Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inflammation and cancer: advances and new agents

Key Points

  • Inflammation and innate immunity have a vital and complex role in driving tumorigenesis

  • Strong epidemiological and preclinical data support an anti-inflammatory approach to prevention and treatment of cancer

  • Several therapeutic agents targeting inflammatory cytokines, transcription factors and immune cells are being developed and tested in the clinical setting

  • Current successes of treatments targeting adaptive immunity indicate a great need to further our clinical understanding of the inflammatory and innate immune system to identify further targets for cancer treatment

  • Combining treatments that target the adaptive and innate immune systems in the tumour microenvironment might be advantageous

Abstract

Tumour-promoting inflammation is considered one of the enabling characteristics of cancer development. Chronic inflammatory disease increases the risk of some cancers, and strong epidemiological evidence exists that NSAIDs, particularly aspirin, are powerful chemopreventive agents. Tumour microenvironments contain many different inflammatory cells and mediators; targeting these factors in genetic, transplantable and inducible murine models of cancer substantially reduces the development, growth and spread of disease. Thus, this complex network of inflammation offers targets for prevention and treatment of malignant disease. Much potential exists in this area for novel cancer prevention and treatment strategies, although clinical research to support targeting of cancer-related inflammation and innate immunity in patients with advanced-stage cancer remains in its infancy. Following the initial successes of immunotherapies that modulate the adaptive immune system, we assert that inflammation and innate immunity are important targets in patients with cancer on the basis of extensive preclinical and epidemiological data. The adaptive immune response is heavily dependent on innate immunity, therefore, inhibiting some of the tumour-promoting immunosuppressive actions of the innate immune system might enhance the potential of immunotherapies that activate a nascent antitumour response.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The molecular basis of cancer-related inflammation.

References

  1. 1

    Kundu, J. K. & Surh, Y. J. Inflammation: gearing the journey to cancer. Mutat. Res. 659, 15–30 (2008).

    CAS  PubMed  Google Scholar 

  2. 2

    Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    CAS  PubMed Central  Google Scholar 

  3. 3

    Grivennikov, S. I. & Karin, M. Inflammation and oncogenesis: a vicious connection. Curr. Opin. Genet. Dev. 20, 65–71 (2010).

    CAS  PubMed  Google Scholar 

  4. 4

    Coussens, L. M., Zitvogel, L. & Palucka, A. K. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339, 286–291 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  5. 5

    Masferrer, J. L. et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 60, 1306–1311 (2000).

    CAS  PubMed  Google Scholar 

  6. 6

    Hwang, D., Scollard, D., Byrne, J. & Levine, E. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J. Natl Cancer Inst. 90, 455–460 (1998).

    CAS  PubMed  Google Scholar 

  7. 7

    Gupta, S., Srivastava, M., Ahmad, N., Bostwick, D. G. & Mukhtar, H. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42, 73–78 (2000).

    CAS  PubMed  Google Scholar 

  8. 8

    Tucker, O. N. et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res. 59, 987–990 (1999).

    CAS  PubMed  Google Scholar 

  9. 9

    Buckman, S. Y. et al. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 19, 723–729 (1998).

    CAS  PubMed  Google Scholar 

  10. 10

    Wolff, H. et al. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res. 58, 4997–5001 (1998).

    CAS  PubMed  Google Scholar 

  11. 11

    Mohammed, S. I. et al. Expression of cyclooxygenase-2 (COX-2) in human invasive transitional cell carcinoma (TCC) of the urinary bladder. Cancer Res. 59, 5647–5650 (1999).

    CAS  PubMed  Google Scholar 

  12. 12

    Chan, G. et al. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res. 59, 991–994 (1999).

    CAS  PubMed  Google Scholar 

  13. 13

    Waddell, W. R. & Loughry, R. W. Sulindac for polyposis of the colon. J. Surg. Oncol. 24, 83–87 (1983).

    CAS  PubMed  Google Scholar 

  14. 14

    Algra, A. M. & Rothwell, P. M. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 13, 518–527 (2012).

    CAS  PubMed  Google Scholar 

  15. 15

    Rothwell, P. M. et al. Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet 379, 1602–1612 (2012)

    CAS  PubMed  Google Scholar 

  16. 16

    Rothwell, P. M. et al. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379, 1591–1601 (2012).

    CAS  PubMed  Google Scholar 

  17. 17

    Cuzick, J. et al. Estimates of benefits and harms of prophylactic use of aspirin in the general population. Ann. Oncol. 26, 47–57 (2015).

    CAS  PubMed  Google Scholar 

  18. 18

    Gay, L. J. & Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer 11, 123–134 (2011).

    CAS  PubMed  Google Scholar 

  19. 19

    Eberhart, C. E. et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107, 1183–1188 (1994).

    CAS  Google Scholar 

  20. 20

    Gierach, G. L. et al. Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health–AARP Diet and Health Study. Breast Cancer Res. 10, R38 (2008).

    PubMed Central  PubMed  Google Scholar 

  21. 21

    Salinas, C. A. et al. Use of aspirin and other nonsteroidal antiinflammatory medications in relation to prostate cancer risk. Am. J. Epidemiol. 172, 578–590 (2010).

    PubMed Central  PubMed  Google Scholar 

  22. 22

    Liao, X. et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N. Engl. J. Med. 367, 1596–1606 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  23. 23

    Fraser, D. M., Sullivan, F. M., Thompson, A. M. & McCowan, C. Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study. Br. J. Cancer 111, 623–627 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  24. 24

    US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  25. 25

    Ng, K. et al. Aspirin and COX-2 inhibitor use in patients with stage III colon cancer. J. Natl Cancer Inst. 107, 345 (2015).

    PubMed  Google Scholar 

  26. 26

    US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  27. 27

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  28. 28

    The Add Aspirin trial. addaspirintrial.org[online], (2015).

  29. 29

    Dulak, J. & Jozkowicz, A. Anti-angiogenic and anti inflammatory effects of statins: relevance to anti-cancer therapy. Curr. Cancer Drug Targets 5, 579–594 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  30. 30

    Boudreau, D. M., Yu, O. & Johnson, J. Statin use and cancer risk: a comprehensive review. Expert Opin. Drug Saf. 9, 603–621 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. 31

    US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  32. 32

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  33. 33

    Argiles, J. M., Busquets, S., Toledo, M. & Lopez-Soriano, F. J. The role of cytokines in cancer cachexia. Curr. Opin. Support. Palliat. Care 3, 263–268 (2009).

    PubMed  Google Scholar 

  34. 34

    Trajkovic-Vidakovic, M., de Graeff, A., Voest, E. E. & Teunissen, S. C. Symptoms tell it all: a systematic review of the value of symptom assessment to predict survival in advanced cancer patients. Crit. Rev. Oncol. Hematol. 84, 130–148 (2012).

    PubMed  Google Scholar 

  35. 35

    Leggas, M. et al. Intensive anti-inflammatory therapy with dexamethasone in patients with non-small cell lung cancer: effect on chemotherapy toxicity and efficacy. Cancer Chemother. Pharmacol. 63, 731–743 (2009).

    CAS  PubMed  Google Scholar 

  36. 36

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed Central  Google Scholar 

  37. 37

    Germano, G., Allavena, P. & Mantovani, A. Cytokines as a key component of cancer-related inflammation. Cytokine 43, 374–379, (2008).

    CAS  PubMed  Google Scholar 

  38. 38

    Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  PubMed  Google Scholar 

  39. 39

    Argiles, J. M., Moore-Carrasco, R., Fuster, G., Busquets, S. & Lopez-Soriano, F. J. Cancer cachexia: the molecular mechanisms. Int. J. Biochem. Cell Biol. 35, 405–409 (2003).

    CAS  PubMed  Google Scholar 

  40. 40

    Szlosarek, P., Charles, K. A. & Balkwill, F. R. Tumour necrosis factor-alpha as a tumour promoter. Eur. J. Cancer 42, 745–750 (2006).

    CAS  PubMed  Google Scholar 

  41. 41

    Feldmann, M. & Maini, R. N. Anti-TNF therapy, from rationale to standard of care: what lessons has it taught us? J. Immunol. 185, 791–794 (2010).

    CAS  PubMed  Google Scholar 

  42. 42

    Sandborn, W. J. & Hanauer, S. B. Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety. Inflamm. Bowel Dis. 5, 119–133 (1999).

    CAS  PubMed  Google Scholar 

  43. 43

    Knight, D. M. et al. Construction and initial characterization of a mouse–human chimeric anti-TNF antibody. Mol. Immunol. 30, 1443–1453 (1993).

    CAS  PubMed  Google Scholar 

  44. 44

    Mohler, K. M. et al. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J. Immunol. 151, 1548–1561 (1993).

    CAS  PubMed  Google Scholar 

  45. 45

    Wiens, A., Correr, C. J., Venson, R., Otuki, M. F. & Pontarolo, R. A systematic review and meta-analysis of the efficacy and safety of adalimumab for treating rheumatoid arthritis. Rheumatol. Int. 30, 1063–1070 (2010).

    CAS  PubMed  Google Scholar 

  46. 46

    Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).

    CAS  PubMed  Google Scholar 

  47. 47

    Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).

    CAS  PubMed  Google Scholar 

  48. 48

    Szlosarek, P. W. et al. Expression and regulation of tumor necrosis factor alpha in normal and malignant ovarian epithelium. Mol. Cancer Ther. 5, 382–390 (2006).

    CAS  PubMed  Google Scholar 

  49. 49

    Miles, D. W. et al. Expression of tumour necrosis factor (TNF alpha) and its receptors in benign and malignant breast tissue. Int. J. Cancer 56, 777–782 (1994).

    CAS  PubMed  Google Scholar 

  50. 50

    Balkwill, F. TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 25, 409–416 (2006).

    CAS  PubMed  Google Scholar 

  51. 51

    Harrison, M. L. et al. Tumor necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J. Clin. Oncol. 25, 4542–4549 (2007).

    CAS  PubMed  Google Scholar 

  52. 52

    Larkin, J. M. et al. A phase I/II trial of sorafenib and infliximab in advanced renal cell carcinoma. Br. J. Cancer 103, 1149–1153 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  53. 53

    Wu, C. et al. Disrupting cytokine signaling in pancreatic cancer: a phase I/II study of etanercept in combination with gemcitabine in patients with advanced disease. Pancreas 42, 813–818 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  54. 54

    Sheen-Chen, S. M., Chen, W. J., Eng, H. L. & Chou, F. F. Serum concentration of tumor necrosis factor in patients with breast cancer. Breast Cancer Res. Treat. 43, 211–215 (1997).

    CAS  PubMed  Google Scholar 

  55. 55

    Madhusudan, S. et al. A phase II study of etanercept (Enbrel), a tumor necrosis factor alpha inhibitor in patients with metastatic breast cancer. Clin. Cancer Res. 10, 6528–6534 (2004).

    CAS  PubMed  Google Scholar 

  56. 56

    Naylor, M. S., Stamp, G. W., Foulkes, W. D., Eccles, D. & Balkwill, F. R. Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. J. Clin. Invest. 91, 2194–2206 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  57. 57

    Hassan, M. I., Kassim, S. K., Saeda, L., Laban, M. & Khalifa, A. Ovarian cancer-induced immunosuppression: relationship to tumor necrosis factor-alpha (TNF-alpha) release from ovarian tissue. Anticancer Res. 19, 5657–5662 (1999).

    CAS  PubMed  Google Scholar 

  58. 58

    Madhusudan, S. et al. Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. J. Clin. Oncol. 23, 5950–5959 (2005).

    CAS  PubMed  Google Scholar 

  59. 59

    Wolfe, F. & Michaud, K. Biologic treatment of rheumatoid arthritis and the risk of malignancy: analyses from a large US observational study. Arthritis Rheum. 56, 2886–2895 (2007).

    PubMed  Google Scholar 

  60. 60

    Wolfe, F. & Michaud, K. The effect of methotrexate and anti-tumor necrosis factor therapy on the risk of lymphoma in rheumatoid arthritis in 19,562 patients during 89,710 person-years of observation. Arthritis Rheum. 56, 1433–1439 (2007).

    CAS  PubMed  Google Scholar 

  61. 61

    Askling, J. et al. Haematopoietic malignancies in rheumatoid arthritis: lymphoma risk and characteristics after exposure to tumour necrosis factor antagonists. Ann. Rheum. Dis. 64, 1414–1420, (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  62. 62

    Askling, J. et al. Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumour necrosis factor antagonists. Ann. Rheum. Dis. 64, 1421–1426 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  63. 63

    Mariette, X. et al. Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies: a systematic review and meta-analysis. Ann. Rheum. Dis. 70, 1895–1904 (2011).

    PubMed  Google Scholar 

  64. 64

    Leombruno, J. P., Einarson, T. R. & Keystone, E. C. The safety of anti-tumour necrosis factor treatments in rheumatoid arthritis: meta and exposure-adjusted pooled analyses of serious adverse events. Ann. Rheum. Dis. 68, 1136–1145 (2009).

    CAS  PubMed  Google Scholar 

  65. 65

    Askling, J. et al. Cancer risk with tumor necrosis factor alpha (TNF) inhibitors: meta-analysis of randomized controlled trials of adalimumab, etanercept, and infliximab using patient level data. Pharmacoepidemiol. Drug Saf. 20, 119–130 (2011).

    CAS  PubMed  Google Scholar 

  66. 66

    Moulis, G. et al. Cancer risk of anti-TNF-alpha at recommended doses in adult rheumatoid arthritis: a meta-analysis with intention to treat and per protocol analyses. PLoS ONE 7, e48991 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  67. 67

    Taniguchi, K. & Karin, M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin. Immunol. 26, 54–74 (2014).

    CAS  PubMed  Google Scholar 

  68. 68

    Ancrile, B., Lim, K. H. & Counter, C. M. Oncogenic RAS-induced secretion of IL6 is required for tumorigenesis. Genes Dev. 21, 1714–1719 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. 69

    Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347 (1991).

    CAS  PubMed  Google Scholar 

  70. 70

    Stone, R. L. et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 366, 610–618 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  71. 71

    Kulbe, H. et al. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res. 67, 585–592 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  72. 72

    Anglesio, M. S. et al. IL6–STAT3–HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clin. Cancer Res. 17, 2538–2548 (2011).

    CAS  PubMed  Google Scholar 

  73. 73

    Shain, K. H. et al. β1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res. 69, 1009–1015 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. 74

    Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    CAS  PubMed  Google Scholar 

  75. 75

    van Zaanen, H. C. et al. Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study. Br. J. Haematol. 102, 783–790 (1998).

    CAS  PubMed  Google Scholar 

  76. 76

    Kurzrock, R. et al. A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease. Clin. Cancer Res. 19, 3659–3670 (2013).

    CAS  PubMed  Google Scholar 

  77. 77

    Orlowski, R. Z. et al. A phase 2, randomized, double-blind, placebo-controlled study of siltuximab (anti-IL-6 mAb) and bortezomib versus bortezomib alone in patients with relapsed or refractory multiple myeloma. Am. J. Hematol. 90, 42–49 (2015

    CAS  PubMed Central  PubMed  Google Scholar 

  78. 78

    Coward, J. et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin. Cancer Res. 17, 6083–6096 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  79. 79

    Dorff, T. B. et al. Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin. Cancer Res. 16, 3028–3034 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  80. 80

    Borsellino, N., Belldegrun, A. & Bonavida, B. Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res. 55, 4633–4639 (1995).

    CAS  PubMed  Google Scholar 

  81. 81

    Hudes, G. et al. A phase 1 study of a chimeric monoclonal antibody against interleukin-6, siltuximab, combined with docetaxel in patients with metastatic castration-resistant prostate cancer. Invest. New Drugs 31, 669–676 (2013).

    CAS  PubMed  Google Scholar 

  82. 82

    Fizazi, K. et al. Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer. Eur. J. Cancer 48, 85–93 (2012).

    CAS  PubMed  Google Scholar 

  83. 83

    Rossi, J. F. et al. A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer. Br. J. Cancer 103, 1154–1162 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  84. 84

    Ando, K. et al. Possible role for tocilizumab, an anti-interleukin-6 receptor antibody, in treating cancer cachexia. J. Clin. Oncol. 31, e69–e72 (2013).

    PubMed  Google Scholar 

  85. 85

    Milagre, C. S. et al. Adaptive upregulation of EGFR limits attenuation of tumor growth by neutralizing IL-6 antibodies with implications for combined therapy in ovarian cancer. Cancer Res. 75, 1255–1264 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  86. 86

    Zhang, J., Patel, L. & Pienta, K. J. Targeting chemokine (C-C motif) ligand 2 (CCL2) as an example of translation of cancer molecular biology to the clinic. Prog. Mol. Biol. Transl. Sci. 95, 31–53 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  87. 87

    Sandhu, S. K. et al. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother. Pharmacol. 71, 1041–1050 (2013).

    CAS  PubMed  Google Scholar 

  88. 88

    Pienta, K. J. et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest. New Drugs 31, 760–768 (2013).

    CAS  PubMed  Google Scholar 

  89. 89

    Bonapace, L. et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515, 130–133 (2014).

    CAS  PubMed Central  Google Scholar 

  90. 90

    Tomimatsu, S., Ichikura, T. & Mochizuki, H. Significant correlation between expression of interleukin-1α and liver metastasis in gastric carcinoma. Cancer 91, 1272–1276 (2001).

    CAS  PubMed  Google Scholar 

  91. 91

    Singer, C. F. et al. Interleukin 1 system and sex steroid receptor expression in human breast cancer: interleukin 1α protein secretion is correlated with malignant phenotype. Clin. Cancer Res. 9, 4877–4883 (2003).

    CAS  PubMed  Google Scholar 

  92. 92

    Ling, J. et al. KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21, 105–120 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  93. 93

    Hong, D. S. et al. MABp1, a first-in-class true human antibody targeting interleukin-1α in refractory cancers: an open-label, phase 1 dose-escalation and expansion study. Lancet Oncol. 15, 656–666 (2014).

    CAS  PubMed  Google Scholar 

  94. 94

    Oppenheim, J. J., Zachariae, C. O., Mukaida, N. & Matsushima, K. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu. Rev. Immunol. 9, 617–648 (1991).

    CAS  PubMed  Google Scholar 

  95. 95

    Larsen, C. G., Anderson, A. O., Appella, E., Oppenheim, J. J. & Matsushima, K. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243, 1464–1466 (1989).

    CAS  PubMed  Google Scholar 

  96. 96

    Schroder, J. M., Sticherling, M., Henneicke, H. H., Preissner, W. C. & Christophers, E. IL-1 alpha or tumor necrosis factor-alpha stimulate release of three NAP-1/IL-8-related neutrophil chemotactic proteins in human dermal fibroblasts. J. Immunol. 144, 2223–2232 (1990).

    CAS  PubMed  Google Scholar 

  97. 97

    Krieger, M. et al. Activation of human basophils through the IL-8 receptor. J. Immunol. 149, 2662–2667 (1992).

    CAS  PubMed  Google Scholar 

  98. 98

    Wang, J. M., Taraboletti, G., Matsushima, K., Van Damme, J. & Mantovani, A. Induction of haptotactic migration of melanoma cells by neutrophil activating protein/interleukin-8. Biochem. Biophys. Res. Commun. 169, 165–170 (1990).

    CAS  PubMed  Google Scholar 

  99. 99

    Strieter, R. M. et al. Interleukin-8. A corneal factor that induces neovascularization. Am. J. Pathol. 141, 1279–1284 (1992).

    CAS  PubMed Central  PubMed  Google Scholar 

  100. 100

    Koch, A. E. et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258, 1798–1801 (1992).

    CAS  PubMed  Google Scholar 

  101. 101

    Schadendorf, D. et al. IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J. Immunol. 151, 2667–2675 (1993).

    CAS  PubMed  Google Scholar 

  102. 102

    Sanmamed, M. F. et al. Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin. Cancer Res. 20, 5697–5707 (2014).

    CAS  PubMed  Google Scholar 

  103. 103

    Lee, L. F. et al. IL-8 reduced tumorigenicity of human ovarian cancer in vivo due to neutrophil infiltration. J. Immunol. 164, 2769–2775 (2000).

    CAS  PubMed  Google Scholar 

  104. 104

    Lee, L. F. et al. Taxol-dependent transcriptional activation of IL-8 expression in a subset of human ovarian cancer. Cancer Res. 56, 1303–1308 (1996).

    CAS  PubMed  Google Scholar 

  105. 105

    Bekes, E. M. et al. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am. J. Pathol. 179, 1455–1470 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. 106

    Huang, S. et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am. J. Pathol. 161, 125–134 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  107. 107

    Zhu, Y. M., Webster, S. J., Flower, D. & Woll, P. J. Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. Br. J. Cancer 91, 1970–1976 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  108. 108

    Matsuo, Y. et al. CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer. Int. J. Cancer 125, 1027–1037 (2009).

    CAS  PubMed  Google Scholar 

  109. 109

    US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  110. 110

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  111. 111

    Ginestier, C. et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J. Clin. Invest. 120, 485–497 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  112. 112

    Müller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    PubMed  Google Scholar 

  113. 113

    Hall, J. M. & Korach, K. S. Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol. Endocrinol. 17, 792–803 (2003).

    CAS  PubMed  Google Scholar 

  114. 114

    Taichman, R. S. et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 62, 1832–1837 (2002).

    CAS  PubMed  Google Scholar 

  115. 115

    Zagzag, D. et al. Stromal cell-derived factor-1alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res. 65, 6178–6188 (2005).

    CAS  PubMed  Google Scholar 

  116. 116

    Kim, S. Y. et al. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin. Exp. Metastases 25, 201–211 (2008).

    CAS  Google Scholar 

  117. 117

    Geminder, H. et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J. Immunol. 167, 4747–4757 (2001).

    CAS  PubMed  Google Scholar 

  118. 118

    Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  119. 119

    Stuelten, C. H. et al. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-α and TGF-β. J. Cell Sci. 118, 2143–2153 (2005).

    CAS  PubMed  Google Scholar 

  120. 120

    Jung, Y. et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat. Commun. 4, 1795 (2013).

    PubMed Central  PubMed  Google Scholar 

  121. 121

    Smith, M. C. et al. CXCR4 regulates growth of-both primary and metastatic breast cancer. Cancer Res. 64, 8604–8612 (2004).

    CAS  PubMed  Google Scholar 

  122. 122

    Kim, M. et al. CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res. 70, 10411–10421 (2010).

    CAS  PubMed  Google Scholar 

  123. 123

    D'Alterio, C. et al. Inhibition of stromal CXCR4 impairs development of lung metastases. Cancer Immunol. Immunother. 61, 1713–1720 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  124. 124

    Uchida, D. et al. Blockade of CXCR4 in oral squamous cell carcinoma inhibits lymph node metastases. Eur. J. Cancer 47, 452–459 (2011).

    CAS  PubMed  Google Scholar 

  125. 125

    Kajiyama, H. et al. Involvement of SDF-1α/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. Int. J. Cancer 122, 91–99 (2008).

    CAS  PubMed  Google Scholar 

  126. 126

    Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    CAS  PubMed  Google Scholar 

  127. 127

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  128. 128

    Bromberg, J. STAT proteins and oncogenesis. J. Clin. Invest. 109, 1139–1142 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  129. 129

    Verstovsek, S. et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 366, 799–807 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  130. 130

    Harrison, C. et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl. J. Med. 366, 787–798 (2012).

    CAS  PubMed  Google Scholar 

  131. 131

    Younes, A. et al. Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes. J. Clin. Oncol. 30, 4161–4167 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  132. 132

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  133. 133

    Gao, S. P. et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J. Clin. Invest. 117, 3846–3856 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  134. 134

    Song, L., Rawal, B., Nemeth, J. A. & Haura, E. B. JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol. Cancer Ther. 10, 481–494 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  135. 135

    Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436 (2006).

    CAS  PubMed  Google Scholar 

  136. 136

    DiDonato, J. A., Mercurio, F. & Karin, M. NF-kappaB and the link between inflammation and cancer. Immunol. Rev. 246, 379–400 (2012).

    PubMed  Google Scholar 

  137. 137

    San Miguel, J. F. et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N. Engl. J. Med. 359, 906–917 (2008).

    CAS  PubMed  Google Scholar 

  138. 138

    San Miguel, J. F. et al. Persistent overall survival benefit and no increased risk of second malignancies with bortezomib–melphalan–prednisone versus melphalan–prednisone in-patients with previously untreated multiple myeloma. J. Clin. Oncol. 31, 448–455 (2013).

    CAS  PubMed  Google Scholar 

  139. 139

    Goy, A. et al. Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study. Ann. Oncol. 20, 520–525 (2009).

    CAS  PubMed  Google Scholar 

  140. 140

    Hata, H. et al. Interleukin-6 gene expression in multiple myeloma: a characteristic of immature tumor cells. Blood 81, 3357–3364 (1993).

    CAS  PubMed  Google Scholar 

  141. 141

    Orlowski, R. Z. et al. Phase II, randomized, double blind, placebo-controlled study comparing siltuximab plus bortezomib versus bortezomib alone in pts with relapsed/refractory multiple myeloma [abstract]. J. Clin. Oncol. 30 (Suppl.), a8018 (2012).

    Google Scholar 

  142. 142

    San-Miguel, J. et al. Phase 2 randomized study of bortezomib-melphalan-prednisone with or without siltuximab (anti-IL-6) in multiple myeloma. Blood 123, 4136–4142 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  143. 143

    Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

    CAS  Google Scholar 

  144. 144

    Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  145. 145

    Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  146. 146

    Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  147. 147

    Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  148. 148

    Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    CAS  PubMed Central  Google Scholar 

  149. 149

    Bingle, L., Brown, N. J. & Lewis, C. E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002).

    CAS  PubMed  Google Scholar 

  150. 150

    Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS  PubMed  Google Scholar 

  151. 151

    Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    CAS  PubMed  Google Scholar 

  152. 152

    Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev Cancer 4, 71–78 (2004).

    CAS  PubMed  Google Scholar 

  153. 153

    Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  154. 154

    D'Incalci, M. et al. Unique features of the mode of action of ET-743. Oncologist 7, 210–216 (2002).

    CAS  PubMed  Google Scholar 

  155. 155

    Michaelson, M. D. et al. Multicenter phase II study of trabectedin in patients with metastatic castration-resistant prostate cancer. Ann. Oncol. 23, 1234–1240 (2012).

    CAS  PubMed  Google Scholar 

  156. 156

    US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  157. 157

    US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  158. 158

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  159. 159

    Allavena, P. et al. Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production. Cancer Res. 65, 2964–2971 (2005).

    CAS  PubMed  Google Scholar 

  160. 160

    Germano, G. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23, 249–262 (2013).

    CAS  PubMed  Google Scholar 

  161. 161

    Mitchem, J. B. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013).

    CAS  PubMed  Google Scholar 

  162. 162

    Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 73, 2782–2794 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  163. 163

    Priceman, S. J. et al. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1-receptor: combating tumor evasion of antiangiogenic therapy. Blood 115, 1461–1471 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  164. 164

    Mok, S. et al. Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy. Cancer Res. 74, 153–161 (2014).

    CAS  PubMed  Google Scholar 

  165. 165

    Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    CAS  PubMed  Google Scholar 

  166. 166

    US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  167. 167

    US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  168. 168

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  169. 169

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  170. 170

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  171. 171

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  172. 172

    US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  173. 173

    Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  174. 174

    Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    CAS  PubMed  Google Scholar 

  175. 175

    Sotomayor, E. M. et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat. Med. 5, 780–787 (1999).

    CAS  PubMed  Google Scholar 

  176. 176

    Diehl, L. et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat. Med. 5, 774–779 (1999).

    CAS  PubMed  Google Scholar 

  177. 177

    Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  178. 178

    Beatty, G. L. et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin. Cancer Res. 19, 6286–6295 (2013).

    CAS  Google Scholar 

  179. 179

    Bjork, P. et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol. 7, e97 (2009).

    PubMed  Google Scholar 

  180. 180

    Bratt, O. et al. Open-label, clinical phase I studies of tasquinimod in patients with castration-resistant prostate cancer. Br. J. Cancer 101, 1233–1240 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  181. 181

    Pili, R. et al. Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. J. Clin. Oncol. 29, 4022–4028 (2011).

    CAS  PubMed  Google Scholar 

  182. 182

    US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  183. 183

    US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  184. 184

    US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  185. 185

    Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  186. 186

    Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  187. 187

    Demaria, S. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58, 862–870 (2004).

    PubMed Central  PubMed  Google Scholar 

  188. 188

    Burnette, B. & Weichselbaum, R. R. Radiation as an immune modulator. Semin. Radiat. Oncol. 23, 273–280 (2013).

    PubMed  Google Scholar 

  189. 189

    Roses, R. E., Datta, J. & Czerniecki, B. J. Radiation as immunomodulator: implications for dendritic cell-based immunotherapy. Radiat. Res. 182, 211–218, (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  190. 190

    Milas, L. et al. CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res. 64, 5074–5077 (2004).

    CAS  PubMed  Google Scholar 

  191. 191

    Mason, K. A. et al. Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin. Cancer Res. 11, 361–369 (2005).

    CAS  PubMed  Google Scholar 

  192. 192

    US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  193. 193

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  194. 194

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  195. 195

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  196. 196

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  197. 197

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  198. 198

    Demetri, G. D. et al. Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J. Clin. Oncol. 27, 4188–4196 (2009).

    CAS  PubMed  Google Scholar 

  199. 199

    US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  200. 200

    US National Library Medicine. ClinicalTrials.gov[online], (2014).

  201. 201

    US National Library Medicine. ClinicalTrials.gov[online], (2015).

  202. 202

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  203. 203

    US National Library of Medicine. ClinicalTrials.gov[online], (2014).

Download references

Acknowledgements

S.M.C. gratefully acknowledges research funding from Cancer Research UK. F.R.B. gratefully acknowledges research funding from Cancer Research UK (grant C587/A16354) and the European Research Council (grant GA 322,566).

Author information

Affiliations

Authors

Contributions

S.M.C. and F.R.B. contributed equally to researching data for the article, discussions of article content, writing the article, and reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Frances R. Balkwill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crusz, S., Balkwill, F. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 12, 584–596 (2015). https://doi.org/10.1038/nrclinonc.2015.105

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing