Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Target discovery


Target discovery, which involves the identification and early validation of disease-modifying targets, is an essential first step in the drug discovery pipeline. Indeed, the drive to determine protein function has been stimulated, both in industry and academia, by the completion of the human genome project. In this article, we critically examine the strategies and methodologies used for both the identification and validation of disease-relevant proteins. In particular, we will examine the likely impact of recent technological advances, including genomics, proteomics, small interfering RNA and mouse knockout models, and conclude by speculating on future trends.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Overview of molecular- and system-based approaches to target discovery.
Figure 2: Correlative technologies used in target identification.
Figure 3: Phenotype-driven target identification.
Figure 4: Overview of the techniques used in target validation.


  1. 1

    Knowles, J. & Gromo, G. A guide to drug discovery: Target selection in drug discovery. Nature Rev. Drug Discov. 2, 63–69 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Grillone, L. R. & Lanz, R. Fomivirsen. Drugs Today 37, 245–255 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Larj, M. J. & Bleecker, E. R. Effects of β2-agonists on airway tone and bronchial responsiveness. J. Allergy Clin. Immunol. 110, S304–S312 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Venkitaraman, A. R. A growing network of cancer-susceptibility genes. N. Engl. J. Med. 348, 1917–1919 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Balmain, A., Gray, J. & Ponder, B. The genetics and genomics of cancer. Nature Genet. 33, 238–244 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Doll, R., Peto, R., Wheatley, K., Gray, R. & Sutherland, I. Mortality in relation to smoking: 40 years' observations on male British doctors. BMJ 309, 901–911 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Weiner, H. L. & Selkoe, D. J. Inflammation and therapeutic vaccination in CNS diseases. Nature 420, 879–884 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Weisburger, J. H. Eat to live, not live to eat. Nutrition 16, 767–773 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Horrobin, D. F. Modern biomedical research: an internally self-consistent universe with little contact with medical reality? Nature Rev. Drug Discov. 2, 151–154 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Gerhold, D. L., Jensen, R. V. & Gullans, S. R. Better therapeutics through microarrays. Nature Genet. 32, 547–551 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Butte, A. The use and analysis of microarray data. Nature Rev. Drug Discov. 1, 951–960 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Zhang, M. Q. Extracting functional information from microarrays: a challenge for functional genomics. Proc. Natl Acad. Sci. USA 99, 12509–12511 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Slonim, D. K. From patterns to pathways: gene expression data analysis comes of age. Nature Genet. 32, 502–508 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Seth, A. et al. Gene expression profiling of ductal carcinomas in situ and invasive breast tumors. Anticancer Res. 23, 2043–2051 (2003).

    CAS  PubMed  Google Scholar 

  19. 19

    Phizicky, E., Bastiaens, P. I., Zhu, H., Snyder, M. & Fields, S. Protein analysis on a proteomic scale. Nature 422, 208–215 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Templin, M. F. et al. Protein microarray technology. Drug Discov. Today 7, 815–822 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Huber, L. A. Is proteomics heading in the wrong direction? Nature Rev. Mol. Cell Biol. 4, 74–80 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Young, A. B. Huntingtin in health and disease. J. Clin. Invest 111, 299–302 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Khurana, T. S. & Davies, K. E. Pharmacological strategies for muscular dystrophy. Nature Rev. Drug Discov. 2, 379–390 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Ratjen, F. & Doring, G. Cystic fibrosis. Lancet 361, 681–689 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Goldstein, J. L. & Brown, M. S. Molecular medicine. The cholesterol quartet. Science 292, 1310–1312 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Tabor, H. K., Risch, N. J. & Myers, R. M. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Rev. Genet. 3, 391–397 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Romero, R., Kuivaniemi, H., Tromp, G. & Olson, J. The design, execution, and interpretation of genetic association studies to decipher complex diseases. Am. J. Obstet. Gynecol. 187, 1299–1312 (2002).

    Article  Google Scholar 

  29. 29

    Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Lokey, R. S. Forward chemical genetics: progress and obstacles on the path to a new pharmacopoeia. Curr. Opin. Chem. Biol. 7, 91–96 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Lorens, J. B., Sousa, C., Bennett, M. K., Molineaux, S. M. & Payan, D. G. The use of retroviruses as pharmaceutical tools for target discovery and validation in the field of functional genomics. Curr. Opin. Biotechnol. 12, 613–621 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Hrabe de Angelis, M. H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Nolan, P. M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Matthews, D. J. & Kopczynski, J. Using model-system genetics for drug-based target discovery. Drug Discov. Today 6, 141–149 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Walke, D. W. et al. In vivo drug target discovery: identifying the best targets from the genome. Curr. Opin. Biotechnol. 12, 626–631 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Pini, A. & Bracci, L. Phage display of antibody fragments. Curr. Protein Pept. Sci. 1, 155–169 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Devlin, J. J., Panganiban, L. C. & Devlin, P. E. Random peptide libraries: a source of specific protein binding molecules. Science 249, 404–406 (1990).

    CAS  Article  Google Scholar 

  39. 39

    Burgstaller, P., Girod, A. & Blind, M. Aptamers as tools for target prioritization and lead identification. Drug Discov. Today 7, 1221–1228 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Braasch, D. A. & Corey, D. R. Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry 41, 4503–4510 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Petersen, M. & Wengel, J. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol. 21, 74–81 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Goodchild, J. Hammerhead ribozymes for target validation. Expert. Opin. Ther. Targets 6, 235–247 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Urnov, F. D. & Rebar, E. J. Designed transcription factors as tools for therapeutics and functional genomics. Biochem. Pharmacol. 64, 919–923 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Dean, N. M. Functional genomics and target validation approaches using antisense oligonucleotide technology. Curr. Opin. Biotechnol. 12, 622–625 (2001).

    CAS  Article  Google Scholar 

  45. 45

    Shuey, D. J., McCallus, D. E. & Giordano, T. RNAi: gene-silencing in therapeutic intervention. Drug Discov. Today 7, 1040–1046 (2002).

    CAS  Article  Google Scholar 

  46. 46

    Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    CAS  Article  Google Scholar 

  47. 47

    Yu, J. Y., DeRuiter, S. L. & Turner, D. L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 99, 6047–6052 (2002).

    CAS  Article  Google Scholar 

  48. 48

    Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003).

    CAS  Article  Google Scholar 

  49. 49

    Shen, C., Buck, A. K., Liu, X., Winkler, M. & Reske, S. N. Gene silencing by adenovirus-delivered siRNA. FEBS Lett. 539, 111–114 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003).

    CAS  Article  Google Scholar 

  51. 51

    Davis, M. E. Non-viral gene delivery systems. Curr. Opin. Biotechnol. 13, 128–131 (2002).

    CAS  Article  Google Scholar 

  52. 52

    Merdan, T., Kopecek, J. & Kissel, T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54, 715–758 (2002).

    CAS  Article  Google Scholar 

  53. 53

    Wadia, J. S. & Dowdy, S. F. Protein transduction technology. Curr. Opin. Biotechnol. 13, 52–56 (2002).

    CAS  Article  Google Scholar 

  54. 54

    Lindsay, M. A. Peptide-mediated cell delivery: application in protein target validation. Curr. Opin. Pharmacol. 2, 587–594 (2002).

    CAS  Article  Google Scholar 

  55. 55

    Richard, J. P. et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585–590 (2003).

    CAS  Article  Google Scholar 

  56. 56

    Green, I., Christison, R., Voyce, C. J., Bundell, K. R. & Lindsay, M. A. Protein transduction domains: are they delivering? Trends Pharmacol. Sci. 24, 213–215 (2003).

    CAS  Article  Google Scholar 

  57. 57

    Abbas-Terki, T., Blanco-Bose, W., Deglon, N., Pralong, W. & Aebischer, P. Lentiviral-mediated RNA interference. Hum. Gene Ther. 13, 2197–2201 (2002).

    CAS  Article  Google Scholar 

  58. 58

    Barnett, B. G., Crews, C. J. & Douglas, J. T. Targeted adenoviral vectors. Biochim. Biophys. Acta 1575, 1–14 (2002).

    CAS  Article  Google Scholar 

  59. 59

    Quinonez, R. & Sutton, R. E. Lentiviral vectors for gene delivery into cells. DNA Cell Biol. 21, 937–951 (2002).

    CAS  Article  Google Scholar 

  60. 60

    Burton, E. A., Fink, D. J. & Glorioso, J. C. Gene delivery using herpes simplex virus vectors. DNA Cell Biol. 21, 915–936 (2002).

    CAS  Article  Google Scholar 

  61. 61

    Gehl, J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 177, 437–447 (2003).

    CAS  Article  Google Scholar 

  62. 62

    Harris, S. Transgenic knockouts as part of high-throughput, evidence-based target selection and validation strategies. Drug Discov. Today 6, 628–636 (2001).

    CAS  Article  Google Scholar 

  63. 63

    Abuin, A., Holt, K. H., Platt, K. A., Sands, A. T. & Zambrowicz, B. P. Full-speed mammalian genetics: in vivo target validation in the drug discovery process. Trends Biotechnol. 20, 36–42 (2002).

    CAS  Article  Google Scholar 

  64. 64

    Zambrowicz, B. P. & Sands, A. T. Knockouts model the 100 best-selling drugs — will they model the next 100? Nature Rev. Drug Discov. 2, 38–51 (2003).

    CAS  Article  Google Scholar 

  65. 65

    Tornell, J. & Snaith, M. Transgenic systems in drug discovery: from target identification to humanized mice. Drug Discov. Today 7, 461–470 (2002).

    CAS  Article  Google Scholar 

  66. 66

    Grimsditch, D. C. et al. C3H apoE(−/−) mice have less atherosclerosis than C57BL apoE(−/−) mice despite having a more atherogenic serum lipid profile. Atherosclerosis 151, 389–397 (2000).

    CAS  Article  Google Scholar 

  67. 67

    Elbashir, S. M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002).

    CAS  Article  Google Scholar 

  68. 68

    Holen, T., Amarzguioui, M., Wiiger, M. T., Babaie, E. & Prydz, H. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. 30, 1757–1766 (2002).

    CAS  Article  Google Scholar 

Download references

Author information



Related links

Related links


Online Mendelian Inheritance in Man

cystic fibrosis

Duchenne muscular dystrophy

Huntington's disease

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lindsay, M. Target discovery. Nat Rev Drug Discov 2, 831–838 (2003).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing