Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-invasive delivery strategies for biologics

Abstract

Biologics now constitute a significant element of available medical treatments. Owing to their clinical and commercial success, biologics are a rapidly growing class and have become a dominant therapeutic modality. Although most of the successful biologics to date are drugs that bear a peptidic backbone, ranging from small peptides to monoclonal antibodies (~500 residues; 150 kDa), new biologic modalities, such as nucleotide-based therapeutics and viral gene therapies, are rapidly maturing towards widespread clinical use. Given the rise of peptides and proteins in the pharmaceutical landscape, tremendous research and development interest exists in developing less-invasive or non-invasive routes for the systemic delivery of biologics, including subcutaneous, transdermal, oral, inhalation, nasal and buccal routes. This Review summarizes the current status, latest updates and future prospects for such delivery of peptides, proteins and other biologics.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Subcutaneous barriers, products and new approaches.
Figure 2: Transdermal barriers, products and new approaches.
Figure 3: Oral barriers, products and new approaches.
Figure 4: Inhalable barriers, products and new approaches.

References

  1. Leader, B., Baca, Q. J. & Golan, D. E. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov. 7, 21–39 (2008).

    CAS  PubMed  Article  Google Scholar 

  2. Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20, 122–128 (2015).

    CAS  PubMed  Article  Google Scholar 

  3. Singh, S. et al. Monoclonal antibodies: a review. Curr. Clin. Pharmacol. https://doi.org/10.2174/1574884712666170809124728 (2017).

    PubMed  Article  CAS  Google Scholar 

  4. Hamman, J. H., Enslin, G. M. & Kotzé, A. F. Oral delivery of peptide drugs. BioDrugs 19, 165–177 (2005).

    CAS  PubMed  Article  Google Scholar 

  5. Smith, P. L., Wall, D. A., Gochoco, C. H. & Wilson, G. (D) Routes of delivery: case studies:(5) Oral absorption of peptides and proteins. Adv. Drug Delivery Rev. 8, 253–290 (1992).

    CAS  Article  Google Scholar 

  6. Jin, J.-f. et al. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer. Adherence 9, 923 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Anselmo, A. C. & Mitragotri, S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release 190, 15–28 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Badylak, S. F. in Seminars in Cell and Developmental Biology Vol. 13, 377–383 (Elsevier, 2002).

    Google Scholar 

  9. Keizer, R. J., Huitema, A. D., Schellens, J. H. & Beijnen, J. H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 49, 493–507 (2010).

    CAS  PubMed  Article  Google Scholar 

  10. Kagan, L., Turner, M. R., Balu-Iyer, S. V. & Mager, D. E. Subcutaneous absorption of monoclonal antibodies: role of dose, site of injection, and injection volume on rituximab pharmacokinetics in rats. Pharm. Res. 29, 490–499 (2012).

    CAS  PubMed  Article  Google Scholar 

  11. Wang, W., Wang, E. & Balthasar, J. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 84, 548–558 (2008).

    CAS  PubMed  Article  Google Scholar 

  12. Vugmeyster, Y., Xu, X., Theil, F.-P., Khawli, L. A. & Leach, M. W. Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J. Biol. Chem. 3, 73 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  13. Turner, M. R. & Balu-Iyer, S. V. Challenges and opportunities for the subcutaneous delivery of therapeutic proteins. J. Pharm. Sci. 107, 1247–1260 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Fathallah, A. M., Bankert, R. B. & Balu-Iyer, S. V. Immunogenicity of subcutaneously administered therapeutic proteins — a mechanistic perspective. AAPS J. 15, 897–900 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Yasukawa, K., Sawamura, D., Sugawara, H. & Kato, N. Leuprorelin acetate granulomas: case reports and review of the literature. Br. J. Dermatol. 152, 1045–1047 (2005).

    CAS  PubMed  Article  Google Scholar 

  16. Neely, E. et al. Two-year results of treatment with depot leuprolide acetate for central precocious puberty. J. Pediatr. 121, 634–640 (1992).

    CAS  PubMed  Article  Google Scholar 

  17. Ferran, M. et al. Depot leuprorelin acetate-induced granulomas manifested as persistent suppurative nodules. Acta Dermato-Venereol. 86, 453–455 (2006).

    Article  Google Scholar 

  18. Toole, B. P. Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528 (2004).

    CAS  PubMed  Article  Google Scholar 

  19. Chain, E. & Duthie, E. Identity of hyaluronidase and spreading factor. Br. J. Exp. Pathol. 21, 324 (1940).

    CAS  PubMed Central  Google Scholar 

  20. Frost, G. I. Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin. Drug Delivery 4, 427–440 (2007).

    CAS  Article  Google Scholar 

  21. Duran-Reynals, F. Exaltation de l'activité du virus vaccinal par les extraits de certains organes. Compt Rend Soc. Biol. 9, 6–7 (1928). This is one of the earliest published reports of using hyaluronidases to improve delivery of model small molecules (dyes) and biologics (viruses).

    Google Scholar 

  22. Girish, K. & Kemparaju, K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci. 80, 1921–1943 (2007).

    CAS  PubMed  Article  Google Scholar 

  23. Kind, L. S. & Roffler, S. Allergic reactions to hyaluronidase. Proc. Soc. Exp. Biol. Med. 106, 734–735 (1961).

    CAS  PubMed  Article  Google Scholar 

  24. Mathews, M. B. & Dorfman, A. Inhibition of hyaluronidase. Physiol. Rev. 35, 381–402 (1955).

    CAS  PubMed  Article  Google Scholar 

  25. Schulmeister, L. Managing vesicant extravasations. Oncology 13, 284–288 (2008).

    Article  Google Scholar 

  26. Wasserman, R. L. Recombinant human hyaluronidase-facilitated subcutaneous immunoglobulin infusion in primary immunodeficiency diseases. Immunotherapy 9, 1035–1050 (2017).

    CAS  PubMed  Article  Google Scholar 

  27. Cui, Y., Cui, P., Chen, B., Li, S. & Guan, H. Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Dev. Industrial Pharmacy 43, 519–530 (2017).

    CAS  Article  Google Scholar 

  28. Rosengren, S., Souratha, J., Conway, D., Muchmore, D. B. & Sugarman, B. J. Recombinant human PH20: baseline analysis of the reactive antibody prevalence in the general population using healthy subjects. BioDrugs 32, 83–89 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Narasimhan, C., Mach, H. & Shameem, M. High-dose monoclonal antibodies via the subcutaneous route: challenges and technical solutions, an industry perspective. Ther. Delivery 3, 889–900 (2012).

    CAS  Article  Google Scholar 

  30. Wright, J. C. & Hoffman, A. S. in Long Acting Injections and Implants 11–24 (Springer, 2012).

    Book  Google Scholar 

  31. Dlugi, A. M., Miller, J. D. & Knittle, J. Lupron depot (leuprolide acetate for depot suspension) in the treatment of endometriosis: a randomized, placebo-controlled, double-blind study. Fertil. Steril. 54, 419–427 (1990).

    CAS  PubMed  Article  Google Scholar 

  32. Kappy, M., Stuart, T., Perelman, A. & Clemons, R. Suppression of gonadotropin secretion by a long-acting gonadotropin-releasing hormone analog (leuprolide acetate, Lupron Depot) in children with precocious puberty. J. Clin. Endocrinol. Metab. 69, 1087–1089 (1989).

    CAS  PubMed  Article  Google Scholar 

  33. Silverman, B. L. et al. A long-acting human growth hormone (Nutropin Depot®): efficacy and safety following two years of treatment in children with growth hormone deficiency. J. Pediatr. Endocrinol. Metab. 15, 715–722 (2002).

    CAS  PubMed  Article  Google Scholar 

  34. Braeckman, J. & Michielsen, D. Efficacy and tolerability of 1-and 3-month leuprorelin acetate depot formulations (Eligard®/Depo-Eligard®) for advanced prostate cancer in daily practice: a Belgian prospective non-interventional study. Arch. Med. Sci. 10, 477 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Gefvert, O. et al. Pharmacokinetics and D2 receptor occupancy of long-acting injectable risperidone (Risperdal Consta) in patients with schizophrenia. Int. J. Neuropsychopharmacol. 8, 27–36 (2005).

    CAS  PubMed  Article  Google Scholar 

  36. Dunbar, J. L. et al. Single- and multiple-dose pharmacokinetics of long-acting injectable naltrexone. Alcohol. Clin. Exp. Res. 30, 480–490 (2006).

    CAS  PubMed  Article  Google Scholar 

  37. Ballav, C. & Gough, S. Bydureon: long-acting exenatide for once-weekly injection. Prescriber 23, 30–33 (2012).

    Article  Google Scholar 

  38. Mosekilde, E., Jensen, K. S., Binder, C., Pramming, S. & Thorsteinsson, B. Modeling absorption kinetics of subcutaneous injected soluble insulin. J. Pharmacokinet. Biopharmaceut. 17, 67–87 (1989).

    CAS  Article  Google Scholar 

  39. Berger, M. & Rodbard, D. Computer simulation of plasma insulin and glucose dynamics after subcutaneous insulin injection. Diabetes Care 12, 725–736 (1989).

    CAS  PubMed  Article  Google Scholar 

  40. Lacy, P. E., Hegre, O. D., Gerasimidi-Vazeou, A., Gentile, F. T. & Dionne, K. E. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 254, 1782–1784 (1991).

    CAS  PubMed  Article  Google Scholar 

  41. Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice. Nat. Med. 22, 306 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Veiseh, O. et al. Size-and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Fan, M.-Y. et al. Reversal of diabetes in BB rats by transplantation of encapsulated pancreatic islets. Diabetes 39, 519–522 (1990).

    CAS  PubMed  Article  Google Scholar 

  45. Scharp, D. W. et al. Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects. Diabetes 43, 1167–1170 (1994).

    CAS  PubMed  Article  Google Scholar 

  46. Shapiro, A. J. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    CAS  PubMed  Article  Google Scholar 

  47. Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 16, 338 (2017).

    CAS  PubMed  Article  Google Scholar 

  48. Cooper, D. K. et al. Progress in clinical encapsulated islet xenotransplantation. Transplantation 100, 2301 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Aghazadeh, Y. & Nostro, M. C. Cell therapy for type 1 diabetes: current and future strategies. Curr. Diabetes Rep. 17, 37 (2017).

    Article  CAS  Google Scholar 

  50. Y. Li et al. In situ pneumococcal vaccine production and delivery through a hybrid biological-biomaterial vector. Sci. Adv. 2, e1600264 (2016).

    Article  CAS  Google Scholar 

  51. Orive, G. et al. Cell encapsulation: promise and progress. Nat. Med. 9, 104 (2003).

    CAS  PubMed  Article  Google Scholar 

  52. Fliervoet, L. A. & Mastrobattista, E. Drug delivery with living cells. Adv. Drug Delivery Rev. 106, 63–72 (2016).

    CAS  Article  Google Scholar 

  53. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991 (2013).

    CAS  PubMed  Article  Google Scholar 

  54. Hoffman, A. S. & Stayton, P. S. Conjugates of stimuli-responsive polymers and proteins. Prog. Polym. Sci. 32, 922–932 (2007).

    CAS  Article  Google Scholar 

  55. Chapman, A. P. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Delivery Rev. 54, 531–545 (2002).

    CAS  Article  Google Scholar 

  56. Caliceti, P. & Veronese, F. M. Pharmacokinetic and biodistribution properties of poly (ethylene glycol)–protein conjugates. Adv. Drug Delivery Rev. 55, 1261–1277 (2003).

    CAS  Article  Google Scholar 

  57. Alley, S. C., Okeley, N. M. & Senter, P. D. Antibody–drug conjugates: targeted drug delivery for cancer. Curr. Opin. Chem. Biol. 14, 529–537 (2010).

    CAS  PubMed  Article  Google Scholar 

  58. Sievers, E. L. & Senter, P. D. Antibody-drug conjugates in cancer therapy. Annu. Rev. Med. 64, 15–29 (2013).

    CAS  PubMed  Article  Google Scholar 

  59. Proksch, E., Brandner, J. M. & Jensen, J. M. The skin: an indispensable barrier. Exp. Dermatol. 17, 1063–1072 (2008). This is a thorough Review summarizing the excellent barrier properties of the skin.

    PubMed  Article  Google Scholar 

  60. Naik, A., Kalia, Y. N. & Guy, R. H. Transdermal drug delivery: overcoming the skin's barrier function. Pharm. Sci. Technol. Today 3, 318–326 (2000).

    CAS  PubMed  Article  Google Scholar 

  61. Prausnitz, M. R., Mitragotri, S. & Langer, R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3, 115–124 (2004). This is a past overview of the status of transdermal delivery technologies up to 2004.

    CAS  PubMed  Article  Google Scholar 

  62. Prausnitz, M. R. & Langer, R. Transdermal drug delivery. Nat. Biotechnol. 26, 1261 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Hansen, S. et al. The role of corneocytes in skin transport revised—a combined computational and experimental approach. Pharm. Res. 26, 1379–1397 (2009).

    CAS  PubMed  Article  Google Scholar 

  64. Bergstresser, P. R. & Taylor, J. R. Epidermal 'turnover time' — a new examination. Br. J. Dermatol. 96, 503–506 (1977).

    CAS  PubMed  Article  Google Scholar 

  65. Bouwstra, J. A. & Ponec, M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta 1758, 2080–2095 (2006).

    CAS  PubMed  Article  Google Scholar 

  66. Schoellhammer, C. M., Blankschtein, D. & Langer, R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin. Drug Delivery 11, 393–407 (2014).

    CAS  Article  Google Scholar 

  67. Benson, H. A. Transdermal drug delivery: penetration enhancement techniques. Curr. Drug Delivery 2, 23–33 (2005). This is a summary of formulation-based approaches to enhance the penetration of drugs across the skin.

    CAS  Article  Google Scholar 

  68. Arora, A., Prausnitz, M. R. & Mitragotri, S. Micro-scale devices for transdermal drug delivery. Int. J. Pharmaceut. 364, 227–236 (2008).

    CAS  Article  Google Scholar 

  69. Sinha, V. & Kaur, M. P. Permeation enhancers for transdermal drug delivery. Drug Dev. Industrial Pharmacy 26, 1131–1140 (2000).

    CAS  Article  Google Scholar 

  70. Williams, A. C. & Barry, B. W. Penetration enhancers. Adv. Drug Delivery Rev. 64, 128–137 (2012).

    Article  Google Scholar 

  71. Pillai, O. & Panchagnula, R. Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. J. Control. Release 89, 127–140 (2003).

    CAS  PubMed  Article  Google Scholar 

  72. Karande, P. & Mitragotri, S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. Biophys. Acta 1788, 2362–2373 (2009).

    CAS  PubMed  Article  Google Scholar 

  73. Mitragotri, S., Blankschtein, D. & Langer, R. Ultrasound-mediated transdermal protein delivery. Science 269, 850–853 (1995).

    CAS  PubMed  Article  Google Scholar 

  74. Mitragotri, S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255 (2005).

    CAS  PubMed  Article  Google Scholar 

  75. Chien, Y., Siddiqui, O., Sun, Y., Shi, W. & Liu, J. Transdermal iontophoretic delivery of therapeutic peptides/proteins I: insulin. Ann. NY Acad. Sci. 507, 32–51 (1987).

    CAS  PubMed  Article  Google Scholar 

  76. Prausnitz, M. R. A practical assessment of transdermal drug delivery by skin electroporation. Adv. Drug Delivery Rev. 35, 61–76 (1999).

    CAS  Article  Google Scholar 

  77. Prausnitz, M. R. Microneedles for transdermal drug delivery. Adv. Drug Delivery Rev. 56, 581–587 (2004).

    CAS  Article  Google Scholar 

  78. Henry, S., McAllister, D. V., Allen, M. G. & Prausnitz, M. R. Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci. 87, 922–925 (1998).

    CAS  PubMed  Article  Google Scholar 

  79. Kim, Y.-C., Park, J.-H. & Prausnitz, M. R. Microneedles for drug and vaccine delivery. Adv. Drug Delivery Rev. 64, 1547–1568 (2012).

    CAS  Article  Google Scholar 

  80. Mitragotri, S. Current status and future prospects of needle-free liquid jet injectors. Nat. Rev. Drug Discov. 5, 543 (2006).

    PubMed  Article  Google Scholar 

  81. Morales, J. O. et al. Challenges and future prospects for the delivery of biologics: oral mucosal, pulmonary, and transdermal routes. AAPS J. 19, 652–668 (2017).

    CAS  PubMed  Article  Google Scholar 

  82. Gill, H. S., Denson, D. D., Burris, B. A. & Prausnitz, M. R. Effect of microneedle design on pain in human subjects. Clin. J. Pain 24, 585 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  83. Park, J.-H., Allen, M. G. & Prausnitz, M. R. Polymer microneedles for controlled-release drug delivery. Pharm. Res. 23, 1008–1019 (2006).

    CAS  PubMed  Article  Google Scholar 

  84. Matsuzaki, K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim. Biophys. Acta 1376, 391–400 (1998).

    CAS  PubMed  Article  Google Scholar 

  85. Kim, Y.-C., Ludovice, P. J. & Prausnitz, M. R. Transdermal delivery enhanced by magainin pore-forming peptide. J. Control. Release 122, 375–383 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Nasrollahi, S. A., Taghibiglou, C., Azizi, E. & Farboud, E. S. Cell-penetrating peptides as a novel transdermal drug delivery system. Chem. Biol. Drug Design 80, 639–646 (2012).

    CAS  Article  Google Scholar 

  87. Chen, Y. et al. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat. Biotechnol. 24, 455 (2006).

    CAS  PubMed  Article  Google Scholar 

  88. Hsu, T. & Mitragotri, S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl Acad. Sci. 108, 15816–15821 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. Lopes, L. B. et al. Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm. Res. 22, 750–757 (2005).

    CAS  PubMed  Article  Google Scholar 

  90. Desai, P., Patlolla, R. R. & Singh, M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membrane Biol. 27, 247–259 (2010).

    CAS  Article  Google Scholar 

  91. Chen, M. et al. Topical delivery of siRNA into skin using SPACE-peptide carriers. J. Control. Release 179, 33–41 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. Menegatti, S. et al. De novo design of skin-penetrating peptides for enhanced transdermal delivery of peptide drugs. Adv. Healthcare Mater. 5, 602–609 (2016).

    CAS  Article  Google Scholar 

  93. J. Yu et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl Acad. Sci. 112, 8260–8265 (2015). This is a recent preclinical paper describing stimuli-responsive microneedles for transdermal insulin delivery.

    Article  CAS  Google Scholar 

  94. Y. Ye et al. Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv. Mater. 28, 3115–3121 (2016).

    Article  CAS  Google Scholar 

  95. Y. Ye et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol. 2, eaan5692 (2017).

    Article  Google Scholar 

  96. Moniruzzaman, M., Tahara, Y., Tamura, M., Kamiya, N. & Goto, M. Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chem. Commun. 46, 1452–1454 (2010).

    CAS  Article  Google Scholar 

  97. Agatemor, C., Ibsen, K. N., Tanner, E. E. & Mitragotri, S. Ionic liquids for addressing unmet needs in healthcare. Bioeng. Transl Med. 3, 7–25 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  98. Novotný, M. et al. Ammonium carbamates as highly active transdermal permeation enhancers with a dual mechanism of action. J. Control. Release 150, 164–170 (2011).

    PubMed  Article  CAS  Google Scholar 

  99. Kundu, N., Roy, S., Mukherjee, D., Maiti, T. K. & Sarkar, N. Unveiling the interaction between fatty-acid-modified membrane and hydrophilic imidazolium-based ionic liquid: understanding the mechanism of ionic liquid cytotoxicity. J. Phys. Chem. B 121, 8162–8170 (2017).

    CAS  PubMed  Article  Google Scholar 

  100. Banerjee, A., Ibsen, K., Iwao, Y., Zakrewsky, M. & Mitragotri, S. Transdermal protein delivery using choline and geranate (CAGE) deep eutectic solvent. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.201601411 (2017).

    Article  CAS  Google Scholar 

  101. Goldberg, M. & Gomez-Orellana, I. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Discov. 2, 289–295 (2003). This is a detailed Review highlighting the potential of the oral delivery of biologics.

    CAS  PubMed  Article  Google Scholar 

  102. Nellans, H. N. (B) Mechanisms of peptide and protein absorption:(1) Paracellular intestinal transport: modulation of absorption. Adv. Drug Delivery Rev. 7, 339–364 (1991).

    CAS  Article  Google Scholar 

  103. Burton, P. S., Conradi, R. A. & Hilgers, A. R. (B) Mechanisms of peptide and protein absorption:(2) Transcellular mechanism of peptide and protein absorption: passive aspects. Adv. Drug Delivery Rev. 7, 365–385 (1991).

    CAS  Article  Google Scholar 

  104. Tsuji, A. & Tamai, I. Carrier-mediated intestinal transport of drugs. Pharm. Res. 13, 963–977 (1996).

    CAS  PubMed  Article  Google Scholar 

  105. Swaan, P. W. Recent advances in intestinal macromolecular drug delivery via receptor-mediated transport pathways. Pharm. Res. 15, 826–834 (1998).

    CAS  PubMed  Article  Google Scholar 

  106. Larhed, A. W., Artursson, P. & Björk, E. The influence of intestinal mucus components on the diffusion of drugs. Pharm. Res. 15, 66–71 (1998).

    CAS  PubMed  Article  Google Scholar 

  107. Ensign, L. M., Cone, R. & Hanes, J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Delivery Rev. 64, 557–570 (2012).

    CAS  Article  Google Scholar 

  108. Cone, R. A. Barrier properties of mucus. Adv. Drug Delivery Rev. 61, 75–85 (2009).

    CAS  Article  Google Scholar 

  109. Newby, J. et al. A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors. Nat. Commun. 8, 833 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  110. Davis, S., Hardy, J. & Fara, J. Transit of pharmaceutical dosage forms through the small intestine. Gut 27, 886–892 (1986).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Carino, G. P. & Mathiowitz, E. Oral insulin delivery. Adv. Drug Delivery Rev. 35, 249–257 (1999).

    CAS  Article  Google Scholar 

  112. Morishita, M. & Peppas, N. A. Is the oral route possible for peptide and protein drug delivery? Drug Discov. Today 11, 905–910 (2006).

    CAS  PubMed  Article  Google Scholar 

  113. Wilson, I. D. & Nicholson, J. K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 179, 204–222 (2017).

    CAS  PubMed  Article  Google Scholar 

  114. Kolars, J. C., Watkins, P., Merion, R. M. & Awni, W. First-pass metabolism of cyclosporin by the gut. Lancet 338, 1488–1490 (1991).

    CAS  PubMed  Article  Google Scholar 

  115. Cole, E. T. et al. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int. J. Pharmaceut. 231, 83–95 (2002).

    CAS  Article  Google Scholar 

  116. Baumgartner, S., Kristl, J., Vrecer, F., Vodopivec, P. & Zorko, B. Optimisation of floating matrix tablets and evaluation of their gastric residence time. Int. J. Pharmaceut. 195, 125–135 (2000).

    CAS  Article  Google Scholar 

  117. Theeuwes, F. OROS® osmotic system development. Drug Dev. Industrial Pharmacy 9, 1331–1357 (1983).

    CAS  Article  Google Scholar 

  118. Harrison, G. Insulin in alcoholic solution by the mouth. Br. Med. J. 2, 1204 (1923). This is one of the first published reports on improving the oral delivery of insulin via the use of absorption enhancers.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Muranishi, S. Absorption enhancers. Crit. Rev. Ther. Drug Carrier Systems 7, 1–33 (1990).

    CAS  Google Scholar 

  120. Constantinides, P. P. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm. Res. 12, 1561–1572 (1995).

    CAS  PubMed  Article  Google Scholar 

  121. Whitehead, K. & Mitragotri, S. Mechanistic analysis of chemical permeation enhancers for oral drug delivery. Pharm. Res. 25, 1412–1419 (2008).

    CAS  PubMed  Article  Google Scholar 

  122. Fasano, A. & Uzzau, S. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J. Clin. Invest. 99, 1158–1164 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Thanou, M., Verhoef, J. & Junginger, H. Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Delivery Rev. 52, 117–126 (2001).

    CAS  Article  Google Scholar 

  124. Jain, S., Kambam, S., Thanki, K. & Jain, A. K. Cyclosporine A loaded self-nanoemulsifying drug delivery system (SNEDDS): implication of a functional excipient based co-encapsulation strategy on oral bioavailability and nephrotoxicity. RSC Adv. 5, 49633–49642 (2015).

    CAS  Article  Google Scholar 

  125. Guada, M. et al. Reformulating cyclosporine A (CsA): more than just a life cycle management strategy. J. Control. Release 225, 269–282 (2016).

    CAS  PubMed  Article  Google Scholar 

  126. Ritschel, W. Microemulsion technology in the reformulation of cyclosporine: the reason behind the pharmacokinetic properties of Neoral. Clin. Transplant. 10, 364–373 (1996).

    CAS  PubMed  Google Scholar 

  127. Gursoy, R. N. & Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother. 58, 173–182 (2004).

    PubMed  Article  CAS  Google Scholar 

  128. Braat, H. et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin. Gastroenterol. Hepatol. 4, 754–759 (2006).

    CAS  PubMed  Article  Google Scholar 

  129. Brayden, D. J. & Alonso, M.-J. Oral delivery of peptides: opportunities and issues for translation. Adv. Drug Deliv. Rev. 106, 193–195 (2016).

    CAS  PubMed  Article  Google Scholar 

  130. Traverso, G. et al. Microneedles for drug delivery via the gastrointestinal tract. J. Pharm. Sci. 104, 362–367 (2015).

    CAS  PubMed  Article  Google Scholar 

  131. Eaimtrakarn, S. et al. Retention and transit of intestinal mucoadhesive films in rat small intestine. Int. J. Pharmaceut. 224, 61–67 (2001).

    CAS  Article  Google Scholar 

  132. Eiamtrakarn, S. et al. Gastrointestinal mucoadhesive patch system (GI-MAPS) for oral administration of G-CSF, a model protein. Biomaterials 23, 145–152 (2002).

    CAS  PubMed  Article  Google Scholar 

  133. Grabovac, V., Guggi, D. & Bernkop-Schnürch, A. Comparison of the mucoadhesive properties of various polymers. Adv. Drug Delivery Rev. 57, 1713–1723 (2005).

    CAS  Article  Google Scholar 

  134. Borchard, G. et al. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J. Control. Release 39, 131–138 (1996).

    CAS  Article  Google Scholar 

  135. Lehr, C.-M., Bouwstra, J. A., Schacht, E. H. & Junginger, H. E. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharmaceut. 78, 43–48 (1992).

    CAS  Article  Google Scholar 

  136. Fujita, T. et al. Improvement of intestinal absorption of human calcitonin by chemical modification with fatty acids: synergistic effects of acylation and absorption enhancers. Int. J. Pharmaceut. 134, 47–57 (1996).

    CAS  Article  Google Scholar 

  137. Aungst, B. J. Intestinal permeation enhancers. J. Pharm. Sci. 89, 429–442 (2000).

    CAS  PubMed  Article  Google Scholar 

  138. Whitehead, K., Karr, N. & Mitragotri, S. Safe and effective permeation enhancers for oral drug delivery. Pharm. Res. 25, 1782–1788 (2008).

    CAS  PubMed  Article  Google Scholar 

  139. Matthews, D. Intestinal absorption of peptides. Physiol. Rev. 55, 537–608 (1975).

    CAS  PubMed  Article  Google Scholar 

  140. Pauletti, G. M. et al. Structural requirements for intestinal absorption of peptide drugs. J. Control. Release 41, 3–17 (1996).

    CAS  Article  Google Scholar 

  141. Choonara, B. F. et al. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol. Adv. 32, 1269–1282 (2014).

    CAS  PubMed  Article  Google Scholar 

  142. Whitehead, K., Shen, Z. & Mitragotri, S. Oral delivery of macromolecules using intestinal patches: applications for insulin delivery. J. Control. Release 98, 37–45 (2004).

    CAS  PubMed  Article  Google Scholar 

  143. Banerjee, A., Lee, J. & Mitragotri, S. Intestinal mucoadhesive devices for oral delivery of insulin. Bioeng. Transl Med. 1, 338–346 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. Gupta, V. et al. Delivery of exenatide and insulin using mucoadhesive intestinal devices. Ann. Biomed. Engineer. 44, 1993–2007 (2016).

    Article  Google Scholar 

  145. He, H., Cao, X. & Lee, L. J. Design of a novel hydrogel-based intelligent system for controlled drug release. J. Control. Release 95, 391–402 (2004).

    CAS  PubMed  Article  Google Scholar 

  146. Colombo, P. Swelling-controlled release in hydrogel matrices for oral route. Adv. Drug Delivery Rev. 11, 37–57 (1993).

    CAS  Article  Google Scholar 

  147. Lowman, A., Morishita, M., Kajita, M., Nagai, T. & Peppas, N. Oral delivery of insulin using pH-responsive complexation gels. J. Pharm. Sci. 88, 933–937 (1999).

    CAS  PubMed  Article  Google Scholar 

  148. Gupta, P., Vermani, K. & Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569–579 (2002).

    CAS  PubMed  Article  Google Scholar 

  149. Chirra, H. D. & Desai, T. A. Emerging microtechnologies for the development of oral drug delivery devices. Adv. Drug Delivery Rev. 64, 1569–1578 (2012).

    CAS  Article  Google Scholar 

  150. Chirra, H. D. & Desai, T. A. Multi-reservoir bioadhesive microdevices for independent rate-controlled delivery of multiple drugs. Small 8, 3839–3846 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. Tao, S. L. & Desai, T. A. Gastrointestinal patch systems for oral drug delivery. Drug Discov. Today 10, 909–915 (2005).

    CAS  PubMed  Article  Google Scholar 

  152. Banerjee, A. et al. Ionic liquids for oral insulin delivery. Proc. Natl Acad. Sci. USA 115, 7296–7301 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).

    CAS  PubMed  Article  Google Scholar 

  154. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    CAS  PubMed  Article  Google Scholar 

  155. Hoffman, A. S. The origins and evolution of “controlled” drug delivery systems. J. Control. Release 132, 153–163 (2008).

    CAS  PubMed  Article  Google Scholar 

  156. Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci. Transl Med. 5, 213ra167 (2013). This is a recent preclinical study that demonstrates the successful delivery of insulin via the oral delivery of targeted nanoparticles.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  157. Yun, Y., Cho, Y. W. & Park, K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Delivery Rev. 65, 822–832 (2013).

    CAS  Article  Google Scholar 

  158. Fonseca, S. B., Pereira, M. P. & Kelley, S. O. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv. Drug Delivery Rev. 61, 953–964 (2009).

    CAS  Article  Google Scholar 

  159. Farokhzad, O. C. et al. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64, 7668–7672 (2004).

    CAS  PubMed  Article  Google Scholar 

  160. Bannunah, A. M., Vllasaliu, D., Lord, J. & Stolnik, S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol. Pharmaceut. 11, 4363–4373 (2014).

    CAS  Article  Google Scholar 

  161. Lai, S. K., Wang, Y.-Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Delivery Rev. 61, 158–171 (2009).

    CAS  Article  Google Scholar 

  162. Lai, S. K. et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl Acad. Sci. 104, 1482–1487 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. Wang, Y. Y. et al. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew. Chem. Int. Ed. Engl. 47, 9726–9729 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl Med. 1, 10–29 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  165. Holmgren, J. & Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 11, S45 (2005).

    CAS  PubMed  Article  Google Scholar 

  166. Yamamoto, A. et al. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm. Res. 11, 1496–1500 (1994).

    CAS  PubMed  Article  Google Scholar 

  167. Lee, V. H. & Yamamoto, A. Penetration and enzymatic barriers to peptide and protein absorption. Adv. Drug Delivery Rev. 4, 171–207 (1989).

    Article  Google Scholar 

  168. Aguirre, T. A. et al. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv. Drug Delivery Rev. 106, 223–241 (2016).

    CAS  Article  Google Scholar 

  169. Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).

    CAS  PubMed  Article  Google Scholar 

  170. Patton, J. S. & Byron, P. R. Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67 (2007). This is a Review of advances in the systemic delivery of small molecules and biologics via inhalation. This Review further highlights aspects of lung physiology that affect systemic absorption.

    CAS  PubMed  Article  Google Scholar 

  171. Bosquillon, C., Lombry, C., Preat, V. & Vanbever, R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J. Control. Release 70, 329–339 (2001).

    CAS  PubMed  Article  Google Scholar 

  172. Yang, W., Peters, J. I., Williams, I. I. I., R. O. Inhaled nanoparticles — a current review. Int. J. Pharmaceut. 356, 239–247 (2008).

    CAS  Article  Google Scholar 

  173. Van Golde, L., Batenburg, J. J. & Robertson, B. The pulmonary surfactant system: biochemical aspects and functional significance. Physiol. Rev. 68, 374–455 (1988).

    CAS  PubMed  Article  Google Scholar 

  174. Labiris, N. & Dolovich, M. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 56, 588–599 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. van Iwaarden, F., Welmers, B., Verhoef, J., Haagsman, H. P. & Van Golde, L. Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am. J. Respir. Cell. Mol. Biol. 2, 91–98 (1990).

    CAS  PubMed  Article  Google Scholar 

  176. Geller, D. E. Comparing clinical features of the nebulizer, metered-dose inhaler, and dry powder inhaler. Respiratory Care 50, 1313–1322 (2005).

    PubMed  Google Scholar 

  177. Dalby, R. & Suman, J. Inhalation therapy: technological milestones in asthma treatment. Adv. Drug Delivery Rev. 55, 779–791 (2003).

    CAS  Article  Google Scholar 

  178. Anderson, P. J. History of aerosol therapy: liquid nebulization to MDIs to DPIs. Respiratory Care 50, 1139–1150 (2005).

    PubMed  Google Scholar 

  179. Telko, M. J. & Hickey, A. J. Dry powder inhaler formulation. Respiratory Care 50, 1209–1227 (2005).

    PubMed  Google Scholar 

  180. Edwards, D. A. et al. Large porous particles for pulmonary drug delivery. Science 276, 1868–1872 (1997).

    CAS  PubMed  Article  Google Scholar 

  181. Shoyele, S. A. & Cawthorne, S. Particle engineering techniques for inhaled biopharmaceuticals. Adv. Drug Delivery Rev. 58, 1009–1029 (2006).

    CAS  Article  Google Scholar 

  182. Vanbever, R. et al. Formulation and physical characterization of large porous particles for inhalation. Pharm. Res. 16, 1735–1742 (1999).

    CAS  PubMed  Article  Google Scholar 

  183. French, D. L., Edwards, D. A. & Niven, R. W. The influence of formulation on emission, deaggregation and deposition of dry powders for inhalation. J. Aerosol Sci. 27, 769–783 (1996).

    CAS  Article  Google Scholar 

  184. Edwards, D. A., Ben-Jebria, A. & Langer, R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol. 85, 379–385 (1998).

    CAS  PubMed  Article  Google Scholar 

  185. Hickey, A. J. Pharmaceutical Inhalation Aerosol Technology (CRC Press, 2003).

    Book  Google Scholar 

  186. Hickey, A. J. Inhalation Aerosols: Physical and Biological Basis for Therapy (CRC Press, 1996).

    Google Scholar 

  187. Al, M. M.-Tabakha, Future prospect of insulin inhalation for diabetic patients: The case of Afrezza versus Exubera. J. Control. Release 215, 25–38 (2015).

    Article  CAS  Google Scholar 

  188. White, S. et al. EXUBERA®: pharmaceutical development of a novel product for pulmonary delivery of insulin. Diabetes Technol. Ther. 7, 896–906 (2005).

    CAS  PubMed  Article  Google Scholar 

  189. Hollander, P. A. et al. Efficacy and safety of inhaled insulin (Exubera) compared with subcutaneous insulin therapy in patients with type 2 diabetes: results of a 6-month, randomized, comparative trial. Diabetes Care 27, 2356–2362 (2004).

    CAS  PubMed  Article  Google Scholar 

  190. Rosenstock, J., Cappelleri, J. C., Bolinder, B. & Gerber, R. A. Patient satisfaction and glycemic control after 1 year with inhaled insulin (Exubera) in patients with type 1 or type 2 diabetes. Diabetes Care 27, 1318–1323 (2004).

    PubMed  Article  Google Scholar 

  191. Skyler, J. S., Jovanovic, L., Klioze, S., Reis, J. & Duggan, W. Two-year safety and efficacy of inhaled human insulin (Exubera) in adult patients with type 1 diabetes. Diabetes Care 30, 579–585 (2007).

    CAS  PubMed  Article  Google Scholar 

  192. Hickey, A. J. Back to the future: inhaled drug products. J. Pharm. Sci. 102, 1165–1172 (2013).

    CAS  PubMed  Article  Google Scholar 

  193. Heinemann, L. The failure of Exubera: are we beating a dead horse? J. Diabetes Sci. Technol. 2, 518–529 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  194. Mitri, J. & Pittas, A. G. Inhaled insulin — what went wrong. Nat. Clin. Pract. Endocrinol. 5, 24 (2008).

    Article  Google Scholar 

  195. Sélam, J.-L. Inhaled insulin: promises and concerns. J. Diabetes Sci. Technol. 2, 311–315 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  196. Forst, T. et al. Time–action profile and patient assessment of inhaled insulin via the Exubera device in comparison with subcutaneously injected insulin aspart via the FlexPen device. Diabetes Technol. Ther. 11, 87–92 (2009).

    CAS  PubMed  Article  Google Scholar 

  197. Cavaiola, T. S. & Edelman, S. Inhaled insulin: a breath of fresh air? A review of inhaled insulin. Clin. Ther. 36, 1275–1289 (2014).

    Article  CAS  Google Scholar 

  198. Kling, J. Sanofi to propel inhalable insulin Afrezza into market. Nat. Biotechnol. 32, 851–852 (2014).

    CAS  PubMed  Article  Google Scholar 

  199. Halliday, H. L. Surfactant replacement therapy. Pediatr. Pulmonol. 19, 96–97 (1995).

    Article  Google Scholar 

  200. Liang, Z., Ni, R., Zhou, J. & Mao, S. Recent advances in controlled pulmonary drug delivery. Drug Discov. Today 20, 380–389 (2015).

    CAS  PubMed  Article  Google Scholar 

  201. Ruge, C. A., Kirch, J. & Lehr, C.-M. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges. Lancet Respir. Med. 1, 402–413 (2013).

    CAS  PubMed  Article  Google Scholar 

  202. Kobayashi, S., Kondo, S. & Juni, K. Pulmonary delivery of salmon calcitonin dry powders containing absorption enhancers in rats. Pharm. Res. 13, 80–83 (1996).

    CAS  PubMed  Article  Google Scholar 

  203. Moschos, S. A. et al. Lung delivery studies using siRNA conjugated to TAT (48–60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjugate Chem. 18, 1450–1459 (2007).

    CAS  Article  Google Scholar 

  204. Hussain, A., Arnold, J. J., Khan, M. A. & Ahsan, F. Absorption enhancers in pulmonary protein delivery. J. Control. Release 94, 15–24 (2004).

    CAS  PubMed  Article  Google Scholar 

  205. Illum, L. Nasal drug delivery — possibilities, problems and solutions. J. Control. Release 87, 187–198 (2003). This is an outstanding Review summarizing the challenges with nasal drug delivery and potential strategies to overcome these challenges for biologics.

    CAS  PubMed  Article  Google Scholar 

  206. Caon, T., Jin, L., Simões, C. M., Norton, R. S. & Nicolazzo, J. A. Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm. Res. 32, 1–21 (2015).

    CAS  PubMed  Article  Google Scholar 

  207. Gandhi, R. B. & Robinson, J. R. Oral cavity as a site for bioadhesive drug delivery. Adv. Drug Delivery Rev. 13, 43–74 (1994).

    CAS  Article  Google Scholar 

  208. Hussain, M. A., Aungst, B. J., Koval, C. A. & Shefter, E. Improved buccal delivery of opioid analgesics and antagonists with bitterless prodrugs. Pharm. Res. 5, 615–618 (1988).

    CAS  PubMed  Article  Google Scholar 

  209. Shojaei, A. H. Buccal mucosa as a route for systemic drug delivery: a review. J. Pharm. Pharm. Sci. 1, 15–30 (1998).

    CAS  PubMed  Google Scholar 

  210. Zhou, X. H. Overcoming enzymatic and absorption barriers to non-parenterally administered protein and peptide drugs. J. Control. Release 29, 239–252 (1994).

    CAS  Article  Google Scholar 

  211. Klatt, N. R. et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women. Science 356, 938–945 (2017).

    CAS  PubMed  Article  Google Scholar 

  212. Ugwoke, M. I., Verbeke, N. & Kinget, R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharmacy Pharmacol. 53, 3–22 (2001).

    CAS  Article  Google Scholar 

  213. Rapoport, A. & Winner, P. Nasal delivery of antimigraine drugs: clinical rationale and evidence base. Headache 46, S192–S201 (2006).

    PubMed  Article  Google Scholar 

  214. Senel, S. & Hıncal, A. A. Drug permeation enhancement via buccal route: possibilities and limitations. J. Control. Release 72, 133–144 (2001).

    CAS  PubMed  Article  Google Scholar 

  215. Arora, P., Sharma, S. & Garg, S. Permeability issues in nasal drug delivery. Drug Discov. Today 7, 967–975 (2002).

    CAS  PubMed  Article  Google Scholar 

  216. Nicolazzo, J. A., Reed, B. L. & Finnin, B. C. Buccal penetration enhancers — how do they really work? J. Control. Release 105, 1–15 (2005).

    CAS  PubMed  Article  Google Scholar 

  217. Rossi, S., Sandri, G. & Caramella, C. M. Buccal drug delivery: a challenge already won? Drug Discov. Today Technol. 2, 59–65 (2005).

    CAS  PubMed  Article  Google Scholar 

  218. Boddupalli, B. M., Mohammed, Z. N., Nath, R. A. & Banji, D. Mucoadhesive drug delivery system: an overview. J. Adv. Pharm. Technol. Res. 1, 381 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  219. Montenegro-Nicolini, M. & Morales, J. O. Overview and future potential of buccal mucoadhesive films as drug delivery systems for biologics. AAPS PharmSciTech 18, 3–14 (2017).

    CAS  PubMed  Article  Google Scholar 

  220. Morales, J. O. & Brayden, D. J. Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles. Curr. Opin. Pharmacol. 36, 22–28 (2017).

    CAS  PubMed  Article  Google Scholar 

  221. Thorne, R., Pronk, G., Padmanabhan, V. & Frey Ii, W. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127, 481–496 (2004).

    CAS  PubMed  Article  Google Scholar 

  222. Thorne, R. G. et al. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 692, 278–282 (1995).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

S.M. acknowledges support from the National Institutes of Health, Grant R01DK097379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mitragotri.

Ethics declarations

Competing interests

S.M. is a shareholder of, consultant to and recipient of research grants from several drug delivery, pharmaceutical and biotechnology companies, including those active in the general area of research discussed in this article. The authors are inventors on several patents in the field of drug delivery and formulations that are owned by their current or former employers. The views presented here should not be considered as endorsements of any specific product or company.

Related links

RELATED LINKS

ClinicalTrials.gov

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Current clinical landscape for subcutaneous biologics (PDF 55 kb)

Glossary

PEGylation

The attachment of polyethylene glycol to a biologic to shield it from the immune system and thereby increase its half-life.

First-pass metabolism

The biological process by which the delivered biologic is metabolized by the liver or gastrointestinal tract before reaching systemic circulation.

Iontophoresis

The application of an electrical current to a biologic formulation at the surface of the skin. The current improves transport of the biologic across the skin via electrophoresis.

Liposomes

Phospholipid-based nanoparticles with tuneable physicochemical parameters that are designed to encapsulate and deliver biologics.

Excipients

Inactive substances found in pharmaceutical formulations. Excipients can include absorption enhancers, stability enhancing agents or anticaking agents.

Pulmonary surfactant

Lipid and protein secreted by type II alveolar cells that adsorb to the air–water interface in the lungs. Pulmonary surfactant is a required biological fluid that reduces the surface tension in lung alveoli to facilitate inhalation and exhalation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anselmo, A., Gokarn, Y. & Mitragotri, S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov 18, 19–40 (2019). https://doi.org/10.1038/nrd.2018.183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.183

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing