Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Image-guided ablation of primary liver and renal tumours

Key Points

  • Hepatocellular carcinoma (HCC) is increasingly detected at an early, asymptomatic stage owing to surveillance programmes in at-risk patient populations

  • Patients with early stage HCC (single tumour <5 cm or up to three nodules <3 cm) should be considered for any available curative treatments, including liver transplantation, hepatic resection, and image-guided ablation (IGA)

  • IGA is currently recommended as the standard of care for patients with early stage HCC when surgical options are precluded, and has potential as a first-line treatment for very early stage tumours smaller than 2 cm

  • Small (<5 cm) renal tumours, often incidentally detected at imaging for alternative symptomatology, are an increasingly problematic clinical management issue in an ageing population

  • Active surveillance or partial nephrectomy is usually invoked after detection of small renal tumours, but both of these approaches can be onerous for patients who often have an indolent malignancy

  • Diligent image-guided ablation, increasingly by cryoablation, represents a useful, minimally invasive treatment option with reduced costs and morbidity

Abstract

Image-guided ablation (IGA) techniques have evolved considerably over the past 20 years and are increasingly used to definitively treat small primary cancers of the liver and kidney. IGA is recommended by most guidelines as the best therapeutic choice for patients with early stage hepatocellular carcinoma (HCC)—defined as either a single tumour smaller than 5 cm or up to three nodules smaller than 3 cm—when surgical options are precluded, and has potential as first-line therapy, in lieu of surgery, for patients with very early stage tumours smaller than 2 cm. With regard to renal cell carcinoma, despite the absence of any randomized trial comparing the outcomes of IGA with those of standard partial nephrectomy, a growing amount of data demonstrate robust oncological outcomes for this minimally invasive approach and testify to its potential as a standard-of-care treatment. Herein, we review the various ablation techniques, the supporting evidence, and clinical application of IGA in the treatment of primary liver and kidney cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ablative treatment planning.
Figure 2: Pixel-density thresholding of CT data to improve the precision of periprocedural assessment.
Figure 3: Pre-procedural, peri-procedural and post-procedural assessment of a cryoablation procedure.

Similar content being viewed by others

References

  1. International Agency for Research on Cancer. World Health Organization. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality, and Prevalence Worldwide in 2012 [online], (2014).

  2. Olsen, A. H., Parkin, D. M. & Sasieni, P. Cancer mortality in the United Kingdom: projections to the year 2025. Br. J. Cancer 99, 1549–1554 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davis, G. L., Alter, M. J., El-Serag, H., Poynard, T. & Jennings, L. W. Aging of the hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression. Gastroenterology 138, 513–521 (2010).

    Article  PubMed  Google Scholar 

  4. Fong, Z. V. & Tanabe, K. K. The clinical management of hepatocellular carcinoma n the United States, Europe, and Asia: a comprehensive and evidence-based comparison and review. Cancer 120, 2824–2838 (2014).

    Article  PubMed  Google Scholar 

  5. Hollingsworth, J. M., Miller, D. C., Daignault, S. & Hollenbeck, B. K. Rising incidence of small renal masses: a need to reassess treatment effect. J. Natl Cancer Inst. 98, 1331–1334 (2006).

    Article  PubMed  Google Scholar 

  6. Levi, F. et al. The changing pattern of kidney cancer incidence and mortality in Europe. BJU Int. 101, 949–958 (2008).

    Article  PubMed  Google Scholar 

  7. Nguyen, M. M., Gill, I. S. & Ellison, L. M. The evolving presentation of renal carcinoma in the United States: trends from the Surveillance, Epidemiology, and End Results program. J. Urol. 176, 2397–2400 (2006).

    Article  PubMed  Google Scholar 

  8. Bruix, J., Sherman M ; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 53, 1020–1022 (2011).

    Article  PubMed  Google Scholar 

  9. Forner, A., Llovet, J. M. & Bruix, J. Hepatocellular carcinoma. Lancet 379, 1245–1255 (2012).

    Article  PubMed  Google Scholar 

  10. Gazelle, G. S., Goldberg, S. N., Solbiati, L. & Livraghi, T. Tumor ablation with radio-frequency energy. Radiology 217, 633–646 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Ahmed, M. et al. Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update. Radiology 273, 241–260 (2014).

    Article  PubMed  Google Scholar 

  12. Lubner, M. G., Brace, C. L., Ziemlewicz, T. J., Hinshaw, J. L. & Lee, F. T. Jr. Microwave ablation of hepatic malignancy. Semin. Intervent. Radiol. 30, 56–66 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lubner, M. G. et al. High-powered microwave ablation with a small-gauge, gas-cooled antenna: initial ex vivo and in vivo results. J. Vasc. Interv. Radiol. 23, 405–411 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kurup, A. N. & Callstrom, M. R. Ablation of musculoskeletal metastases: pain palliation, fracture risk reduction, and oligometastatic disease. Tech. Vasc. Interv. Radiol. 16, 253–261 (2013).

    Article  PubMed  Google Scholar 

  15. Abbas, A. et al. Image-guided ablation of Conn's adenomas in the management of primary hyperaldosteronism. Clin. Radiol. 68, 279–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann, N. E. & Bischof, J. C. The cryobiology of cryosurgical injury. Urology 60 (Suppl. 1), 40–49 (2002).

    Article  PubMed  Google Scholar 

  17. Baust, J. G., Gage, A. A., Robilottto, A. T. & Baust, J. M. The pathophysiology of thermoablation: optimizing cryoablation. Curr. Opin. Urol. 19, 127–132 (2009).

    Article  PubMed  Google Scholar 

  18. Nakada, S. Y., Lee, F. T. Jr, Warner, T., Chosy, S. G. & Moon, T. D. Laparoscopic cryosurgery of the kidney in the porcine model: an acute histological study. Urology 51 (5A Suppl.), 161–166 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Rubinsky, B., Onik, G. & Mikus, P. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6, 37–48 (2007).

    Article  PubMed  Google Scholar 

  20. Dubinsky, T. J., Cuevas, C., Dighe, M. K., Kolokythas, O. & Hwang, J. H. High-intensity focused ultrasound: current potential and oncologic applications. AJR Am. J. Roentgenol. 190, 191–199 (2008).

    Article  PubMed  Google Scholar 

  21. Lencioni, R. et al. Treatment of small hepatocellular carcinoma with percutaneous ethanol injection. Analysis of prognostic factors in 105 Western patients. Cancer 76, 1737–1746 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Huo, T. I. et al. Comparison of percutaneous acetic acid injection and percutaneous ethanol injection for hepatocellular carcinoma in cirrhotic patients: a prospective study. Scand. J. Gastroenterol. 38, 770–778 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Pacella, C. M. et al. Long-term outcome of cirrhotic patients with early hepatocellular carcinoma treated with ultrasound-guided percutaneous laser ablation: a retrospective analysis. J. Clin. Oncol. 27, 2615–2621 (2009).

    Article  PubMed  Google Scholar 

  24. Mauri, G. et al. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumours undetectable with US: results in 259 cases. Cardiovasc. Intervent. Radiol. http://dx.doi.org/10.1007/s00270-014-0897-y (2014).

  25. Goldberg, S. N. et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. Radiology 235, 728–739 (2005).

    Article  PubMed  Google Scholar 

  26. Tsoumakidou, G., Buy, X., Garnon, J., Enescu, J. & Gangi, A. Percutaneous thermal ablation: how to protect the surrounding organs. Tech. Vasc. Interv. Radiol. 14, 170–176 (2011).

    Article  PubMed  Google Scholar 

  27. DeBenedectis, C. M., Beland, M. D., Dupuy, D. E. & Mayo-Smith, W. W. Utility of iodinated contrast medium in hydrodissection fluid when performing renal tumor ablation. J. Vasc. Interv. Radiol. 21, 745–747 (2010).

    Article  PubMed  Google Scholar 

  28. Shock, S. A. et al. Hepatic hemorrhage caused by percutaneous tumor ablation: radiofrequency ablation versus cryoablation in a porcine model. Radiology 236, 125–131 (2005).

    Article  PubMed  Google Scholar 

  29. European Association for the Study of the Liver; European Organisation for Research and Treatment of Cancer. EASL–EORTC clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 56, 908–943 (2012).

  30. Verslype, C., Rosmorduc, O., Rougier P ; ESMO Guidelines Working Group. Hepatocellular carcinoma: ESMO–ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 23 (Suppl. 7), vii41–vii48 (2012).

    PubMed  Google Scholar 

  31. Lencioni, R. & Crocetti, L. Loco-regional treatment of hepatocellular carcinoma. Radiology 262, 43–58 (2012).

    Article  PubMed  Google Scholar 

  32. Gervais, D. A. et al. Society of Interventional Radiology position statement on percutaneous radiofrequency ablation for the treatment of liver tumors. J. Vasc. Interv. Radiol. 20 (Suppl.), S342–S347 (2009).

    Article  PubMed  Google Scholar 

  33. Crocetti, L., de Baere, T. & Lencioni, R. Quality improvement guidelines for radiofrequency ablation of liver tumours. Cardiovasc. Intervent. Radiol. 33, 11–17 (2010).

    Article  PubMed  Google Scholar 

  34. Chopra, S., Dodd, G. D. 3rd, Chanin, M. P. & Chintapalli, K. N. Radiofrequency ablation of hepatic tumors adjacent to the gallbladder: feasibility and safety. AJR Am. J. Roentgenol. 180, 697–701 (2003).

    Article  PubMed  Google Scholar 

  35. Cannon, R., Ellis, S., Hayes, D., Narayanan, G. & Martin, R. C. 2nd. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J. Surg. Oncol. 107, 544–549 (2013).

    Article  PubMed  Google Scholar 

  36. Silk, M. T. et al. Percutaneous ablation of peribiliary tumors with irreversible electroporation. J. Vasc. Interv. Radiol. 25, 112–118 (2014).

    Article  PubMed  Google Scholar 

  37. Scheffer, H. J. et al. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J. Vasc. Interv. Radiol. 25, 997–1011 (2014).

    Article  PubMed  Google Scholar 

  38. Lencioni, R. et al. Small hepatocellular carcinoma in cirrhosis: randomized comparison of radiofrequency thermal ablation versus percutaneous ethanol injection. Radiology 228, 235–240 (2003).

    Article  PubMed  Google Scholar 

  39. Lin, S. M., Lin, C. J., Lin, C. C., Hsu, C. W. & Chen, Y. C. Radiofrequency ablation improves prognosis compared with ethanol injection for hepatocellular carcinoma &lt; or = 4 cm. Gastroenterology 127, 1714–1723 (2004).

    Article  PubMed  Google Scholar 

  40. Shiina, S. et al. A randomized controlled trial of radiofrequency ablation with ethanol injection for small hepatocellular carcinoma. Gastroenterology 129, 122–130 (2005).

    Article  PubMed  Google Scholar 

  41. Lin, S. M., Lin, C. J., Lin, C. C., Hsu, C. W. & Chen, Y. C. Randomised controlled trial comparing percutaneous radiofrequency thermal ablation, percutaneous ethanol injection, and percutaneous acetic acid injection to treat hepatocellular carcinoma of 3 cm or less. Gut 54, 1151–1156 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brunello, F. et al. Radiofrequency ablation versus ethanol injection for early hepatocellular carcinoma: a randomized controlled trial. Scand. J. Gastroenterol. 43, 727–735 (2008).

    Article  PubMed  Google Scholar 

  43. Park, W. et al. Recurrences of hepatocellular carcinoma following complete remission by transarterial chemoembolization or radiofrequency therapy: focused on the recurrence patterns. Hepatol. Res. 43, 1304–1312 (2013).

    Article  PubMed  Google Scholar 

  44. Orlando, A., Leandro, G., Olivo, M., Andriulli, A. & Cottone, M. Radiofrequency thermal ablation vs. percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials. Am. J. Gastroenterol. 104, 514–524 (2009).

    Article  PubMed  Google Scholar 

  45. Cho, Y. K., Kim, J. K., Kim, M. Y., Rhim, H. & Han, J. K. Systematic review of randomized trials for hepatocellular carcinoma treated with percutaneous ablation therapies. Hepatology 49, 453–459 (2009).

    Article  PubMed  Google Scholar 

  46. Germani, G. et al. Clinical outcomes of radiofrequency ablation, percutaneous alcohol and acetic acid injection for hepatocelullar carcinoma: a meta-analysis. J. Hepatol. 52, 380–388 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Bouza, C., López-Cuadrado, T., Alcázar, R., Saz-Parkinson, Z. & Amate, J. M. Meta-analysis of percutaneous radiofrequency ablation versus ethanol injection in hepatocellular carcinoma. BMC Gastroenterol. 9, 31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lencioni, R. et al. Early-stage hepatocellular carcinoma in cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology 234, 961–967 (2005).

    Article  PubMed  Google Scholar 

  49. Tateishi, R. et al. Percutaneous radiofrequency ablation for hepatocellular carcinoma. An analysis of 1000 cases. Cancer 103, 1201–1209 (2005).

    Article  PubMed  Google Scholar 

  50. Choi, D. et al. Percutaneous radiofrequency ablation for early-stage hepatocellular carcinoma as a first-line treatment: long-term results and prognostic factors in a large single-institution series. Eur. Radiol. 17, 684–692 (2007).

    Article  PubMed  Google Scholar 

  51. N'Kontchou, G. et al. Radiofrequency ablation of hepatocellular carcinoma: long-term results and prognostic factors in 235 Western patients with cirrhosis. Hepatology 50, 1475–1483 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Lu, D. S. et al. Radiofrequency ablation of hepatocellular carcinoma: treatment success as defined by histologic examination of the explanted liver. Radiology 234, 954–960 (2005).

    Article  PubMed  Google Scholar 

  53. Rossi, S. et al. Percutaneous radio-frequency thermal ablation of nonresectable hepatocellular carcinoma after occlusion of tumor blood supply. Radiology 217, 119–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Shibata, T. et al. Small hepatocellular carcinoma: is radiofrequency ablation combined with transcatheter arterial chemoembolization more effective than radiofrequency ablation alone for treatment? Radiology 252, 905–913 (2009).

    Article  PubMed  Google Scholar 

  55. Morimoto, M. et al. Midterm outcomes in patients with intermediate-sized hepatocellular carcinoma: a randomized controlled trial for determining the efficacy of radiofrequency ablation combined with transcatheter arterial chemoembolization. Cancer 116, 5452–5460 (2010).

    Article  PubMed  Google Scholar 

  56. Kim, J. H. et al. Medium-sized (3.1–5.0 cm) hepatocellular carcinoma: transarterial chemoembolization plus radiofrequency ablation versus radiofrequency ablation alone. Ann. Surg. Oncol. 18, 1624–1629 (2011).

    Article  PubMed  Google Scholar 

  57. Peng, Z. W. et al. Radiofrequency ablation with or without transcatheter arterial chemoembolization in the treatment of hepatocellular carcinoma: a prospective randomized trial. J. Clin. Oncol. 31, 426–432 (2013).

    Article  PubMed  Google Scholar 

  58. Lencioni, R. et al. Doxorubicin-eluting bead-enhanced radiofrequency ablation of hepatocellular carcinoma: a pilot clinical study. J. Hepatol. 49, 217–222 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Ahmed, M. et al. Combination radiofrequency ablation with intratumoral liposomal doxorubicin: effect on drug accumulation and coagulation in multiple tissues and tumor types in animals. Radiology 235, 469–477 (2005).

    Article  PubMed  Google Scholar 

  60. Boutros, C., Somasundar, P., Garrean, S., Saied, A. & Espat, N. J. Microwave coagulation therapy for hepatic tumors: review of the literature and critical analysis. Surg. Oncol. 19, e22–e32 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Groeschl, R. T. et al. Microwave ablation for hepatic malignancies: a multiinstitutional analysis. Ann. Surg. 259, 1195–1200 (2014).

    Article  PubMed  Google Scholar 

  62. Dunne, R. M. et al. Percutaneous treatment of hepatocellular carcinoma in patients with cirrhosis: a comparison of the safety of cryoablation and radiofrequency ablation. Eur. J. Radiol. 83, 632–638 (2014).

    Article  PubMed  Google Scholar 

  63. Li, G. Z. et al. Hepatic resection for hepatocellular carcinoma: do contemporary morbidity and mortality rates demand a transition to ablation as first-line treatment? J. Am. Coll. Surg. 218, 827–834 (2014).

    Article  PubMed  Google Scholar 

  64. Chen, M. S. et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann. Surg. 243, 321–328 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Huang, J. et al. A randomized trial comparing radiofrequency ablation and surgical resection for HCC conforming to the Milan criteria. Ann. Surg. 252, 903–912 (2010).

    Article  PubMed  Google Scholar 

  66. Feng, K. et al. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. J. Hepatol. 57, 794–802 (2012).

    Article  PubMed  Google Scholar 

  67. Wang, Y. et al. Radiofrequency ablation versus hepatic resection for small hepatocellular carcinomas: a meta-analysis of randomized and nonrandomized controlled trials. PLoS ONE 9, e84484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kudo, M. Radiofrequency ablation for hepatocellular carcinoma: updated review in 2010. Oncology 78 (Suppl. 1), 113–124 (2010).

    Article  PubMed  Google Scholar 

  69. Lee, C. T. et al. Surgical management of renal tumours 4 cm or less in a contemporary cohort. J. Urol. 163, 730–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Chawla, S. N. et al. The natural history of observed enhancing renal masses: meta-analysis and review of the world literature. J. Urol. 175, 425–431 (2006).

    Article  PubMed  Google Scholar 

  71. Siu, W., Hafez, K. S., Johnston, W. K. 3rd & Wolf, J. S. Jr. Growth rates of renal cell carcinoma and oncocytoma under surveillance are similar. Urol. Oncol. 25, 115–119 (2007).

    Article  PubMed  Google Scholar 

  72. Gill, I. S. Focal therapy for kidney and prostate cancer. Curr. Opin. Urol. 19, 125–126 (2009).

    Article  PubMed  Google Scholar 

  73. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C.-Y. Chronic kidney disease and the risks of death, cardiovascular events and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Remzi, M. et al. Are small renal tumours harmless? Analysis of histopathological features according to tumours 4 cm or less in diameter. J. Urol. 176, 896–899 (2006).

    Article  PubMed  Google Scholar 

  75. Miller, D. C., Hollingsworth, J. M., Hafez, K. S., Daignault, S. & Hallenbeck, B. K. Partial nephrectomy for small masses: an emerging quality of care concern? J. Urol. 175, 853–858 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Van Poppel, H. et al. A prospective randomized EORTC intergroup phase 3 study comparing the complications of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur. Urol. 51, 1606–1615 (2007).

    Article  PubMed  Google Scholar 

  77. Fergany, A. F., Hafez, K. S. & Novick, A. C. Long-term results of nephron-sparing surgery for localized renal cell carcinoma: 10 year follow-up. J. Urol. 163, 442–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Porpiglia, F., Volpe, A., Billia, M., Renard, J. & Scarpa, R. M. Assessment of risk factors for complications of laparoscopic partial nephrectomy. Eur. Urol. 53, 590–598 (2008).

    Article  PubMed  Google Scholar 

  79. Porpiglia, F., Volpe, A., Billia, M. & Scarpa, R. M. Laparoscopic versus open partial nephrectomy: analysis of current literature. Eur. Urol. 53, 732–743 (2008).

    Article  PubMed  Google Scholar 

  80. Froghi, S., Ahmed, K., Khan, M. S., Dasgupta, P. & Challacombe, B. Evaluation of robotic and laparoscopic partial nephrectomy for small renal tumours (T1a). BJU Int. 112, E322–E333 (2013).

    Article  PubMed  Google Scholar 

  81. Hinshaw, J. L. et al. Comparison of percutaneous and laparoscopic cryoablation for the treatment of solid renal masses. AJR Am. J. Roentgenol. 191, 1159–1168 (2008).

    Article  PubMed  Google Scholar 

  82. Tuncali, K. et al. Evaluation of patients referred for percutaneous ablation of renal tumours: importance of pre-procedural diagnosis. AJR Am. J. Roentgenol. 183, 575–582 (2004).

    Article  PubMed  Google Scholar 

  83. Shannon, B. A., Cohen, R. J., de Bruto, H. & Davies, R. J. The value of preoperative needle core biopsy for diagnosing benign lesions among small, incidentally detected renal masses. J. Urol. 180, 1257–1261 (2008).

    Article  PubMed  Google Scholar 

  84. Kutikar, A. & Uzzo, R. G. The RENAL nephrectomy score: a comprehensive, standardized system for quantitating renal tumour size, location and depth. J. Urol. 182, 844–853 (2009).

    Article  Google Scholar 

  85. Schmit, G. D. et al. Usefulness of RENAL nephrectomy scoring system for predicting outcomes and complications of percutaneous ablation of 751 renal tumours. J. Urol. 189, 30–35 (2013).

    Article  PubMed  Google Scholar 

  86. Seideman, C. A. et al. Renal tumour nephrometry score does not correlate with the risk of radiofrequency ablation complications. BJU Int. 112, 1121–1124 (2013).

    Article  PubMed  Google Scholar 

  87. Ljunberg, B. et al. EAU Guidelines on renal cell carcinoma: the 2010 update. Eur. Urol. 58, 398–406 (2010).

    Article  Google Scholar 

  88. Breen, D. J. & Railton, N. J. Minimally invasive treatment of small renal tumours: trends in renal cancer diagnosis and management. Cardiovasc. Intervent. Radiol. 33, 896–908 (2010).

    Article  PubMed  Google Scholar 

  89. Castle, S. M., Salar, N. & Leveillee, R. J. Initial experience using microwave ablation therapy for renal tumour treatment: 18-month follow-up. Urology 77, 792–797 (2011).

    Article  PubMed  Google Scholar 

  90. Gervais, D. A., McGovern, E. J., Arellano, R. S., McDougal, W. S. & Mueller, P. R. Radiofrequency ablation of renal cell carcinoma: I. Indications, results, and role in patient management over a 6-year period and ablation of 100 tumours. AJR Am. J. Roentgenol. 185, 64–71 (2005).

    Article  PubMed  Google Scholar 

  91. Breen, D. J. et al. Management of renal tumors by image-guided radiofrequency ablation: experience in 105 tumors. Cardiovasc. Intervent. Radiol. 30, 936–942 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zagoria, R. J. et al. Oncologic efficacy of CT-guided percutaneous radiofrequency ablation of renal cell carcinomas. AJR Am. J. Roentgenol. 189, 429–436 (2007).

    Article  PubMed  Google Scholar 

  93. Pettus, J. A. et al. Percutaneous radiofrequency ablation does not affect glomerular filtration rate. J. Endourol. 24, 1687–1691 (2010).

    Article  PubMed  Google Scholar 

  94. Zagoria, R. J. et al. Long-term outcomes after percutaneous radiofrequency ablation for renal cell carcinoma. Urology 77, 1393–1397 (2011).

    Article  PubMed  Google Scholar 

  95. Tracy, C. R., Raman, J. D., Donnally, C., Trimmer, L. K. & Cadeddu, J. A. Durable oncologic outcomes after radiofrequency ablation: experience from treating 243 small renal masses over 7.5 years. Cancer 116, 3135–3142 (2010).

    Article  PubMed  Google Scholar 

  96. Ma, Y., Bedir, S., Cadeddu, J. A. & Gahan, J. C. Long-term outcomes in healthy adults after radiofrequency ablation of T1a renal tumour. BJU Int. 113, 51–55 (2014).

    Article  PubMed  Google Scholar 

  97. Atwell, T. D. et al. Percutaneous renal cryoablation: experience treating 115 tumors. J. Urol. 179, 2136–2141 (2008).

    Article  PubMed  Google Scholar 

  98. Atwell, T. D. et al. Percutaneous renal cryoablation: local control at mean 26 months follow-up. J. Urol. 184, 1291–1295 (2010).

    Article  PubMed  Google Scholar 

  99. Breen, D. J. et al. Percutaneous cryoablation of renal tumours: outcomes from 171 tumours in 147 patients. BJU Int. 112, 758–765 (2013).

    Article  PubMed  Google Scholar 

  100. Schmit, G. D. et al. Percutaneous cryoablation of renal masses &gt; or = 3 cm: efficacy and safety in treatment of 108 patients. J. Endourol. 24, 1255–1262 (2010).

    Article  PubMed  Google Scholar 

  101. Kunkle, D. A. & Uzzo, R. G. Cryoablation or radiofrequency ablation of the small renal mass: a meta-analysis. Cancer 113, 2671–2680 (2008).

    Article  PubMed  Google Scholar 

  102. Cadeddu, J. A. & Raman, J. D. Renal tumour ablation is a function of patient selection and technique—not the ablation technology. Cancer 113, 2623–2626 (2008).

    Article  PubMed  Google Scholar 

  103. Littrup, P. J. et al. CT-guided percutaneous cryotherapy of renal masses. J. Vasc. Interv. Radiol. 18, 383–392 (2007).

    Article  PubMed  Google Scholar 

  104. Rodriguez, R., Cizman, Z., Hong, K., Koliatsos, A. & Georgiades, C. Prospective analysis of the safety and efficacy of percutaneous cryoablation for pT1NxMx biopsy-proven renal cell carcinoma. Cardiovasc. Intervent. Radiol. 34, 573–578 (2011).

    Article  PubMed  Google Scholar 

  105. Schmit, G. D. et al. Percutaneous cryoablation of solitary sporadic renal cell carcinomas. BJU Int. 110, E526–E531 (2012).

    Article  PubMed  Google Scholar 

  106. Kim, E. H. et al. Percutaneous cryoablation of renal masses: Washington University experience of treating 129 tumours. BJU Int. 111, 872–879 (2013).

    Article  PubMed  Google Scholar 

  107. Georgiades, C. S. & Rodriguez, R. Efficacy and safety of percutaneous cryoablation for stage 1A/B renal cell carcinoma: results of a prospective, single-arm, 5-year study. Cardiovasc. Intervent. Radiol. 37, 1494–1499 (2014).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all stages of the preparation of the manuscript for submission.

Corresponding authors

Correspondence to David J. Breen or Riccardo Lencioni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breen, D., Lencioni, R. Image-guided ablation of primary liver and renal tumours. Nat Rev Clin Oncol 12, 175–186 (2015). https://doi.org/10.1038/nrclinonc.2014.237

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.237

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer