M. I. & Gimbrone, M. A. Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251, 788–791 (1991).

    Article  CAS  PubMed  Google Scholar 

  102. Nakashima, Y., Raines, E. W., Plump, A. S., Breslow, J. L. & Ross, R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18, 842–851 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Davies, M. J. et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol. 171, 223–229 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Iiyama, K. et al. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ. Res. 85, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Sipkins, D. A. et al. ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. J. Neuroimmunol. 104, 1–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Sibson, N. R. et al. MRI detection of early endothelial activation in brain inflammation. Magn. Reson. Med. 51, 248–252 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Stary, H. C. et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler. Thromb. Vasc. Biol. 15, 1512–1531 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Galis, Z. S., Sukhova, G. K., Kranzhofer, R., Clark, S. & Libby, P. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc. Natl Acad. Sci. USA 92, 402–406 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Aguinaldo, J. G. S. et al. Atheroslcerotic plaque imaging using a novel contrast agent gadofluorine M. Mol. Imaging 2, 282 (2003).

    Google Scholar 

  110. Sirol, M. et al. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 109, 2890–2896 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Moreno, P. R. et al. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 90, 775–778 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Schmitz, S. A. et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest. Radiol. 35, 460–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Ruehm, S. G., Corot, C., Vogt, P., Kolb, S. & Debatin, J. F. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103, 415–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Kooi, M. E. et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107, 2453–2458 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Louie, A. Y. et al. In vivo visualization of gene expression using magnetic resonance imaging. Nature Biotechnol. 18, 321–325 (2000). A report of an extremely elegant construct that is activated in vivo by enzymatic cleavage that exposes gadolinium to the aqueous environment in which it is active as a contrast agent. 'Smart' contrast agents of this sort present exciting possibilities for functional imaging of enzyme activity and biological processes.

    Article  CAS  Google Scholar 

  116. Arap, W. et al. Steps toward mapping the human vasculature by phage display. Nature Med. 8, 121–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Zurita, A. J., Arap, W. & Pasqualini, R. Mapping tumor vascular diversity by screening phage display libraries. J. Control. Release 91, 183–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Kaul, S. & Lindner, J. R. Visualizing coronary atherosclerosis in vivo: thinking big, imaging small. J. Am. Coll. Cardiol. 43, 461–463 (2004).

    Article  PubMed  Google Scholar 

  119. Hamilton, A. J. et al. Intravascular ultrasound molecular imaging of atheroma components in vivo. J. Am. Coll. Cardiol. 43, 453–460 (2004).

    Article  PubMed  Google Scholar 

  120. Lindner, J. R. et al. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104, 2107–2112 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Leong-Poi, H., Christiansen, J., Klibanov, A. L., Kaul, S. & Lindner, J. R. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to αv-integrins. Circulation 107, 455–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Falati, S., Gross, P., Merrill-Skoloff, G., Furie, B. C. & Furie, B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nature Med. 8, 1175–1181 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Chen, J. et al. In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105, 2766–2771 (2002).

    Article  PubMed  Google Scholar 

  124. Jaffer, F. A., Tung, C. -H., Gerszten, R. E. & Weissleder, R. In vivo imaging of thrombin activity in experimental thrombi with thrombin-sensitive near-infrared molecular probe. 22, 1929–1935 (2002).

  125. Bremer, C., Tung, C. H. & Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Med. 7, 743–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Vallabhajosula, S. & Fuster, V. Atherosclerosis: imaging techniques and the evolving role of nuclear medicine. J. Nucl. Med. 38, 1788–1796 (1997).

    CAS  PubMed  Google Scholar 

  127. Iuliano, L. et al. Preparation and biodistribution of 99m technetium labelled oxidized LDL in man. Atherosclerosis 126, 131–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Iuliano, L., Mauriello, A., Sbarigia, E., Spagnoli, L. G. & Violi, F. Radiolabeled native low-density lipoprotein injected into patients with carotid stenosis accumulates in macrophages of atherosclerotic plaque: effect of vitamin E supplementation. Circulation 101, 1249–1254 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Hardoff, R. et al. External imaging of atherosclerosis in rabbits using an 123I-labeled synthetic peptide fragment. J. Clin. Pharmacol. 33, 1039–1047 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Tsimikas, S. et al. Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J. Nucl. Cardiol. 6, 41–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Rudd, J. H. F. et al. Imaging atherosclerotic plaque inflammation with [18f]-fluorodeoxyglucose positron emission tomography. Circulation 105, 2708–2711 (2002). Preliminary, but interesting, report on the use of positron emission tomography for imaging inflamed atherosclerotic plaque.

    Article  CAS  PubMed  Google Scholar 

  132. Sharma, V., Luker, G. D. & Piwnica-Worms, D. Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J. Magn. Reson. Imaging 16, 336–351 (2002).

    Article  PubMed  Google Scholar 

  133. Tatsumi, M., Cohade, C., Nakamoto, Y. & Wahl, R. L. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 229, 831–837 (2003).

    Article  PubMed  Google Scholar 

  134. Helft, G. et al. Non-invasive in vivo imaging of atherosclerotic lesions using fluorine-18 deoxyglucose (18-FDG) PET correlates with macrophage content in a rabbit model. Circulation 100, I–311 (1999).

    Google Scholar 

  135. Lanza, G. M. et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 106, 2842–2847 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Anderson, S. A. et al. Magnetic resonance contrast enhancement of neovasculature with αvβ3-targeted nanoparticles. Magn. Reson. Med. 44, 433–439 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH/NHLBI R01 HL071021 (ZAF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahi A. Fayad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

αvβ3

αIIbβ3

E-selectin

ICAM1

MMP2

myeloperoxidase

thrombin

VCAM1

FURTHER INFORMATION

American Heart Association

Glossary

PLAQUES

Lesions within the wall of a large artery that contain high levels of lipids, lipoproteins, macrophage- derived foam cells, lymphocytes and smooth muscle cells. Advanced lesions can be covered by a fibrous cap that can rupture or erode, leading to thrombosis formation and vessel occlusion.

MYOCARDIAL INFARCTION

Commonly known as a heart attack, this is the death of part of the heart muscle due to sudden loss of blood supply. Typically, the loss of this supply is caused by a complete blockage of a coronary artery by a blood clot.

ECHOGENICITY

The degree to which sound waves are reflected by a tissue (and, by implication, the corresponding brightness on the visual representation).

STENOSIS

The narrowing of a blood vessel, often due to the build-up of plaque.

INTIMA

The innermost layer of arteries.

MEDIA

The middle layer of arteries that lies between the intima and the adventitia and which normally comprises well-ordered layers of smooth muscle cells.

CONTRAST AGENTS

Compounds that enhance the differences between or within tissues in imaging studies and which are often used to highlight abnormalities.

RELAXATION TIMES

In magnetic resonance, after radiofrequency excitation, the return of nuclei to an equilibrium state within the static magnetic field is associated with loss of transverse magnetization (with time constant T2) and return of longitudinal magnetization (with time constant T1).

EXTERNAL ELASTIC LAMINA

Concentric layers of elastic membranes that separate the media from the adventitia in arteries.

STATIN

Drugs in the statin class inhibit a key enzyme in cholesterol biosynthesis — 3-hydroxy-3-methyl-glutaryl-CoA reductase — and reduce plasma levels of low-density lipoprotein cholesterol.

VOXEL

A three-dimensional analogue of a pixel.

Z-STACKS

Three-dimensional constructs made by sequential aggregation of images from spatially adjacent [x,y] planes.

APOLIPOPROTEIN E KNOCKOUT MOUSE

This genetically modified mouse lacks apolipoprotein E, a ligand for low-density-lipoprotein receptors. As a consequence, these mice become hypercholesterolaemic and develop spontaneous atherosclerosis, which has some features in common with the human disease. This mouse had become the pre-eminent animal model for the study of atherosclerosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, R., Fuster, V. & Fayad, Z. Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov 3, 913–925 (2004). https://doi.org/10.1038/nrd1548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing