Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid metabolic enzymes: emerging drug targets for the treatment of obesity

Key Points

  • Obesity is a complex disease that is rapidly increasing in the Western world and is inextricably linked to type 2 diabetes, heart disease, inflammatory diseases and cancer.

  • There are two long-term treatments for obesity: sibutramine, which acts centrally by suppressing appetite; and orlistat, which acts on a peripheral target that is involved in dietary fat absorption.

  • The hydrolysis, transport and de novo synthesis pathways that are involved in lipid homeostasis present a pool of enzymes and transporters, some of which have been shown to be druggable, including acyl CoA:cholesterol acyltransferase (ACAT) and carnitine palmitoyl transferase (CPT1). The chemical structure of the inhibitors of these enzymes could prove useful in the design of new obesity drugs.

  • Improved mobilization of fat has potential as an anti-obesity strategy, but needs to be balanced with increased fat metabolism to avoid problems with lipotoxicity.

  • The malonyl-CoA/CPT1 axis is involved in regulating fatty-acid β-oxidation and merits further investigation. The most promising target in this pathway is acyl-CoA carboxylase-2 (ACC2): knockout of this enzyme in mice results in increased fatty-acid oxidation and resistance to diabetes-induced obesity, lower fatty-acid levels and improved insulin sensitivity.

Abstract

Obesity is a complex disease that is regulated by both central and peripheral mechanisms. New medicines for the treatment and prevention of obesity will need to overcome the powerful compensatory responses of the overlapping, and often redundant, networks that have evolved to safeguard efficient energy use. Despite great progress in the identification of central signals that regulate satiety, and considerable investment in the development of appetite-controlling medications, success has been modest so far. Here we review the main enzymes that are involved in different stages of lipid metabolism — from digestion and absorption through synthesis and storage to mobilization and oxidation — which might be successfully targeted by new pharmacotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adipocytes at the crossroads of energy homeostasis.
Figure 2: The process of dietary lipid digestion and absorption.
Figure 3: Lipid storage and mobilization in adipocytes.
Figure 4: Interconnection of metabolic pathways involved in lipid synthesis in the endoplasmic reticulum and lipid oxidation in mitochondria of liver and skeletal muscle.
Figure 5: The structures of the carboxyltransferase domain of the yeast acetyl-CoA carboxylase and the mouse carnitine acetyltransferase.

Similar content being viewed by others

References

  1. National Institutes of Health (NIH), National Heart, Lung, and Blood Institute (NHLBI). Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity: the evidence report (US Government Press, Washington DC, 1998).

  2. Campfield, L. A., Smith, F. J. & Burn, P. Strategies and potential molecular targets for obesity treatment. Science 280, 1383–1387 (1998). This review outlines different strategies for obesity drug development by targeting both central and peripheral mechanisms.

    Article  CAS  PubMed  Google Scholar 

  3. Hill, J. O., Melanson, E. L. & Wyatt, H. T. Dietary fat intake and regulation of energy balance: implications for obesity. J. Nutr. 130, 284S–288S (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Carriere, F. et al. Gastric and pancreatic lipase levels during a test meal in dogs. Scand. J. Gastroenterol. 28, 443–454 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Nordskog, B. K., Phan, C. T., Nutting, D. F. & Tso, P. An examination of the factors affecting intestinal lymphatic transport of dietary lipids. Adv. Drug Deliv. Rev. 50, 21–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Phan, C. T. & Tso, P. Intestinal lipid absorption and transport. Front. Biosci. 6, D299–D319 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Kawai, T. & Fushiki, T. Importance of lipolysis in oral cavity for orosensory detection of fat. Am. J. Phys. Regul. Integr. Comp. Physiol. 285, R447–R454 (2003).

    Article  CAS  Google Scholar 

  8. Miled, N. et al. Digestive lipases: from three-dimensional structure to physiology. Biochimie 82, 973–986 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Ghishan, F. K., Moran, J. R., Durie, P. R. & Greene, H. L. Isolated congenital lipase-colipase deficiency. Gastroenterology 86, 1580–1582 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Carriere, F., Barrowman, J. A., Verger, R. & Laugier, R. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105, 876–888 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Borgstrom, B. Binding of pancreatic colipase to interfaces: effects of detergents. FEBS Lett. 71, 201–204 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Bowyer, R. C., Rowston, W. M., Jehanli, A. M., Lacey, J. H. & Hermon-Taylor, J. Effect of a satiating meal on the concentrations of procolipase propeptide in the serum and urine of normal and morbidly obese subjects. Gut 34, 1520–1525 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weibel, E. K., Hadvary, P., Hochuli, E., Kupfer, E. & Lengsfeld, H. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J. Antibiot. 40, 1081–1085 (1987).

    Article  CAS  Google Scholar 

  14. Bitou, N., Ninomiya, M., Tsujita, T. & Okuda, H. Screening of lipase inhibitors from marine algae. Lipids 34, 441–445 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Zhi, J., Mulligan, T. E. & Hauptman, J. B. Long-term systemic exposure of orlistat, a lipase inhibitor, and its metabolites in obese patients. J. Clin. Pharmacol. 39, 41–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Hadvary, P., Sidler, W., Meister, W., Vetter, W. & Wolfer, H. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J. Biol. Chem. 266, 2021–2027 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Lucas, C. P., Boldrin, M. N. & Reaven, G. M. Effect of orlistat added to diet (30% of calories from fat) on plasma lipids, glucose, and insulin in obese patients with hypercholesterolemia. Am. J. Cardiol. 91, 961–964 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Padwal, R., Li, S. K. & Lau, D. C. W. Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int. J. Obes. 27, 1437–1446 (2003).

    Article  CAS  Google Scholar 

  19. Hanefeld, M. & Sachse, G. The effects of orlistat on body weight and glycaemic control in overweight patients with type 2 diabetes: a randomized, placebo-controlled trial. Diabetes Obes. Metab. 4, 415–423 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Carey, M. C., Small, D. M. & Bliss, C. M. Lipid digestion and absorption. Annu. Rev. Physiol. 45, 651–677 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Huggins, K. W., Boileau, A. C. & Hui, D. Y. Protection against diet-induced obesity and obesity-related insulin resistance in group 1B PLA2-deficient mice. Am. J. Physiol. Endocrinol. Metab. 283, E994–E1001 (2002). This study describes the role of pancreatic sPLA2 in dietary fat absorption.

    Article  CAS  PubMed  Google Scholar 

  22. Richmond, B. L. et al. Compensatory phospholipid digestion is required for cholesterol absorption in pancreatic phospholipase A(2)-deficient mice. Gastroenterology 120, 1193–1202 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Chang, T. M., Chang, C. H., Wagner, D. R. & Chey, W. Y. Porcine pancreatic phospholipase A2 stimulates secretin release from secretin-producing cells. J. Biol. Chem. 274, 10758–10764 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Ma, T. et al. Defective dietary fat processing in transgenic mice lacking aquaporin-1 water channels. Am. J. Physiol. Cell Physiol. 280, C126–C134 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Richmond, B. L. & Hui, D. Y. Molecular structure and tissue-specific expression of the mouse pancreatic phospholipase A(2) gene. Gene 244, 65–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Murakami, M. & Kudo, I. Phospholipase A2. J. Biochem. 131, 285–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Yuan, C. & Tsai, M. Pancreatic phospholipase A(2): new views on old issues. Biochim. Biophys. Acta 23, 215–222 (1999).

    Article  Google Scholar 

  28. Mihelich, E. D. & Schevitz, R. W. Structure-based design of a new class of anti-inflammatory drugs: secretory phospholipase A(2) inhibitors, SPI. Biochim. Biophys. Acta 23, 223–228 (1999).

    Article  Google Scholar 

  29. Niessen, H. W. M., Krijnen, P. A. J., Visser, C. A., Meijer, C. & Hack, C. E. Type II secretory phospholipase A2 in cardiovascular disease: a mediator in atherosclerosis and ischemic damage to cardiomyocytes? Cardiovasc. Res. 60, 68–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Yuan, C., Byeon, I. J., Poi, M. J. & Tsai, M. D. Structural analysis of phospholipase A2 from functional perspective. 2. Characterization of a molten globule-like state induced by site-specific mutagenesis. Biochemistry 38, 2919–2929 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Hajri, T. & Abumrad, N. A. Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annu. Rev. Nutr. 22, 383–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Kamp, F. et al. Rapid flip-flop of oleic acid across the plasma membrane of adipocytes. J. Biol. Chem. 278, 7988–7995 (2003). This research shows that passive diffusion is an efficient process for fatty acids entering the adipocytes.

    Article  CAS  PubMed  Google Scholar 

  33. Vassileva, G., Huwyler, L., Poirier, K., Agellon, L. B. & Toth, M. J. The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J. 14, 2040–2046 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Abumrad, N. A., el-Maghrabi, M. R., Amri, E. Z., Lopez, E. & Grimaldi, P. A. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J. Biol. Chem. 268, 17665–17668 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, M., Yang, Y., Braunstein, E., Georgeson, K. E. & Harmon, C. M. Gut expression and regulation of FAT/CD36: possible role in fatty acid transport in rat enterocytes. Am. J. Physiol. Endocrinol. Metab. 281, E916–E923 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Poirier, H., Degrace, P., Niot, I., Bernard, A. & Besnard, P. Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). Eur. J. Biochem. 238, 368–373 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Greenwalt, D. E., Scheck, S. H. & Rhinehart-Jones, T. Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J. Clin. Invest. 96, 1382–1388 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goudriaan, J. R. et al. Intestinal lipid absorption is not affected in CD36 deficient mice. Mol. Cell. Biochem. 239, 199–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Schaffer, J. E. & Lodish, H. F. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79, 427–436 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Gimeno, R. E. et al. Targeted deletion of fatty acid transport protein-4 results in early embryonic lethality. J. Biol. Chem. 278, 49512–49516 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Herrmann, T. et al. Mouse fatty acid transport protein 4 (FATP4): characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene 270, 31–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Coleman, R. A. & Lee, D. P. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134–176 (2004). This paper provides a comprehensive review of the latest developments in lipid metabolic enzymes.

    Article  CAS  PubMed  Google Scholar 

  43. Polheim, D., David, J. S., Schultz, F. M., Wylie, M. B. & Johnston, J. M. Regulation of triglyceride biosynthesis in adipose and intestinal tissue. J. Lipid Res. 14, 415–421 (1973).

    Article  CAS  PubMed  Google Scholar 

  44. Yen, C. L., Stone, S. J., Cases, S., Zhou, P. & Farese, R. V. Jr. Identification of a gene encoding MGAT1, a monoacylglycerol acyltransferase. Proc. Natl Acad. Sci. USA 99, 8512–8517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao, J., Lockwood, J., Burn, P. & Shi, Y. Cloning and functional characterization of a mouse intestinal Acyl-CoA:monoacylglycerol acyltransferase, MGAT2. J. Biol. Chem. 278, 13860–13866 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Cao, J. et al. A predominant role of acyl-CoA:monoacylglycerol acyltransferase-2 in dietary fat absorption implicated by tissue distribution, subcellular localization, and up-regulation by high fat diet. J. Biol. Chem. 279, 18878–18886 (2004). This report provides direct evidence that MGAT2 is important in dietary fat absorption and diet-induced obesity.

    Article  CAS  PubMed  Google Scholar 

  47. Cheng, D. et al. Identification of acyl coenzyme A:monoacylglycerol acyltransferase 3, an intestinal specific enzyme implicated in dietary fat absorption. J. Biol. Chem. 278, 13611–13614 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Yen, C. L. & Farese, R. V. Jr. MGAT2, a monoacylglycerol acyltransferase expressed in the small intestine. J. Biol. Chem. 278, 18532–18537 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Lockwood, J. F., Cao, J., Burn, P. & Shi, Y. Human intestinal monoacylglycerol acyltransferase: differential features in tissue expression and activity. Am. J. Physiol. Endocrinol. Metab. 285, E927–E937 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Mostafa, N., Bhat, B. G. & Coleman, R. A. Increased hepatic monoacylglycerol acyltransferase activity in streptozotocin-induced diabetes: characterization and comparison with activities from adult and neonatal rat liver. Biochim. Biophys. Acta 1169, 189–195 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Luan, Y. et al. Pathogenesis of obesity by food restriction in OLETF rats: increased intestinal monoacylglycerol acyltransferase activities may be a crucial factor. Diabetes Res. Clin. Prac. 57, 75–82 (2002).

    Article  CAS  Google Scholar 

  52. Sudhop, T. & von Bergmann, K. Cholesterol absorption inhibitors for the treatment of hypercholesterolaemia. Drugs 62, 2333–2347 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Hideshima, T. et al. Antitumor activity of lysophosphatidic acid acyltransferase-β inhibitors, a novel class of agents, in multiple myeloma. Cancer Res. 63, 8428–8436 (2003).

    CAS  PubMed  Google Scholar 

  54. Coon, M. et al. Inhibition of lysophosphatidic acid acyltransferase disrupts proliferative and survival signals in normal cells and induces apoptosis of tumor cells. Mol. Cancer Ther. 2, 1067–1078 (2003).

    CAS  PubMed  Google Scholar 

  55. Thomson, A. B., Cheeseman, C. I., Keelan, M., Fedorak, R. & Clandinin, M. T. Crypt cell production rate, enterocyte turnover time and appearance of transport along the jejunal villus of the rat. Biochim. Biophys. Acta. 1191, 197–204 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Bakillah, A. & El Abbouyi, A. The role of microsomal triglyceride transfer protein in lipoprotein assembly: an update. Front. Biosci. 8, D294–D305 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Hussain, M. M. A proposed model for the assembly of chylomicrons. Atherosclerosis 148, 1–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Wetterau, J. R. et al. An mtp inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science 282, 751–754 (1998). This paper reports on the first generation of MTP inhibitors that are effective in lowering TAG in rodents.

    Article  CAS  PubMed  Google Scholar 

  59. Ksander, G. M. et al. Diaminoindanes as microsomal triglyceride transfer protein inhibitors. J. Med. Chem. 44, 4677–4687 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Shiomi, M. & Ito, T. MTP inhibitor decreases plasma cholesterol levels in LDL receptor-deficient WHHL rabbits by lowering the VLDL secretion. Eur. J. Pharmacol. 431, 127–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Robl, J. A. et al. A novel series of highly potent benzimidazole-based microsomal triglyceride transfer protein inhibitors. J. Med. Chem. 44, 851–856 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Chandler, C. E. et al. CP-346086: an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and in humans. J. Lipid Res. 44, 1887–1901 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Levy, E. The genetic basis of primary disorders of intestinal fat transport. Clin. Invest. Med. 19, 317–324 (1996).

    CAS  PubMed  Google Scholar 

  64. Lewis, G. F., Carpentier, A., Adeli, K. & Giacca, A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr. Rev. 23, 201–229 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Shimomura, I. et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear srebp-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12, 3182–3194 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moitra, J. et al. Life without white fat: a transgenic mouse. Genes Dev. 12, 3168–3181 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Agarwal, A. K. & Garg, A. Congenital generalized lipodystrophy: significance of triglyceride biosynthetic pathways. Trends Endocrinol. Metab. 14, 214–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Hanson, R. W. & Reshef, L. Glyceroneogenesis revisited. Biochimie 85, 1199–1205 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Leung, D. W. The structure and functions of human lysophosphatidic acid acyltransferases. Front. Biosci. 6, D944–D953 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Ruan, H. & Pownall, H. J. Overexpression of 1-acyl-glycerol-3-phosphate acyltransferase-α enhances lipid storage in cellular models of adipose tissue and skeletal muscle. Diabetes 50, 233–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Cases, S. et al. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl Acad. Sci. USA 95, 13018–13023 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cases, S. et al. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J. Biol. Chem. 276, 38870–38876 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Ludwig, E. H. et al. DGAT1 promoter polymorphism associated with alterations in body mass index, high density lipoprotein levels and blood pressure in Turkish women. Clin. Genet. 62, 68–73 (2002).

    Article  PubMed  Google Scholar 

  74. Yu, Y. H. et al. Posttranscriptional control of the expression and function of diacylglycerol acyltransferase-1 in mouse adipocytes. J. Biol. Chem. 277, 50876–50884 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Stone, S. J. et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 279, 11767–11776 (2003). This study shows that DGAT1 and DGAT2 have different roles in lipid metabolism.

    Article  PubMed  CAS  Google Scholar 

  76. Buhman, K. K. et al. DGAT1 is not essential for intestinal triacylglycerol absorption or chylomicron synthesis. J. Biol. Chem. 277, 25474–25479 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Smith, S. J. et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nature Genet. 25, 87–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, H. C., Ladha, Z., Smith, S. J. & Farese, R. V. Jr. Analysis of energy expenditure at different ambient temperatures in mice lacking DGAT1. Am. J. Physiol. Endocrinol. Metab. 284, E213–E218 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, H. C., Jensen, D. R., Myers, H. M., Eckel, R. H. & Farese, R. V. Obesity resistance and enhanced glucose metabolism in mice transplanted with white adipose tissue lacking acyl CoA:diacylglycerol acyltransferase 1. J. Clin. Invest. 111, 1715–1722 (2003). This study illustrates that DGAT1 in adipose tissue is important in regulating energy homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gibbons, G. F., Islam, K. & Pease, R. J. Mobilisation of triacylglycerol stores. Biochim. Biophys. Acta 1483, 37–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Tomoda, H., Namatame, I. & Omura, S. Microbial metabolites with inhibitory activity against lipid metabolism. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 78, 217–240 (2002).

    Article  Google Scholar 

  82. Holm, C., Osterlund, T., Laurell, H. & Contreras, J. A. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu. Rev. Nutr. 20, 365–393 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Sztalryd, C. & Kraemer, F. B. Regulation of hormone-sensitive lipase during fasting. Am. J. Physiol. 266, E179–E185 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Large, V. et al. Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects. J. Lipid Res. 40, 2059–2066 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Garenc, C. et al. The hormone-sensitive lipase gene and body composition: the HERITAGE family study. Int. J. Obes. 26, 220–227 (2002).

    Article  CAS  Google Scholar 

  86. Lucas, S., Tavernier, G., Tiraby, C., Mairal, A. & Langin, D. Expression of human hormone-sensitive lipase in white adipose tissue of transgenic mice increases lipase activity but does not enhance in vitro lipolysis. J. Lipid Res. 44, 154–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Haemmerle, G. et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 277, 4806–4815 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Sekiya, M. et al. Absence of hormone-sensitive lipase inhibits obesity and adipogenesis in Lep(ob/ob) mice. J. Biol. Chem. 279, 15084–15090 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Mulder, H. et al. Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact. J. Biol. Chem. 278, 36380–36388 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Osuga, J. et al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc. Natl Acad. Sci. USA 97, 787–792 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wei, Y. et al. Crystal structure of brefeldin A esterase, a bacterial homolog of the mammalian hormone-sensitive lipase. Nature Struct. Biol. 6, 340–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Tansey, J. T. et al. Functional studies on native and mutated forms of perilipins: a role in protein kinase A-mediated lipolysis of triacylglycerols in Chinese hamster ovary cells. J. Biol. Chem. 278, 8401–8406 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Miura, S. et al. Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J. Biol. Chem. 277, 32253–32257 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Tansey, J. T. et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc. Natl Acad. Sci. USA 98, 6494–6499 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Martinez-Botas, J. et al. Absence of perilipin results in leanness and reverses obesity in Lepr (db/db) mice. Nature Genet. 26, 474–479 (2000). References 94 and 95 show the importance of perilipin in regulating lipid metabolism.

    Article  CAS  PubMed  Google Scholar 

  96. Castro-Chavez, F. et al. Coordinated upregulation of oxidative pathways and downregulation of lipid biosynthesis underlie obesity resistance in perilipin knockout mice: a microarray gene expression profile. Diabetes 52, 2666–2674 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Sul, H. S. & Wang, D. Nutritional and hormonal regulation of enzymes in fat synthesis — studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu. Rev. Nutr. 18, 331–351 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Park, H. et al. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J. Biol. Chem. 277, 32571–32577 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Zhou, Y. T., Wang, Z. W., Higa, M., Newgard, C. B. & Unger, R. H. Reversing adipocyte differentiation: implications for treatment of obesity. Proc. Natl Acad. Sci. USA 96, 2391–2395 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dircks, L. K. & Sul, H. S. Mammalian mitochondrial glycerol-3-phosphate acyltransferase. Biochim. Biophys. Acta 1348, 17–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Igal, R. A., Wang, S. L., Gonzalez-Baro, M. & Coleman, R. A. Mitochondrial glycerol phosphate acyltransferase directs the incorporation of exogenous fatty acids into triacylglycerol. J. Biol. Chem. 276, 42205–42212 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Hammond, L. E. et al. Mitochondrial glycerol-3-phosphate acyltransferase-deficient mice have reduced weight and liver triacylglycerol content and altered glycerolipid fatty acid composition. Mol. Cell. Biol. 22, 8204–8214 (2002). This paper provides evidence that GPAT1 regulates both lipid synthesis and composition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith, S., Witkowski, A. & Joshi, A. K. Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res. 42, 289–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Jayakumar, A. et al. Human fatty acid synthase: properties and molecular cloning. Proc. Natl Acad. Sci. USA 92, 8695–8699 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kuhajda, F. P. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16, 202–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Kuhajda, F. P. et al. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl Acad. Sci. USA 97, 3450–3454 (2000). A report on the synthesis of C75, which is one of the most commonly used FAS inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Loftus, T. M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Shimokawa, T., Kumar, M. V. & Lane, M. D. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc. Natl Acad. Sci. USA 99, 66–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Hu, Z. Y., Cha, S. H., Chohnan, S. & Lane, M. D. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc. Natl Acad. Sci. USA 100, 12624–12629 (2003). References 107–109 provide comprehensive evidence that malonyl-CoA has a central role in regulating appetite.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Takahashi, K. A., Smart, J. L., Liu, H. & Cone, R. D. The anorexigenic fatty acid synthase inhibitor, C75, is a non-specific neuronal activator. Endocrinology 25, 25 (2003). This report questions the validity of C75 as an authentic FAS inhibitor.

    Google Scholar 

  111. Schlesinger, M. J. & Malfer, C. Cerulenin blocks fatty acid acylation of glycoproteins and inhibits vesicular stomatitis and Sindbis virus particle formation. J. Biol. Chem. 257, 9887–9890 (1982).

    Article  CAS  PubMed  Google Scholar 

  112. Lawrence, D. S., Zilfou, J. T. & Smith, C. D. Structure– activity studies of cerulenin analogues as protein palmitoylation inhibitors. J. Med. Chem. 42, 4932–4941 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Thupari, J. N., Pinn, M. L. & Kuhajda, F. P. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity. Biochem. Biophys. Res. Comm. 285, 217–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Thupari, J. N., Landree, L. E., Ronnett, G. V. & Kuhajda, F. P. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Proc. Natl Acad. Sci. USA 99, 9498–9502 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chirala, S. S. et al. Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc. Natl Acad. Sci. USA 100, 6358–6363 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Metzger, D., Clifford, J., Chiba, H. & Chambon, P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl Acad. Sci. USA 92, 6991–6995 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. van der Leij, F. R., Huijkman, N. C. A., Boomsma, C., Kuipers, J. R. G. & Bartelds, B. Genomics of the human carnitine acyltransferase genes. Mol. Genet. Metab. 71, 139–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. McGarry, J. D. & Brown, N. F. The mitochondrial carnitine palmitoyltransferase system — from concept to molecular analysis. Eur. J. Biochem. 244, 1–14 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Awan, M. M. & Saggerson, E. D. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem. J. 295, 61–66 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hamilton, C. & Saggerson, E. D. Malonyl-CoA metabolism in cardiac myocytes. Biochem. J. 350, 61–67 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Saddik, M., Gamble, J., Witters, L. A. & Lopaschuk, G. D. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J. Biol. Chem. 268, 25836–25845 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Ruderman, N. B., Saha, A. K., Vavvas, D. & Witters, L. A. Malonyl-CoA, fuel sensing, and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 39, E1–E18 (1999).

    Article  Google Scholar 

  123. Winder, W. W. Malonyl-CoA: regulator of fatty acid oxidation in muscle during exercise. Exerc. Sport Sci. Rev. 26, 117–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. An, J. et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nature Med. 10, 268–274 (2004). This paper shows that malonyl-CoA is an important regulator of peripheral energy metabolism.

    Article  CAS  PubMed  Google Scholar 

  125. Kim, J. Y., Hickner, R. C., Cortright, R. L., Dohm, G. L. & Houmard, J. A. Lipid oxidation is reduced in obese human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 279, E1039–E1044 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Dobbins, R. L. et al. Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats. Diabetes 50, 123–130 (2001). This study questions the validity of CPT1 inhibitors as a treatment for diabetes.

    Article  CAS  PubMed  Google Scholar 

  127. Sacksteder, K. A., Morrell, J. C., Wanders, R. J., Matalon, R. & Gould, S. J. MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA decarboxylase and is mutated in malonyl-CoA decarboxylase deficiency. J. Biol. Chem. 274, 24461–24468 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Gobin, S. et al. Functional and structural basis of carnitine palmitoyltransferase 1A deficiency. J. Biol. Chem. 278, 50428–50434 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Thuillier, L. et al. Correlation between genotype, metabolic data, and clinical presentation in carnitine palmitoyltransferase 2 (CPT2) deficiency. Hum. Mutat. 21, 493–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Lahjouji, K., Mitchell, G. A. & Qureshi, I. A. Carnitine transport by organic cation transporters and systemic carnitine deficiency. Mol. Genet. Metab. 73, 287–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Jackson, V. N., Zammit, V. A. & Price, N. T. Identification of positive and negative determinants of malonyl-CoA sensitivity and carnitine affinity within the amino termini of rat liver- and muscle-type carnitine palmitoyltransferase I. J. Biol. Chem. 275, 38410–38416 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Morillas, M. et al. Identification of conserved amino acid residues in rat liver carnitine palmitoyltransferase I critical for malonyl-CoA inhibition: mutation of methionine 593 abolishes malonyl-CoA inhibition. J. Biol. Chem. 278, 9058–9063 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Shi, J. Y., Zhu, H. F., Arvidson, D. N. & Woldegiorgis, G. A single amino acid change (substitution of glutamate 3 with alanine) in the N-terminal region of rat liver carnitine palmitoyltransferase I abolishes malonyl-CoA inhibition and high affinity binding. J. Biol. Chem. 274, 9421–9426 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Zhu, H. et al. Substitution of glutamate-3, valine-19, leucine-23, and serine-24 with alanine in the N-terminal region of human heart muscle carnitine palmitoyltransferase I abolishes malonyl CoA inhibition and binding. Arch. Biochem. Biophys. 413, 67–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Jogl, G. & Tong, L. Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Cell 112, 113–122 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Anderson, R. C. Carnitine palmitoyltransferase: a viable target for the treatment of NIDDM? Curr. Pharm. Des. 4, 1–16 (1998).

    CAS  PubMed  Google Scholar 

  137. Giannessi, F. et al. Discovery of a long-chain carbamoyl aminocarnitine derivative, a reversible carnitine palmitoyltransferase inhibitor with antiketotic and antidiabetic activity. J. Med. Chem. 46, 303–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Abu-Elheiga, L., Matzuk, M. M., Abo-Hashema, K. A. & Wakil, S. J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613–2616 (2001). This study provides direct evidence that ACC2 has a pivotal role in regulating lipid oxidation.

    Article  CAS  PubMed  Google Scholar 

  139. Kashfi, K. & Cook, G. A. Topology of hepatic mitochondrial carnitine palmitoyltransferase I. Adv. Exp. Med. Biol. 466, 27–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Abu-Elheiga, L., Almarza-Ortega, D. B., Baldini, A. & Wakil, S. J. Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J. Biol. Chem. 272, 10669–10677 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Abu-Elheiga, L. et al. The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl Acad. Sci. USA 97, 1444–1449 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang, L., Joshi, A. K. & Smith, S. Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase. Malonyltransferase and acyl carrier protein. J. Biol. Chem. 278, 40067–40074 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Hardie, D. G. & Pan, D. A. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem. Soc. Trans. 30, 1064–1070 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Munday, M. R. Regulation of mammalian acetyl-CoA carboxylase. Biochem. Soc. Trans. 30, 1059–1064 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Kudo, N., Barr, A. J., Barr, R. L., Desai, S. & Lopaschuk, G. D. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem. 270, 17513–17520 (1995).

    Article  CAS  PubMed  Google Scholar 

  146. Winder, W. W. & Hardie, D. G. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 270, E299–E304 (1996).

    CAS  PubMed  Google Scholar 

  147. Hopkins, T. A., Dyck, J. R. B. & Lopaschuk, G. D. AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart. Biochem. Soc. Trans. 31, 207–212 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Kaushik, V. K. et al. Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR. Am. J. Physiol. Endocrinol. Metab. 281, E335–E340 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Abu-Elheiga, L., Oh, W., Kordari, P. & Wakil, S. J. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc. Natl Acad. Sci. USA 100, 10207–10212 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gronwald, J. W. Herbicides inhibiting acetyl-CoA carboxylase. Biochem. Soc. Trans. 22, 616–621 (1994).

    Article  CAS  PubMed  Google Scholar 

  151. Seng, T. W., Skillman, T. R., Yang, N. Y. & Hammond, C. Cyclohexanedione herbicides are inhibitors of rat heart acetyl-CoA carboxylase. Bioorg. Med. Chem. Lett. 13, 3237–3242 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Arbeeny, C. M., Meyers, D. S., Bergquist, K. E. & Gregg, R. E. Inhibition of fatty acid synthesis decreases very low density lipoprotein secretion in the hamster. J. Lipid Res. 33, 843–851 (1992).

    Article  CAS  PubMed  Google Scholar 

  153. Harwood, H. J. Jr et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J. Biol. Chem. 278, 37099–37111 (2003). This paper reports the development of isozyme-nonselective ACC inhibitors that are effective in inhibiting fatty-acid synthesis and enhancing lipid oxidation.

    Article  CAS  PubMed  Google Scholar 

  154. Zhang, H., Yang, Z., Shen, Y. & Tong, L. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase. Science 299, 2064–2067 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Ntambi, J. M. & Miyazaki, M. Recent insights into stearoyl-CoA desaturase-1. Curr. Opin. Lipidol. 14, 255–261 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Miyazaki, M., Man, W. C. & Ntambi, J. M. Targeted disruption of stearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J. Nutr. 131, 2260–2268 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Cohen, P. et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297, 240–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Ntambi, J. M. et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc. Natl Acad. Sci. USA 99, 11482–11486 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Volpe, J. J. & Vagelos, P. R. Mechanisms and regulation of biosynthesis of saturated fatty acids. Physiol. Rev. 56, 339–417 (1976).

    Article  CAS  PubMed  Google Scholar 

  160. Ntambi, J. M. & Bene, H. Polyunsaturated fatty acid regulation of gene expression. J. Mol. Neurosci. 16, 273–278; discussion 279–284 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Miyazaki, M., Kim, Y. C. & Ntambi, J. M. A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J. Lipid Res. 42, 1018–1024 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Obici, S., Feng, Z. H., Arduini, A., Conti, R. & Rossetti, L. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nature Med. 9, 756–761 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Ashrafi, K. et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272 (2003). This study shows the power of RNA interference in obesity-target identification.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to apologize to all authors whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Burn.

Ethics declarations

Competing interests

Y.S. is employed by Eli Lilly and Co., and P.B. is employed by Bayer Healthcare.

Related links

Related links

DATABASES

Entrez Gene

Acc2

AGPAT2

Dgat1

Dgat2

Fas

HSL

MGAT1

MGAT2

MGAT3

Scd1

OMIM

chylomicron-retention disease

lethal restrictive dermopathy

obesity

osteoarthritis

type 2 diabetes

Swiss-Prot

ADRP

CD36

CPT1

FATP4

IFABP

Perilipin

SCD1

TIP47

UCP2

UCP3

FURTHER INFORMATION

Encyclopedia of Life Sciences

Lipoprotein metabolism: structure and function

obesity

triacylglycerols

NIH Obesity Research

FDA Obesity Initiative

Glossary

DYSLIPIDAEMIA

Disorders in lipoprotein metabolism, which are classified as hypercholesterolaemia, hypertriglyceridaemia, combined hyperlipidaemia and low levels of high-density lipoprotein (HDL) cholesterol.

HYPERURICAEMIA

A build-up of uric acid (a by-product of metabolism) in the blood.

ANOREXIGENIC

Causing loss of appetite.

OREXIGENIC

Stimulating appetite.

POSTPRANDIAL TRIGLYCERIDAEMIA

An abnormally high level of circulating triglycerides after eating.

EMULSIFICATION

Increases the surface area of the oil–water interface, which promotes the breakdown of triglycerides by pancreatic lipase.

OROSENSORY

Perception of taste and smell.

GLYCAEMIC CONTROL

The regulation of blood glucose.

STEATORRHOEA

An excessive amount of lipid in the faeces.

CHYLOMICRON

A microscopic particle of triglyceride, cholesterol esters and apolipoproteins that is produced in the intestine and which functions as a transport vehicle.

HYPERCHOLESTEROLAEMIA

The presence of an abnormal amount of cholesterol in the cells and plasma of the blood; this is associated with the risk of atherosclerosis.

ABETALIPOPROTEINAEMIA

An autosomal recessive disorder of lipoprotein metabolism in which lipoproteins containing apolipoprotein B (chylomicrons, very-low-density lipoproteins and low-density lipoproteins) are not synthesized; the disorder is characterized by the presence of acanthocytes in plasma, hypocholesterolaemia, progressive ataxic neuropathy, pigmentary retinal degeneration, defective intestinal lipid absorption and deficiency of fat-soluble vitamins.

LIPODYSTROPHY

A collection of rare conditions resulting from defective fat metabolism and characterized by atrophy of the subcutaneous fat.

LIPOPAENIA

An abnormally small amount, or a deficiency, of lipids in the body.

HYPERGLYCAEMIA

An abnormally high level of glucose in the blood; this occurs when the body does not have enough insulin (insulin deficiency) or cannot use the insulin that it does have (insulin resistance) to metabolize glucose.

HYPERINSULINAEMIA

Excessively high insulin levels in the blood, which can be caused by hypersecretion of a β-cell tumour (insulinoma), autoantibodies against insulin, defective insulin receptor, or the overuse of exogenous insulin or hypoglycaemic agents.

RESPIRATORY QUOTIENT

The ratio of the volume of carbon dioxide expired to the volume of oxygen consumed by an organism or cell over a given period of time.

HYPOKETOTIC HYPOGLYCAEMIA

Low serum ketone concentrations accompanied by low blood glucose.

HEPATOCARDIOMUSCULAR DISEASE

An inherited genetic disease caused by mutation of CPT2 and characterized by hypoketotic hypoglycaemia, liver failure, cardiomyopathy, and peripheral myopathy.

HYPERAMMONAEMIA

A metabolic disorder that is characterized by an elevated level of ammonia in the blood.

HYPERPHAGIA

The propensity to overeat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Burn, P. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nat Rev Drug Discov 3, 695–710 (2004). https://doi.org/10.1038/nrd1469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing