Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pharmacophylogenomics: genes, evolution and drug targets

Key Points

  • Orthologues (genes in different species arising from a common ancestral gene during speciation) are important in drug discovery for establishing assays and animal models, but a wider-ranging phylogenomic view can lend further insight into function. This can be accomplished not only through the detection of conserved functional elements, but also of functional shifts that could shed light on species differences that often adversely affect drug discovery projects.

  • Establishing orthology is best accomplished through full phylogenetic reconstructions, which then also provide a framework for assessing selective pressures that could signal functional shifts. The nature and extent of selection can be estimated, for example, on the basis of ratios of non-synonymous-to-synonymous nucleotide substitutions and evidence of selective sweeps in patterns of polymorphism.

  • Paralogues (homologous genes in the same species arising by duplication) are also important in drug discovery, not only for compiling classes of tractable targets and outlining selectivity issues, but also for the evolutionary relationship of paralogues to pleiotropy (multifunctionality) and functional redundancy of targets, phenomena that are critical to assessing druggability.

  • Pleiotropy and redundancy are in turn related to crosstalk and heteromery, increasingly prominent themes in drug discovery and (along with alternative transcription) sources of combinatoric diversity of function arising from the genome. Such phenomena also indicate the relevance of an evolutionary view of pathways and networks, whose elements can co-evolve in a way that can also be detected by phylogenomic means and further contribute to functional characterization.

  • Putative drug targets may be profitably viewed through a variety of phylogenomic 'property filters' related to evolutionary rates, selective pressures, degree and nature of paralogy, and factors reflecting pleiotropy such as size, breadth of expression and interaction potential.


Phylogenomics, which advocates an evolutionary view of genomic data, has been useful in the prediction of protein function, of significant sequence and structural elements, and of protein interactions and other relationships. Although such information is important in characterizing individual pharmacological targets, evolutionary analyses also indicate new ways to view the overall space of gene products in terms of their suitability for therapeutic intervention. This view places increased emphasis on the comprehensive analysis of the evolutionary history of targets, in particular their orthology and paralogy relationships, the rate and nature of evolutionary change they have undergone, and their involvement in evolving pathways and networks.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Relationship of orthology and paralogy to the rate and nature of evolutionary change.
Figure 2: Phylogenetic reconstruction of the CYP2 family of cytochrome P450s.
Figure 3: Schematic representations of various mappings of genes to functions.
Figure 4: Phylogenomics and expression patterns.
Figure 5: Phylogenomics and interaction patterns.


  1. 1

    Eisen, J. A., Kaiser, D. & Myers, R. M. Gastrogenomic delights: a moveable feast. Nature Med. 3, 1076 (1997).

    CAS  PubMed  Google Scholar 

  2. 2

    Eisen, J. A. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res. 8, 163–167 (1998). The first full description of the phylogenomic approach.

    CAS  PubMed  Google Scholar 

  3. 3

    Casari, G., Sander, C. & Valencia, A. A method to predict functional residues in proteins. Nature Struct. Biol. 2, 171–178 (1995).

    CAS  PubMed  Google Scholar 

  4. 4

    Mirney, L. A. & Gelfand, M. S. Using orthologous and paralogous proteins to identify specificity-determining residues in bacterial transcription factors. J. Mol. Biol. 321, 7–20 (2002).

    Google Scholar 

  5. 5

    Eisen, J. A. & Wu, M. Phylogenetic analysis and gene functional predictions: phylogenomics in action. Theor. Popul. Biol. 61, 481–487 (2002).

    PubMed  Google Scholar 

  6. 6

    Hochachka, P. W. & Monge, C. Evolution of human hypoxia tolerance physiology. Adv. Exp. Med. Biol. 475, 25–43 (2000).

    CAS  PubMed  Google Scholar 

  7. 7

    Barclay, A. N. Ig-like domains: evolution from simple interaction molecules to sophisticated antigen recognition. Proc. Natl Acad. Sci. USA 96, 14672–14674 (1999).

    CAS  PubMed  Google Scholar 

  8. 8

    Jaaro, H., Beck, G., Conticello, S. G. & Fainzilber, M. Evolving better brains: a need for neurotrophins? Trends Neurosci. 24, 79–85 (2001).

    CAS  PubMed  Google Scholar 

  9. 9

    Wilson, D. R. Evolutionary epidemiology and manic depression. Br. J. Med. Psychol. 71, 375–395 (1998).

    PubMed  Google Scholar 

  10. 10

    Gammelgaard, A. Evolutionary biology and the concept of disease. Med. Health Care Philos. 3, 109–116 (2000).

    CAS  PubMed  Google Scholar 

  11. 11

    Tatusov, R. L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Gilks, W. R. et al. Modeling the percolation of annotation errors in a database of protein sequences. Bioinformatics 18, 1641–1649 (2002).

    CAS  PubMed  Google Scholar 

  13. 13

    Jones, D. T. & Swindells, M. B. Getting the most from PSI-BLAST. Trends Biochem. Sci. 27, 161–164 (2002).

    CAS  PubMed  Google Scholar 

  14. 14

    George, R. A. & Heringa, J. Protein domain identification and improved sequence similarity searching using PSI-BLAST. Proteins 48, 672–681 (2002).

    CAS  PubMed  Google Scholar 

  15. 15

    Holm, L. & Sander, C. Protein folds and families: sequence and structure alignments. Nucleic Acids Res. 27, 244–247 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Todd, A. E., Orengo, C. A. & Thornton, J. M. Plasticity of enzyme active sites. Trends Biochem. Sci. 27, 419–426 (2002).

    CAS  PubMed  Google Scholar 

  17. 17

    Hou, J., Sims, G. E., Zhang, C. & Kim, S. H. A global representation of the protein fold space. Proc. Natl Acad. Sci. USA 100, 2386–2390 (2003).

    CAS  PubMed  Google Scholar 

  18. 18

    Thornton, J. W. & DeSalle, R. A new method to localize and test the significance of incongruence: detecting domain shuffling in the nuclear receptor superfamily. Syst. Biol. 49, 183–201 (2000).

    CAS  PubMed  Google Scholar 

  19. 19

    Koski, L. B. & Golding, G. B. The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol. 52, 540–542 (2001).

    CAS  PubMed  Google Scholar 

  20. 20

    Liao, D. Concerted evolution: molecular mechanism and biological implications. Am. J. Hum. Genet. 64, 24–30 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Amadou, C. Evolution of the MHC class I region: the framework hypothesis. Immunogenetics 49, 362–367 (1999).

    CAS  PubMed  Google Scholar 

  22. 22

    Swofford, D. L., Olsen, G. J., Waddell, P. J. & Hillis, D. M. in Molecular Systematics (eds Hillis, D. M., Moritz, C. & Mable, B. K.) 407–514 (Sinauer Associates, Sunderland, 1996).

    Google Scholar 

  23. 23

    Storm, C. E. & Sonnhammer, E. L. Automated ortholog inference from phylogenetic trees and calculation of orthology reliability. Bioinformatics 18, 92–99 (2002).

    CAS  PubMed  Google Scholar 

  24. 24

    Zmasek, C. M. & Eddy, S. R. Analyzing proteomes by automated phylogenomics using resampled inference of orthologs. BMC Bioinformatics 3, 14 (2002).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Koonin, E. V., Mushegian, A. R. & Bork, P. Non-orthologous gene displacement. Trends Genet. 12, 334–336 (1996).

    CAS  PubMed  Google Scholar 

  26. 26

    Brookfield, J. F. What determines the rate of sequence evolution? Curr. Biol. 10, R410–R411 (2000).

    CAS  PubMed  Google Scholar 

  27. 27

    Lake, B. G. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem. Toxicol. 37, 423–453 (1999).

    CAS  PubMed  Google Scholar 

  28. 28

    Li, W. -H. Molecular Evolution (Sinauer Associates, Sunderland, 1997).

    Google Scholar 

  29. 29

    Messier, W. & Stewart, C. B. Episodic adaptive evolution of primate lysozymes. Nature 385, 151–154 (1997).

    CAS  PubMed  Google Scholar 

  30. 30

    Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS  PubMed  Google Scholar 

  31. 31

    Benner, S. A. et al. Functional inferences from reconstructed evolutionary biology involving rectified databases — an evolutionarily grounded approach to functional genomics. Res. Microbiol. 151, 97–106 (2000).

    CAS  PubMed  Google Scholar 

  32. 32

    Gaucher, E. A. et al. Predicting functional divergence in protein evolution by site-specific rate shifts. Trends Biochem. Sci. 27, 315–321 (2002).

    CAS  PubMed  Google Scholar 

  33. 33

    Lopez, P., Casane, D. & Philippe, H. Heterotachy, an important process in protein evolution. Mol. Biol. Evol. 19, 1–7 (2002).

    CAS  PubMed  Google Scholar 

  34. 34

    Bamshad, M. & Wooding, S. P. Signatures of natural selection in the human genome. Nature Rev. Genet. 4, 99–111 (2003). An extensive and accessible review of evidence for selection in the human genome.

    CAS  PubMed  Google Scholar 

  35. 35

    Smith, J. M. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. Camb. 23, 23–35 (1974).

    CAS  Google Scholar 

  36. 36

    Przeworski, M. The signature of positive selection at randomly chosen loci. Genetics 160, 1179–1189 (2002).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    de Groot, N. G. et al. Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proc. Natl Acad. Sci. USA 99, 11748–11753 (2002).

    CAS  PubMed  Google Scholar 

  38. 38

    Akey, J. M. et al. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 12, 1805–1814 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002). Demonstrates the use of measures of selection to suggest a recent functional shift in a gene also associated with an inherited disorder.

    CAS  Google Scholar 

  40. 40

    DeLisi, L. E. Speech disorder in schizophrenia: review of the literature and exploration of its relation to the uniquely human capacity for language. Schizophr. Bull. 27, 481–496 (2001).

    CAS  PubMed  Google Scholar 

  41. 41

    Olson, M. V. & Varki, A. Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Rev. Genet. 4, 20–28 (2003). Makes a strong case for the utility of primate genomes in the study of human disease.

    CAS  PubMed  Google Scholar 

  42. 42

    Rockman, M. V. & Wray, G. A. Abundant raw material for cis-regulatory evolution in humans. Mol. Biol. Evol. 19, 1991–2004 (2002).

    CAS  PubMed  Google Scholar 

  43. 43

    Akashi, H. Gene expression and molecular evolution. Curr. Opin. Genet. Dev. 11, 660–666 (2001).

    CAS  PubMed  Google Scholar 

  44. 44

    Duan, J. et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 12, 205–216 (2003).

    CAS  PubMed  Google Scholar 

  45. 45

    Hurst, L. D. & Pal, C. Evidence for purifying selection acting on silent sites in BRCA1. Trends Genet. 17, 62–65 (2001).

    CAS  Google Scholar 

  46. 46

    Durand, D. Vertebrate evolution: doubling and shuffling with a full deck. Trends Genet. 19, 2–5 (2003).

    CAS  PubMed  Google Scholar 

  47. 47

    Samonte, R. V. & Eichler, E. E. Segmental duplications and the evolution of the primate genome. Nature Rev. Genet. 3, 65–72 (2002).

    CAS  PubMed  Google Scholar 

  48. 48

    Bailey, J. A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    CAS  PubMed  Google Scholar 

  49. 49

    Friedman, R. & Hughes, A. L. The temporal distribution of gene duplication events in a set of highly conserved human gene families. Mol. Biol. Evol. 20, 154–161 (2003).

    CAS  PubMed  Google Scholar 

  50. 50

    Smith G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002).

    CAS  PubMed  Google Scholar 

  51. 51

    Wise, A. et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278, 9869–9874 (2003).

    CAS  PubMed  Google Scholar 

  52. 52

    Vicker, N. et al. Novel angular benzophenazines: dual topoisomerase I and topoisomerase II inhibitors as potential anticancer agents. J. Med. Chem. 45, 721–739 (2002).

    CAS  PubMed  Google Scholar 

  53. 53

    Xia, W. et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21, 6255–6263 (2002).

    CAS  PubMed  Google Scholar 

  54. 54

    Lobell, R. B. et al. Evaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models. Cancer Res. 61, 8758–8768 (2001).

    CAS  PubMed  Google Scholar 

  55. 55

    Foley, C. L. & Kirby, R. S. 5α-reductase inhibitors: what's new? Curr. Opin. Urol. 13, 31–37 (2003).

    PubMed  Google Scholar 

  56. 56

    Heath, R. J., White, S. W. & Rock, C. O. Lipid biosynthesis as a target for antibacterial agents. Prog. Lipid Res. 40, 467–497 (2001).

    CAS  PubMed  Google Scholar 

  57. 57

    Goldstein, J. M. The new generation of antipsychotic drugs: how atypical are they? Int. J. Neuropsychopharmacol. 3, 339–349 (2000).

    CAS  PubMed  Google Scholar 

  58. 58

    Hodgkin, J. Seven types of pleiotropy. Int. J. Dev. Biol. 42, 501–505 (1998). A thorough review and catalogue of manifestations of pleiotropy from a genetic perspective.

    CAS  PubMed  Google Scholar 

  59. 59

    Jeffery, C. J. Moonlighting proteins. Trends Biochem. Sci. 24, 8–11 (1999).

    CAS  PubMed  Google Scholar 

  60. 60

    Copley, S. D. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr. Opin. Chem. Biol. 7, 265–272 (2003).

    CAS  PubMed  Google Scholar 

  61. 61

    Wistow, G. & Piatigorsky, J. Recruitment of enzymes as lens structural proteins. Science 236, 1554–1556 (1987).

    CAS  PubMed  Google Scholar 

  62. 62

    Citron, B. A. et al. Identity of 4α-carbinolamine dehydratase, a component of the phenylalanine hydroxylation system, and DCoH, a transregulator of homeodomain proteins. Proc. Natl Acad. Sci. USA 89, 11891–11894 (1992).

    CAS  PubMed  Google Scholar 

  63. 63

    Sun, Y. J. et al. The crystal structure of a multifunctional protein: phosphoglucose isomerase/autocrine motility factor/neuroleukin. Proc. Natl Acad. Sci. USA 96, 5412–5417 (1999).

    CAS  PubMed  Google Scholar 

  64. 64

    Gomez, A., Domedel, N., Cedano, J., Pinol, J. & Querol, E. Do current sequence analysis algorithms disclose multifunctional (moonlighting) proteins? Bioinformatics 19, 895–896 (2003).

    CAS  PubMed  Google Scholar 

  65. 65

    Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730 (2002).

    Google Scholar 

  66. 66

    Hughes, A. L. Adaptive evolution after gene duplication. Trends Genet. 18, 433–434 (1994). Suggests that pleiotropy might precede paralogy in the evolution of novel gene function.

    Google Scholar 

  67. 67

    Brett, D. et al. Alternative splicing and genome complexity. Nature Genet. 30, 29–30 (2002).

    CAS  PubMed  Google Scholar 

  68. 68

    Wagner, A. The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. Genetics 154, 1389–1401 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Gu, Z. et al. Role of duplicate genes in genetic robustness against null mutations. Nature 421, 63–66 (2003).

    CAS  PubMed  Google Scholar 

  70. 70

    Zhou, F. C., Lesch, K. P. & Murphy, D. L. Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res. 942, 109–119 (2002).

    CAS  PubMed  Google Scholar 

  71. 71

    Muoio, D. M. et al. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR)-α knock-out mice. Evidence for compensatory regulation by PPAR-δ. J. Biol. Chem. 277, 26089–26097 (2002).

    CAS  PubMed  Google Scholar 

  72. 72

    Troy, C. M. et al. Death in the balance: alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J. Neurosci. 21, 5007–5016 (2001).

    CAS  PubMed  Google Scholar 

  73. 73

    Zhang, J. et al. The tissue-specific, compensatory expression of cyclooxygenase-1 and -2 in transgenic mice. Prostaglandins Other Lipid Mediat. 67, 121–135 (2002).

    CAS  PubMed  Google Scholar 

  74. 74

    Wang, L. et al. Redundant pathways for negative feedback regulation of bile acid production. Dev. Cell 2, 721–731 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Mesulam, M. M. et al. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110, 627–639 (2002).

    CAS  PubMed  Google Scholar 

  76. 76

    Haddad, J. J. Cytokines and related receptor-mediated signaling pathways. Biochem. Biophys. Res. Commun. 297, 700–713 (2002).

    CAS  PubMed  Google Scholar 

  77. 77

    Dumont, J. E., Pecasse, F. & Maenhaut, C. Crosstalk and specificity in signalling. Are we crosstalking ourselves into general confusion? Cell Signal. 13, 457–463 (2001).

    CAS  PubMed  Google Scholar 

  78. 78

    Iwamoto, T. et al. STAT and SMAD signalling in cancer. Histol. Histopathol. 17, 887–895 (2002).

    CAS  PubMed  Google Scholar 

  79. 79

    Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    CAS  PubMed  Google Scholar 

  80. 80

    Stork, P. J. & Schmitt, J. M. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol. 12, 258–266 (2002).

    CAS  PubMed  Google Scholar 

  81. 81

    Schwartz, M. A. & Ginsberg, M. H. Networks and crosstalk: integrin signalling spreads. Nature Cell Biol. 4, E65–E68 (2002).

    CAS  PubMed  Google Scholar 

  82. 82

    Marshall, F. H. et al. GABAB receptors function as heterodimers. Biochem. Soc. Trans. 27, 530–535 (1999).

    CAS  PubMed  Google Scholar 

  83. 83

    Angers, S., Salahpour, A. & Bouvier, M. Biochemical and biophysical demonstration of GPCR oligomerization in mammalian cells. Life Sci. 68, 2243–2250 (2002).

    Google Scholar 

  84. 84

    North, R. A. Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067 (2002).

    CAS  PubMed  Google Scholar 

  85. 85

    Czirjak, G. & Enyedi, P. Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J. Biol. Chem. 277, 5426–5432 (2002).

    CAS  PubMed  Google Scholar 

  86. 86

    Liu, Y. & Eisenberg, D. 3D domain swapping: as domains continue to swap. Protein Sci. 11, 1285–1299 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Waxman, D. & Peck, J. R. Pleiotropy and the preservation of perfection. Science 279, 1210–1213 (1998).

    CAS  PubMed  Google Scholar 

  88. 88

    Galis, F., van Dooren, T. J. & Metz, J. A. Conservation of the segmented germband stage: robustness or pleiotropy? Trends Genet. 18, 504–509 (2002).

    CAS  PubMed  Google Scholar 

  89. 89

    Lipman, D. J. et al. The relationship of protein conservation and sequence length. BMC Evol. Biol. 2, 20 (2002).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Duret, L. & Mouchiroud, D. Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol. Biol. Evol. 17, 68–74 (2000).

    CAS  PubMed  Google Scholar 

  91. 91

    Hastings, K. E. M. Strong evolutionary conservation of broadly expressed protein isoforms in the troponin I gene family and other vertebrate gene families. J. Mol. Evol. 42, 631–640 (1996).

    CAS  PubMed  Google Scholar 

  92. 92

    Moskowitz, D. W. Is angiotensin I-converting enzyme a “master” disease gene? Diabetes Technol. Ther. 4, 683–711 (2002).

    PubMed  Google Scholar 

  93. 93

    Viner, J. L., Umar, A. & Hawk, E. T. Chemoprevention of colorectal cancer: problems, progress, and prospects. Gastroenterol. Clin. North Am. 31, 971–999 (2002).

    PubMed  Google Scholar 

  94. 94

    Horowitz, N. H. in Evolving Genes and Proteins (eds Bryson, V. & Vogel, H. J.) 15–23 (Academic Press, New York, 1965).

    Google Scholar 

  95. 95

    Belfaiza, J. et al. Evolution of biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc. Natl Acad. Sci. USA 83, 867–871 (1986).

    CAS  PubMed  Google Scholar 

  96. 96

    Wilmanns, M. et al. Structural conservation in parallel β/α-barrel enzymes that catalyze three sequential reactions in the pathway of tryptophan biosynthesis. Biochemistry 30, 9161–9169 (1991).

    CAS  PubMed  Google Scholar 

  97. 97

    Fani, R., Lio, P., Chiarelli, I. & Bazzicalupo, M. The evolution of the histidine biosynthetic genes in prokaryotes: a common ancestor for the hisA and hisF genes. J. Mol. Evol. 38, 489–495 (1994).

    CAS  PubMed  Google Scholar 

  98. 98

    Alves, R., Chaleil, R. A. & Sternberg, M. J. Evolution of enzymes in metabolism: a network perspective. J. Mol. Biol. 320, 751–770 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Copley, R. R. & Bork, P. Homology among (βα)8 barrels: implications for the evolution of metabolic pathways. J. Mol. Biol. 303, 627–641 (2000).

    CAS  PubMed  Google Scholar 

  100. 100

    Forst, C. V. & Schulten, K. Phylogenetic analysis of metabolic pathways. J. Mol. Evol. 52, 471–489 (2001).

    CAS  PubMed  Google Scholar 

  101. 101

    Wagner, A. Robustness against mutations in genetic networks of yeast. Nature Genet. 24, 355–361 (2001).

    Google Scholar 

  102. 102

    Grange, R. W. et al. Functional and molecular adaptations in skeletal muscle of myoglobin-mutant mice. Am. J. Physiol. Cell Physiol. 281, C1487–C1494 (2001).

    CAS  PubMed  Google Scholar 

  103. 103

    de Groof, A. J., Oerlemans, F. T., Jost, C. R. & Wieringa, B. Changes in glycolytic network and mitochondrial design in creatine kinase-deficient muscles. Muscle Nerve 24, 1188–1196 (2001).

    CAS  PubMed  Google Scholar 

  104. 104

    Zheng, T. S. et al. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nature Med. 6, 1241–1247 (2001).

    Google Scholar 

  105. 105

    Putcha, G. V. et al. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J. Cell Biol. 157, 441–453 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Marcotte, E. M. et al. Detecting protein function and protein–protein interactions from genome sequences. Science 285, 751–753 (1999). Shows that products of genes that fuse in the course of evolution also tend to interact or participate in common pathways in species where they remain unfused.

    CAS  PubMed  Google Scholar 

  107. 107

    Pellegrini, M. et al. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl Acad. Sci. USA 96, 4285–4288 (1999).

    CAS  PubMed  Google Scholar 

  108. 108

    Marcotte, E. M., Xenarios, I., van der Bliek, A. M. & Eisenberg, D. Localizing proteins in the cell from their phylogenetic profiles. Proc. Natl Acad. Sci. USA 97, 12115–12120 (2000).

    CAS  Google Scholar 

  109. 109

    Goh, C. S. et al. Co-evolution of proteins with their interaction partners. J. Mol. Biol. 299, 283–293 (2000).

    CAS  Google Scholar 

  110. 110

    Goh, C. S. & Cohen, F. E. Co-evolutionary analysis reveals insights into protein–protein interactions. J. Mol. Biol. 324, 177–192 (2002).

    CAS  PubMed  Google Scholar 

  111. 111

    Bafna, V., Hannenhalli, S., Rice, K. & Vawter, L. Ligand-receptor pairing via tree comparison. J. Comput. Biol. 7, 59–70 (2000).

    CAS  PubMed  Google Scholar 

  112. 112

    Pazos, F. & Valencia, A. Similarity of phylogenetic trees as indicator of protein–protein interaction. Protein Eng. 14, 609–614 (2001).

    CAS  Google Scholar 

  113. 113

    Koretke, K. K. et al. Evolution of two-component signal transduction. Mol. Biol. Evol. 17, 1956–1970 (2000).

    CAS  PubMed  Google Scholar 

  114. 114

    Fraser, H. B. et al. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

    CAS  PubMed  Google Scholar 

  115. 115

    Jordan, I. K., Wolf, Y. I. & Koonin, E. V. No simple dependence between protein evolution rate and the number of protein–protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol. Biol. 3, 1 (2003).

    PubMed  PubMed Central  Google Scholar 

  116. 116

    Fraser, H. B., Wall, D. P. & Hirsh, A. E. A simple dependence between protein evolution rate and the number of protein–protein interactions. BMC Evol. Biol. 3, 11 (2003).

    PubMed  PubMed Central  Google Scholar 

  117. 117

    Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Featherstone, D. E. & Broadie, K. Wrestling with pleiotropy: genomic and topological analysis of the yeast expression network. Bioessays 24, 267–274 (2002).

    CAS  PubMed  Google Scholar 

  119. 119

    Ohno, S. Evolution by Gene and Genome Duplication (Springer, Berlin, 1970). The classic statement of the theory that duplicated genes are released from selective pressure and are therefore free to rapidly evolve new function.

    Google Scholar 

  120. 120

    Wilson, A. C., Carlson, S. S. & White, T. J. Biochemical evolution. Annu. Rev. Biochem. 46, 573–639 (1977).

    CAS  PubMed  Google Scholar 

  121. 121

    Jordan, I. K., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 12, 962–968 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Hirsh, A. E. & Fraser, H. B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 (2001).

    CAS  PubMed  Google Scholar 

  123. 123

    Pal, C., Papp, B. & Hurst, L. D. Genomic function: rate of evolution and gene dispensability. Nature 421, 496–497 (2003).

    CAS  PubMed  Google Scholar 

  124. 124

    Hirsh, A. E. & Fraser, H. B. Genomic function: Rate of evolution and gene dispensability. Nature 421, 497–498 (2003).

    CAS  Google Scholar 

  125. 125

    Hurst, L. D. & Smith, N. G. C. Do essential genes evolve slowly? Curr. Biol. 9, 747–750 (1999).

    CAS  PubMed  Google Scholar 

  126. 126

    Conant, G. C. & Wagner, A. GenomeHistory: a software tool and its application to fully sequenced genomes. Nucleic Acids Res. 30, 3378–3386 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Schrag, J. D., Winkler, F. K. & Cygler, M. Pancreatic lipases: evolutionary intermediates in a positional change of catalytic carboxylates? J. Biol. Chem. 267, 4300–4303 (1992).

    CAS  PubMed  Google Scholar 

  128. 128

    Zhang, J., Dyer, K. D. & Rosenberg, H. F. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proc. Natl Acad. Sci. USA 97, 4701–4706 (2000).

    CAS  PubMed  Google Scholar 

  129. 129

    Wooding, S. P. et al. DNA sequence variation in a 3.7-kb noncoding sequence 5' of the CYP1A2 gene: implications for human population history and natural selection. Am. J. Hum. Genet. 71, 528–542 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Google Scholar 

  131. 131

    Bromham, L. & Penn, D. The modern molecular clock. Nature Rev. Genet. 4, 216–224 (2003).

    CAS  PubMed  Google Scholar 

  132. 132

    Mangel, M. & Samaniego, F. J. Abraham Wald's work on aircraft survivability. J. Amer. Statistical Assoc. 79, 259–270 (1984).

    Google Scholar 

  133. 133

    Hardison, R. C., Oeltjen, J. & Miller, W. Long human–mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res. 7, 959–966 (1997).

    CAS  Google Scholar 

  134. 134

    Wasserman, W. W., Palumbo, M., Thompson, W., Fickett, J. W. & Lawrence, C. E. Human–mouse genome comparisons to locate regulatory sites. Nature Genet. 26, 225–228 (2000).

    CAS  PubMed  Google Scholar 

  135. 135

    Bofelli, D. et al. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299, 1391–1394 (2003).

    Google Scholar 

  136. 136

    Fitch, W. M. Distinguishing homologous from analogous proteins. Syst. Zool. 19, 99–113 (1970). The origin of the terms 'orthologue' and 'paralogue'.

    CAS  Google Scholar 

  137. 137

    Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).

    Google Scholar 

  138. 138

    Black, C. G. & Coppel, R. L. Synonymous and non-synonymous mutations in a region of the Plasmodium chabaudi genome and evidence for selection acting on a malaria vaccine candidate. Mol. Biochem. Parasitol. 111, 447–451 (2000).

    CAS  PubMed  Google Scholar 

  139. 139

    Woolhouse, M. E., Webster, J. P., Domingo, E., Charlesworth, B. & Levin, B. R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genet. 32, 569–577 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343 (2002). Introduces the notion of phylogenetic analysis of overall gene expression patterns.

    CAS  PubMed  Google Scholar 

  141. 141

    Tavazoie, S. et al. Systematic determination of genetic network architecture. Nature Genet. 22, 281–285 (1999).

    CAS  PubMed  Google Scholar 

  142. 142

    Wang, Y., Schnegelsberg, P. N., Dausman, J. & Jaenisch, R. Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin. Nature 379, 823–825 (1996).

    CAS  PubMed  Google Scholar 

  143. 143

    Tong, A. H. et al. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295, 321–324 (2002).

    CAS  PubMed  Google Scholar 

  144. 144

    Ajay, A., Walters, W. P. & Murcko M. A. Can we learn to distinguish between “drug-like” and “nondrug-like” molecules? J. Med. Chem. 41, 3314–3324 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Muegge, I., Heald, S. L. & Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 44, 1841–1846 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 4–25 (1997).

    Google Scholar 

  147. 147

    Veber, D. F. et al. Molecular properties that influence oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002). An influential review that helps establish a view of targets as having measurable properties (their drug-binding domain content) making them generally suitable for therapeutic intervention.

    CAS  Google Scholar 

Download references


The author thanks J. R. Brown, K. Rice, and N. Odendahl for many helpful comments on the manuscript.

Author information



Related links

Related links










dopamine D2









PHYLogeny Inference Package (PHYLIP)

Phylogenetic Analysis Using Parsimony (PAUP)

Resampled Inference of Orthologs (RIO)

Phylogenetic Analysis by Maximum Likelihood (PAML)



The application to genomics of principles and techniques from evolutionary biology, to achieve a better understanding of gene function. 'Pharmacophylogenomics' is the use of phylogenomics in aid of drug discovery, through improved target selection and validation.


Genes that are similar by virtue of having derived from the same ancestral gene. The similarity might be evident in the DNA sequences of the genes, or in the sequence and/or structure of the gene products. Similarity does not guarantee homology, as unrelated sequences can undergo convergent evolution.


Homologous genes in different species arising from a common ancestral gene at the time of speciation (Box 2). Orthology does not guarantee common function, as function can change over time and vary in different evolutionary lineages.


Homologous genes in the same species arising by duplication (Box 2).


The attempt to recreate the evolutionary history of a set of orthologues and/or paralogues (or, more generally, any set of measurable characters) and portray it in tree form. A number of different methods and algorithms are used for this purpose, and are the subject of much technical debate, but in the final analysis certainty as to ancestral forms is not possible.


The property of a gene or gene product by which it exhibits multiple phenotypic effects or possesses multiple functions.


The property by which more than one gene or gene product is able to produce a given phenotype or function.


Basic Local Alignment Search Tool, the most widely used bioinformatics algorithm130. It efficiently searches sequence databases for the entries most similar to a query sequence. Recent, more advanced, versions and related tools are specially adapted to finding distant homologues, for which sequence similarity is not obvious but typically some structural similarity is retained.


Apparent topological differences in the phylogenetic trees of individual genes relative to that of the species, or of individual domains or regions within genes relative to each other. This can arise from phenomena such as domain shuffling or horizontal transmission of genes between species.


Greater-than-expected similarity seen in members of gene families within a species relative to that seen between species. This can arise from phenomena related to physical mechanisms of replication and recombination that tend to maintain uniformity between (often tandem) copies.


The property of genes of being found on the same chromosome. The ordering of orthologues on chromosomes is often conserved between related species over extended segments, indicating a common ancestry of those segments; this phenomenon is referred to as conservation of synteny. (To describe the orthologues or regions of the different species as being syntenic to each other is a common misuse of the term.)


The hypothesis that, except for the effects of functional constraints on gene products, sequence substitutions occur at a constant rate on an evolutionary timescale. It is closely tied to the 'neutral theory' of evolution, which asserts that most such mutations are selectively neutral and driven only by random drift. Although subject to certain caveats and continuing debate, the notion of the molecular clock has proven to be an important and useful tool in many contexts131.


A nucleotide substitution that results in an amino acid change.


A 'silent' nucleotide substitution, often in the third codon position, that does not result in an amino acid change.


An adaptation of a gene to serve an additional unrelated function, generally in a different tissue and presumably by the incorporation of alternative regulatory elements at the same locus. It is one proposed mechanism for establishing pleiotropy.


The interaction of elements of distinct signalling or regulatory pathways such that an input to one pathway has some effect on the output of the other.


The physical association of distinct but often similar macromolecules, as when a pair of protein subunits combine to form a heterodimer. A combination of identical subunits is called homomery.


The symmetric exchange of portions of polypeptides (ranging up to entire domains), by partial unfolding, between subunits of a multimeric (usually dimeric) assemblage, such that the exchanged portions occupy positions in their counterpart subunits analogous to those they would assume in the monomers.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Searls, D. Pharmacophylogenomics: genes, evolution and drug targets. Nat Rev Drug Discov 2, 613–623 (2003).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing