Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Challenges of implementing pharmacogenetics in the critical care environment

Abstract

The publication of the human genome sequence has generated great enthusiasm for the potential of gene-based technologies to transform many facets of medical care. Pharmacogenetics — for example, the use of an individual's genetic profile to optimize drug prescription — has generated particular interest, but so far most efforts in this field have focused on sub-acute or chronic illnesses, such as cancer and cardiovascular disease. By contrast, little attention has been devoted to the potential of pharmacogenetics in guiding drug selection for acutely ill patients in the critical care environment. Although such an approach has theoretical appeal as a means of enhancing quality and improving outcomes in this setting, several obstacles exist to bringing this technology to clinical fruition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Bloomfield, E. L. The impact of economics on changing medical technology with reference to critical care medicine in the United States. Anesth. Analg. 96, 418–425 (2003).

    PubMed  Google Scholar 

  2. Ball, S. & Borman, N. Pharmacogenetics and drug metabolism. Nature Biotechnol. 15, 925–927 (1997).

    Article  CAS  Google Scholar 

  3. Linder, M. W., Prough, R. A. & Valdes, R. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin. Chem. 43, 254–266 (1997).

    CAS  PubMed  Google Scholar 

  4. Nebert, D. W. Polymorphisms in drug-metabolizing enzymes: what is their relevance and why do they exist? Am. J. Hum. Genet. 60, 265–271 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Evans, W. E. & Relling, M. V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286, 487–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Weinshilboum, R. Inheritance and drug response. N. Engl. J. Med. 348, 529–537 (2003).

    Article  PubMed  Google Scholar 

  7. Kruglyak, L. & Nickerson, D. A. Variation is the spice of life. Nature Genet. 27, 234–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Evans, W. E. & McLeod, H. L. Pharmacogenomics — drug disposition, drug targets, and side effects. N. Engl. J. Med. 348, 538–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Roses, A. D. Pharmacogenetics and future drug development and delivery. Lancet 355, 1358–1361 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Roses, A. D. Pharmacogenetics and the practice of medicine. Nature 405, 857–865 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Nabel, E. G. Cardiovascular disease. N. Engl. J. Med. 349, 60–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Kalow, W. Pharmacogenetics in biological perspective. Pharmacol. Rev. 49, 369–379 (1997).

    CAS  PubMed  Google Scholar 

  13. Lennard, L., Lilleyman, J. S., Van Loon, J. & Weinshilboum, R. M. Genetic variation in response to 0-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336, 225–229 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Black, A. J. et al. Thiopurine methyltransferase genotype predicts therapy-limiting severe toxicity from azathioprine. Ann. Intern. Med. 129, 716–718 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Aithal, G. P., Day, C. P., Kesteven, P. J. L. & Daly, A. K. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding. Lancet 353, 717–719 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Higashi, M. K. et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287, 1690–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Kalow, W. The relation between dose of succinyl choline and duration of apnea in man. J. Pharmacol. Exp. Ther. 120, 203–214 (1957).

    CAS  PubMed  Google Scholar 

  18. McGuire, M. C. et al. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase. Proc. Natl Acad. Sci. USA 86, 953–957 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roden, D. M. in The Pharmacological Basis of Therapeutics (eds Hardman, J. G. & Limbird, L. L.) 933–970 (McGraw–Hill, New York, 2001).

    Google Scholar 

  20. Hamdy, S. I. et al. Genotype and allele frequencies of TPMT, NAT2, GST, SULTIA1, and MDR-1 in the Egyptian population. Br. J. Clin. Pharmacol. 55, 560–569 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, H. E., O'Conner, R. E. & Domeier, R. M. National Association of EMS Physicians Standards and Clinical Practice Committee. Pre-hospital rapid sequence intubation. Prehosp. Emerg. Care 5, 40–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Taylor, P. in The Pharmacological Basis of Therapeutics (eds Hardman, J. G. & Limbird, L. L.) 192–214 (McGraw–Hill, New York, 2001).

    Google Scholar 

  23. Zoeller, J. Top 200 drugs. Am. Druggist 46–50 (1998).

  24. Sullivan-Klose, T. H. et al. The role of CYP2C9–Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6, 341–349 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi, H. et al. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Clin. Pharmacol. Ther. 63, 519–528 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Bhasker, C. R., Miners, J. O., Coulter, S. & Birkett, D. J. Allelic and functional variability of cytochrome P4502C9. Pharmacogenetics 7, 51–58 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Furuya, H. et al. Genetic polymorphisms of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 5, 389–392 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Steward, D. J. et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 7, 361–367 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Tabrizi, A. R. et al. The frequency and effects of cytochrome P450 (CYP) 2C9 polymorphisms in patients receiving warfarin. J. Am. Coll. Surg. 194, 267–273 (2002).

    Article  PubMed  Google Scholar 

  30. Raschke, R. A., Reilly, B. M., Guidry, J. R., Fontana, J. R. & Srinivas, S. The weight-based heparin dosing nomogram compared with a standard care nomogram. Ann. Intern. Med. 119, 874–881 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Myers, W. C. & Chari, R. S. in Textbook of Surgery (eds Sabiston, D. C. & Lyerly, H. K.) 1046–1061 (W. B. Saunders, Philadelphia, 1997).

    Google Scholar 

  32. Perez, J. M. et al. β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nature Med. 9, 1300–1305 (2003).

    Article  CAS  Google Scholar 

  33. Small, K. M., Wagoner, L. E., Levin, A. M., Kardia, S. L. R. & Liggett, S. B. Synergistic polymorphisms of β1- and α2c-adrenergic receptors and the risk of congestive heart failure. N. Engl. J. Med. 347, 1135–1142 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Natanson, C. et al. Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J. Clin. Invest. 78, 259–270 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parker, M. M., Shelhammer, J. H., Natanson, C., Alling, D. W. & Parrillo, J. E. Serial cardiovascular variables in survivors and non-survivors of human septic shock: heart rate as an early predictor of prognosis. Crit. Care Med. 15, 923–929 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Dishy, V. et al. The effect of common polymorphisms of the β2-adrenergic receptor on agonist-mediated vascular desensitization. N. Engl. J. Med. 345, 1030–1035 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Martinez, F. D., Graves, P. E., Baldini, M., Solomon, S. & Erickson, R. Association between genetic polymorphisms of the β2-adrenoreceptor and response to albuterol in children with and without a history of wheezing. J. Clin. Invest. 100, 3184–3188 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siddiqui, A. et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N. Engl. J. Med. 348, 1442–1448. (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Furuta, T. et al. Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer disease. Ann. Intern. Med. 129, 1027–1030 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Angus, D. C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1303–1310 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Hotchkiss, R. S. & Karl, I. E. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348, 138–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Marshall, J. C. Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nature Rev. Drug Discov. 2, 391–405 (2003).

    Article  CAS  Google Scholar 

  43. Natanson, C., Hoffman, W. D., Suffredini, A. F., Eichacker, P. Q. & Danner, R. L. Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis. Ann. Intern. Med. 120, 771–783 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Zeni, F., Freeman, B. D. & Natanson, C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit. Care Med. 25, 1095–1100 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Freeman, B. D. & Natanson, C. Anti-inflammatory therapies in sepsis and septic shock. Expert Opin. Investig. Drugs 9, 1651–1663 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Tabrizi, R. T., Zehnbuer, B. A., Buchman, T. G. & Freeman, B. D. Genetic markers in sepsis. J. Am. Coll. Surg. 192, 106–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Wilson, A. G., Symons, J. A., McDowell, T. L., McDevitt, H. O. & Duff, G. O. Effects of a polymorphism in the human tumor necrosis factor-α promoter on transcriptional activity. Proc. Natl Acad. Sci. USA 94, 3195–3199 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McGuire, W., Hill, A. V. S., Allsopp, C. E. M., Greenwood, B. M. & Kwiatkowski, D. Variation in the TNF promoter region associated with susceptibility to cerebral malaria. Nature 371, 508–511 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Nadel, S., Newport, M. J., Booy, R. & Levin, M. Variation in the tumor necrosis factor-alpha gene promoter region may be associated with death from meningococcal disease. J. Infect. Dis. 174, 878–880 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Stuber, F. et al. −308 Tumor necrosis factor (TNF) polymorphism is not associated with survival in severe sepsis and is unrelated to lipopolysaccharide inducibility of the human TNF promoter. J. Inflamm. 46, 50 (1996).

    Google Scholar 

  51. Mira, J. P. et al. Association of TNF2, a TNF promoter polymorphism, with septic shock susceptibility and mortality — a multicenter study. JAMA 282, 561–568 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Tang, G. et al. Tumor necrosis factor gene polymorphism and septic shock in surgical infection. Crit. Care Med. 28, 2733–2736 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. O'Keefe, G. E., Hybki, D. L. & Munford, R. S. The G→A single nucleotide polymorphism at the −308 position in the tumor necrosis factor-α promoter increases the risk for severe sepsis after trauma. J. Trauma 52, 817–826 (2002).

    CAS  PubMed  Google Scholar 

  54. Majetschak, M. et al. Tumor necrosis factor gene polymorphisms, leukocyte function, and sepsis susceptibility in blunt trauma. Clin. Diagn. Lab. Immunol. 9, 1205–1211 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gordon, A. C. et al. Lack of association between the −308 TNF promoter polymorphism and outcome from sepsis and septic shock. Intensive Care Med. 28 (Suppl. 1), S99 (2002).

    Google Scholar 

  56. Vieland, V. J. The replication requirement. Nature Genet. 29, 245 (2001).

    Article  CAS  Google Scholar 

  57. Terwilliger, J. D., Haghighi, F., Hiekkalinna, T. S. & Goring, H. H. H. A biased assessment of the use of SNPs in human complex traits. Curr. Opin. Genet. Dev. 12, 726–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Ioannidis, J. P. A., Trikalinos, T. A., Ntzani, E. E. & Contopoulos-Ioannidis, D. G. Genetic association in large versus small studies: an empirical assessment. Lancet 361, 567–571 (2003).

    Article  PubMed  Google Scholar 

  59. Ioannidis, J. P. A., Ntzani, E. E., Trikalinos, T. A. & Contopoulos-Ioannidis, D. G. Replication validity of genetic association studies. Nature Genet. 29, 306–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Terwilliger, J. D. & Weiss, K. M. Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr. Opin. Biotechnol. 9, 578–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Calhoun, H. M., McKeigue, P. M. & Smith, G. D. Problems of reporting genetic associations with complex outcomes. Lancet 361, 865–872 (2003).

    Article  Google Scholar 

  62. Attia, J., Thakkinstian, A. & D'Este, C. Meta-analysis of molecular association studies: methodologic lessons for genetic epidemiology. J. Clin. Epidemiol. 56, 297–303 (2003).

    Article  PubMed  Google Scholar 

  63. Holtzman, N. A. & Marteau, T. M. Will genetics revolutionize medicine? N. Engl. J. Med. 343, 141–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Rivers, E. et al. Early goal-directed therapy in the treatment of sepsis and septic shock. N. Engl. J. Med. 345, 1368–1377 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342, 1301–1308 (2000).

  66. Van den Berghe, G. et al. Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 345, 1359–1367 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Bogardus, S. T., Concato, J. & Feinstein, A. R. Clinical epidemiological quality in molecular genetic research — the need for methodological standards. JAMA 281, 1919–1926 (1999).

    Article  PubMed  Google Scholar 

  68. Peters, D. L., Barber, R. C., Flood, E. M., Garner, H. R. & O'Keefe, G. E. Methodologic quality and genotyping reproducibility in studies of tumor necrosis factor −308 G→A single nucleotide polymorphism and bacterial sepsis: implications for studies of complex traits. Crit. Care Med. 31, 1691–1696 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Todd, J. A. Interpretation of results from genetic studies of multifactorial diseases. Lancet 354 (Suppl. 1), 15–16 (1999).

    Article  Google Scholar 

  70. Cardon, L. R. & Abecasis, G. R. Using haplotype blocks to map human complex trait loci. Trends Genet. 19, 135–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Exner, D. V., Dries, D. L., Domanski, M. J. & Cohn, J. N. Lesser response to angiotensin-converting-enzyme inhibitor therapy in black as compared with white patients with left ventricular dysfunction. N. Engl. J. Med. 344, 1351–1357 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Wood, A. J. J. Racial differences in response to drugs — pointers to genetic differences. N. Engl. J. Med. 344, 1393–1396 (2001).

    Article  Google Scholar 

  73. Wilson, J. F. et al. Population genetic structure of variable drug response. Nature Genet. 29, 265–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Noah, L. The coming pharmacogenomics revolution: tailoring drugs to fit patients' genetic profiles. Jurimetrics 43, 1–28 (2002).

    PubMed  Google Scholar 

  75. Rothstein, M. A. & Epps, P. G. Ethical and legal implications of pharmacogenetics. Nature Rev. Genet. 2, 228–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Karlawish, J. H. T. Research involving cognitively impaired adults. N. Engl. J. Med. 348, 1389–1392 (2003).

    Article  PubMed  Google Scholar 

  77. McRae, A. D. & Weijer, C. Lessons from everyday lives: a moral justification for acute care research. Crit. Care Med. 30, 1146–1151 (2002).

    Article  PubMed  Google Scholar 

  78. Rothstein, M. A. & Hornung, C. A. in Pharmacogenomics: Social, Ethical, and Clinical Dimensions (ed. Rothstein, M. A.) 3–27 (Wiley–Liss, Hoboken, 2003).

    Book  Google Scholar 

  79. Kwok, P. -Y. High-throughput genotyping assay approaches. Pharmacogenomics 1, 95–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Freeman, B. D., Buchman, T. B., McGrath, S., Tabrizi, A. R. & Zehnbauer, B. Template-directed dye terminator incorporation with fluorescence polarization detection for analysis of single nucleotide polymorphisms associated with sepsis. J. Mol. Diagn. 4, 209–215 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Freeman, B. D., Buchman, T. G. & Zehnbauer, B. A. Template-directed dye-terminator incorporation with fluorescence polarization detection (TDI–FP) for analysis of single nucleotide polymorphisms (SNP) associated with cardiovascular and thromboembolic disease. Thromb. Res. (in the press).

  82. Steemers, F. J., Ferguson, J. A. & Walt, D. R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature Biotechnol. 18, 91–94 (2000).

    Article  CAS  Google Scholar 

  83. Walt, D. R. Techview: molecular biology. Bead-based fiber-optic arrays. Science 287, 451–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Iglehart, J. K. The American health care system — expenditures. N. Engl. J. Med. 340, 70–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Eichacker, P. Q. et al. Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies. Am. J. Respir. Crit. Care Med. 166, 1197–1205 (2002).

    Article  PubMed  Google Scholar 

  86. Minneci, P., Deans, K., Natanson, C. & Eichacker, P. Q. Increasing the efficacy of anti-inflammatory agents used in the treatment of sepsis. Eur. J. Clin. Microbiol. Infect. Dis. 22, 1–9 (2003).

    CAS  PubMed  Google Scholar 

  87. Bernard, G. R. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344, 699–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Warren, H. S., Suffredini, A. F., Eichacker, P. Q. & Munford, R. S. Risks and benefits of activated protein C treatment for severe sepsis. N. Engl. J. Med. 347, 1027–1030 (2002).

    Article  PubMed  Google Scholar 

  89. Siegel, J. P. Assessing the use of activated protein C in the treatment of severe sepsis. N. Engl. J. Med. 347, 1030–1034 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the guidance and thoughtful critique of preliminary drafts of this manuscript provided by T. G. Buchman. This manuscript was supported in part by grants from the National Institute of General Medical Science (B.D.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley D. Freeman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CYP2C9

NAT2

Further information

Encyclopedia of Life Sciences

Pharmacogenetics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, B., McLeod, H. Challenges of implementing pharmacogenetics in the critical care environment. Nat Rev Drug Discov 3, 88–93 (2004). https://doi.org/10.1038/nrd1285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing