Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors

Abstract

Second and higher-order malignancies now comprise about 18% of all incident cancers in the USA, superseding first primary cancers of the breast, lung, and prostate. The occurrence of second malignant neoplasms (SMN) is influenced by a myriad of factors, including the late effects of cancer therapy, shared aetiological factors with the primary cancer (such as tobacco use, excessive alcohol intake, and obesity), genetic predisposition, environmental determinants, host effects, and combinations of factors, including gene–environment interactions. The influence of these factors on SMN in survivors of adult-onset cancer is reviewed here. We also discuss how modifiable behavioural and lifestyle factors may contribute to SMN, and how these factors can be managed. Cancer survivorship provides an opportune time for oncologists and other health-care providers to counsel patients with regard to health promotion, not only to reduce SMN risk, but to minimize co-morbidities. In particular, the importance of smoking cessation, weight control, physical activity, and other factors consonant with adoption of a healthy lifestyle should be consistently emphasized to cancer survivors. Clinicians can also play a critical role by endorsing genetic counselling for selected patients and making referrals to dieticians, exercise trainers, and others to assist with lifestyle change interventions.

Key Points

  • Second and higher-order malignancies now comprise about 18% of all incident cancers in the USA

  • Second malignant neoplasms (SMN) reflect the role of many factors, including the late effects of therapy, shared aetiological factors, genetic predisposition, environmental determinants, host effects, and combinations of influences

  • Cancer survivorship provides an opportune time for oncologists and other healthcare providers to counsel patients with regard to health promotion to reduce SMN risk

  • The importance of smoking cessation, weight control, physical activity, and other factors consonant with adoption of a healthy lifestyle should be consistently emphasized to cancer survivors

  • Clinicians can play a critical role by endorsing genetic counselling for selected patients and making referrals to dieticians, exercise trainers, and others to assist with lifestyle change interventions

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic illustration of risk factors for second malignant neoplasms.

References

  1. 1

    National Cancer Institute. SEER Cancer Statistics Review, 1975–2007 [online], (2010).

  2. 2

    National Cancer Institute. Provocative questions: identifying problems to drive progress against cancer [online], (2012).

  3. 3

    Siegel, R. et al. Cancer treatment and survivorship statistics. CA Cancer J. Clin. 62, 220–241 (2012).

    PubMed  Article  Google Scholar 

  4. 4

    [No authors listed]. Cancer survivors: living longer, and now, better. Lancet 364, 2153–2154 (2004).

  5. 5

    Travis, L. B. Therapy-associated solid tumors. Acta Oncol. 41, 323–333 (2002).

    PubMed  Article  Google Scholar 

  6. 6

    Curtis, R. E., Ron, E., Hankey, B. F. & Hoover, R. N. in New Malignancies Among Cancer Survivors: SEER Cancer Registries, 1973–2000 (eds Curtis, R. E. et al.) NIH Publ. No. 05–0532, 181–206 (National Cancer Institute, 2006).

    Google Scholar 

  7. 7

    Ng, A. K. et al. Long-term survival and competing causes of death in patients with early-stage Hodgkin's disease treated at age 50 or younger. J. Clin. Oncol. 20, 2101–2108 (2002).

    PubMed  Article  Google Scholar 

  8. 8

    Travis, L. B. et al. Cancer survivorship--genetic susceptibility and second primary cancers: research strategies and recommendations. J. Natl Cancer Inst. 98, 15–25 (2006).

    PubMed  Article  Google Scholar 

  9. 9

    Travis, L. B., Bhatia, S., Allan, J. M., Oeffinger, K. C. & Ng, A. in Cancer: Principles and Practice of Oncology, 9th edn (eds Devita, V. T., Lawrence, T. S. & Rosenberg, S. A.) 2393–2410 (Lippincott Williams and Wilkins, 2011).

    Google Scholar 

  10. 10

    Dores, G. M. et al. Second malignant neoplasms among long-term survivors of Hodgkin's disease: a population-based evaluation over 25 years. J. Clin. Oncol. 20, 3484–3494 (2002).

    PubMed  Article  Google Scholar 

  11. 11

    Franklin, J. et al. Second malignancy risk associated with treatment of Hodgkin's lymphoma: meta-analysis of the randomised trials. Ann. Oncol. 17, 1749–1760 (2006).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Omer, B. et al. Patterns of subsequent malignancies after Hodgkin lymphoma in children and adults. Br. J. Haematol. 158, 615–625 (2012).

    PubMed  Article  Google Scholar 

  13. 13

    Hodgson, D. C. et al. Long-term solid cancer risk among 5-year survivors of Hodgkin's lymphoma. J. Clin. Oncol. 25, 1489–1497 (2007).

    PubMed  Article  Google Scholar 

  14. 14

    Hemminki, K., Liu, H. & Sundquist, J. Second cancers after testicular cancer diagnosed after in Sweden. Ann. Oncol. 21, 1546–1551 (2010) (1980).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Travis, L. B. et al. Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J. Natl Cancer Inst. 97, 1354–1365 (2005).

    PubMed  Article  Google Scholar 

  16. 16

    van den Belt-Dusebout, A. W. et al. Treatment-specific risks of second malignancies and cardiovascular disease in 5-year survivors of testicular cancer. J. Clin. Oncol. 25, 4370–4378 (2007).

    PubMed  Article  Google Scholar 

  17. 17

    Travis, L. B. et al. Second malignant neoplasms and cardiovascular disease following radiotherapy. J. Natl Cancer Inst. 104, 357–370 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    National Council on Radiation Protection and Measurements. Report No. 170: Second Primary Cancers and Cardiovascular Disease After Radiotherapy [online], (2012).

  19. 19

    Chaturvedi, A. K. et al. Second cancers among 104, 760 survivors of cervical cancer: evaluation of long-term risk. J. Natl Cancer Inst. 99, 1634–1643 (2007).

    PubMed  Article  Google Scholar 

  20. 20

    Bhojani, N. et al. The rate of secondary malignancies after radical prostatectomy versus external beam radiation therapy for localized prostate cancer: a population-based study on 17,845 patients. Int. J. Radiat. Oncol. Biol. Phys. 76, 342–348 (2010).

    PubMed  Article  Google Scholar 

  21. 21

    Rapiti, E. et al. Increased risk of colon cancer after external radiation therapy for prostate cancer. Int. J. Cancer 123, 1141–1145 (2008).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Kirova, Y. M., Vilcoq, J. R., Asselain, B., Sastre-Garau, X. & Fourquet, A. Radiation-induced sarcomas after radiotherapy for breast carcinoma: a large-scale single-institution review. Cancer 104, 856–863 (2005).

    PubMed  Article  Google Scholar 

  23. 23

    Nakamura, R. et al. Angiosarcoma arising in the breast following breast-conserving surgery with radiation for breast carcinoma. Breast Cancer 14, 245–249 (2007).

    PubMed  Article  Google Scholar 

  24. 24

    Rubino, C. et al. Radiation dose and risk of soft tissue and bone sarcoma after breast cancer treatment. Breast Cancer Res. Treat. 89, 277–288 (2005).

    PubMed  Article  Google Scholar 

  25. 25

    Kaufman, E. L., Jacobson, J. S., Hershman, D. L., Desai, M. & Neugut, A. I. Effect of breast cancer radiotherapy and cigarette smoking on risk of second primary lung cancer. J. Clin. Oncol. 26, 392–398 (2008).

    PubMed  Article  Google Scholar 

  26. 26

    Neugut, A. I. et al. Lung cancer after radiation therapy for breast cancer. Cancer 71, 3054–3057 (1993).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Zablotska, L. B., Chak, A., Das, A. & Neugut, A. I. Increased risk of squamous cell esophageal cancer after adjuvant radiation therapy for primary breast cancer. Am. J. Epidemiol. 161, 330–337 (2005).

    PubMed  Article  Google Scholar 

  28. 28

    Boice, J. D. Jr, Harvey, E. B., Blettner, M., Stovall, M. & Flannery, J. T. Cancer in the contralateral breast after radiotherapy for breast cancer. N. Engl. J. Med. 326, 781–785 (1992).

    PubMed  Article  Google Scholar 

  29. 29

    Hooning, M. J. et al. Roles of radiotherapy and chemotherapy in the development of contralateral breast cancer. J. Clin. Oncol. 26, 5561–5568 (2008).

    PubMed  Article  Google Scholar 

  30. 30

    Stovall, M. et al. Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int. J. Radiat. Oncol. Biol. Phys. 72, 1021–1030 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Berrington de Gonzalez, A. et al. Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol. 12, 353–360 (2011).

    PubMed  Article  Google Scholar 

  32. 32

    Engert, A. et al. Reduced treatment intensity in patients with early-stage Hodgkin's lymphoma. N. Engl. J. Med. 363, 640–652 (2010).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Girinsky, T. et al. Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother. Oncol. 79, 270–277 (2006).

    PubMed  Article  Google Scholar 

  34. 34

    Harris, J. R. & Hellman, S. Put the “hockey stick” on ice. Int. J. Radiat. Oncol. Biol. Phys. 15, 497–499 (1988).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Classen, J. et al. Radiotherapy for stages IIA/B testicular seminoma: final report of a prospective multicenter clinical trial. J. Clin. Oncol. 21, 1101–1106 (2003).

    PubMed  Article  Google Scholar 

  36. 36

    Classen, J. et al. Para-aortic irradiation for stage I testicular seminoma: results of a prospective study in 675 patients. A trial of the German testicular cancer study group (GTCSG). Br. J. Cancer 90, 2305–2311 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Wong, F. L. et al. Cancer incidence after retinoblastoma. radiation dose and sarcoma risk. JAMA 278, 1262–1267 (1997).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Kuttesch, J. F. Jr et al. Second malignancies after Ewing's sarcoma: radiation dose-dependency of secondary sarcomas. J. Clin. Oncol. 14, 2818–2825 (1996).

    PubMed  Article  Google Scholar 

  39. 39

    Travis, L. B. et al. Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA 290, 465–475 (2003).

    PubMed  Article  Google Scholar 

  40. 40

    Travis, L. B. et al. Lung cancer following chemotherapy and radiotherapy for Hodgkin's disease. J. Natl Cancer Inst. 94, 182–192 (2002).

    PubMed  Article  Google Scholar 

  41. 41

    van den Belt-Dusebout, A. W. et al. Roles of radiation dose and chemotherapy in the etiology of stomach cancer as a second malignancy. Int. J. Radiat. Oncol. Biol. Phys. 75, 1420–1429 (2009).

    PubMed  Article  Google Scholar 

  42. 42

    Neglia, J. P. et al. New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J. Natl Cancer Inst. 98, 1528–1537 (2006).

    PubMed  Article  Google Scholar 

  43. 43

    Bhatti, P. et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the Childhood Cancer Survivor Study. Radiat. Res. 174, 741–752 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Sigurdson, A. J. et al. Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case-control study. Lancet 365, 2014–2023 (2005).

    PubMed  Article  Google Scholar 

  45. 45

    De Bruin, M. L. et al. Breast cancer risk in female survivors of Hodgkin's lymphoma: lower risk after smaller radiation volumes. J. Clin. Oncol. 27, 4239–4246 (2009).

    PubMed  Article  Google Scholar 

  46. 46

    Ng, A. K. et al. Second malignancy after Hodgkin disease treated with radiation therapy with or without chemotherapy: long-term risks and risk factors. Blood 100, 1989–1996 (2002).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Kry, S. F. et al. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 62, 1195–1203 (2005).

    PubMed  Article  Google Scholar 

  48. 48

    Purdy, J. A. Dose to normal tissues outside the radiation therapy patient's treated volume: a review of different radiation therapy techniques. Health Phys. 95, 666–676 (2008).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Brodin, N. P. et al. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma. Acta Oncol. 50, 806–816 (2011).

    PubMed  Article  Google Scholar 

  50. 50

    Bednarz, B., Athar, B. & Xu, X. G. A comparative study on the risk of second primary cancers in out-of-field organs associated with radiotherapy of localized prostate carcinoma using Monte Carlo-based accelerator and patient models. Medical Phys. 37, 1987–1994 (2010).

    Article  Google Scholar 

  51. 51

    Zwahlen, D. R. et al. Effect of intensity-modulated pelvic radiotherapy on second cancer risk in the postoperative treatment of endometrial and cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 74, 539–545 (2009).

    PubMed  Article  Google Scholar 

  52. 52

    Zacharatou Jarlskog, C. & Paganetti, H. Risk of developing second cancer from neutron dose in proton therapy as function of field characteristics, organ, and patient age. Int. J. Radiat. Oncol. Biol. Phys. 72, 228–235 (2008).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Swerdlow, S. et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edn (IARC Press, 2008).

    Google Scholar 

  54. 54

    Sill, H., Olipitz, W., Zebisch, A., Schulz, E. & Wolfler, A. Therapy-related myeloid neoplasms: pathobiology and clinical characteristics. Br. J. Pharmacol. 162, 792–805 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Attal, M. et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 366, 1782–1791 (2012).

    CAS  Article  PubMed  Google Scholar 

  56. 56

    McCarthy, P. L. et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 366, 1770–1781 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Pedersen-Bjergaard, J., Pedersen, M., Roulston, D. & Philip, P. Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia. Blood 86, 3542–3552 (1995).

    CAS  PubMed  Google Scholar 

  58. 58

    Leone, G., Pagano, L., Ben-Yehuda, D. & Voso, M. T. Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica 92, 1389–1398 (2007).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Travis, L. B. et al. Risk of leukemia after platinum-based chemotherapy for ovarian cancer. N. Engl. J. Med. 340, 351–357 (1999).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Travis, L. B. et al. Treatment-associated leukemia following testicular cancer. J. Natl Cancer Inst. 92, 1165–1171 (2000).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Pedersen-Bjergaard, J. et al. Increased risk of myelodysplasia and leukaemia after etoposide, cisplatin, and bleomycin for germ-cell tumours. Lancet 338, 359–363 (1991).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Seedhouse, C. & Russell, N. Advances in the understanding of susceptibility to treatment-related acute myeloid leukaemia. Br. J. Haematol. 137, 513–529 (2007).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Godley, L. A. & Larson, R. A. Therapy-related myeloid leukemia. Semin. Oncol. 35, 418–429 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Leleu, X. et al. Increased incidence of transformation and myelodysplasia/acute leukemia in patients with Waldenstrom macroglobulinemia treated with nucleoside analogs. J. Clin. Oncol. 27, 250–255 (2009).

    PubMed  Article  Google Scholar 

  65. 65

    Morrison, V. A. et al. Therapy-related myeloid leukemias are observed in patients with chronic lymphocytic leukemia after treatment with fludarabine and chlorambucil: results of an Intergroup Study, Cancer and Leukemia Group B 9011. J. Clin. Oncol. 20, 3878–3884 (2002).

    PubMed  Article  Google Scholar 

  66. 66

    Neugut, A. I., Robinson, E., Nieves, J., Murray, T. & Tsai, W. Y. Poor survival of treatment-related acute nonlymphocytic leukemia. JAMA 264, 1006–1008 (1990).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Mauritzson, N. et al. Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976–1993 and on 5098 unselected cases reported in the literature 1974–2001. Leukemia 16, 2366–2378 (2002).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Schoch, C., Kern, W., Schnittger, S., Hiddemann, W. & Haferlach, T. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia 18, 120–125 (2004).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Lyman, G. H. & Dale, D. C. Long-term outcomes of myeloid growth factor treatment. J. Natl Compr. Canc. Netw. 9, 945–952 (2011).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Hershman, D. et al. Acute myeloid leukemia or myelodysplastic syndrome following use of granulocyte colony-stimulating factors during breast cancer adjuvant chemotherapy. J. Natl Cancer Inst. 99, 196–205 (2007).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Lyman, G. H. et al. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J. Clin. Oncol. 28, 2914–2924 (2010).

    PubMed  Article  Google Scholar 

  72. 72

    Henderson, T. O. et al. Risk factors associated with secondary sarcomas in childhood cancer survivors: a report from the childhood cancer survivor study. Int. J. Radiat. Oncol. Biol. Phys. 84, 224–230 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Swerdlow, A. J. et al. Lung cancer after Hodgkin's disease: a nested case-control study of the relation to treatment. J. Clin. Oncol. 19, 1610–1618 (2001).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    van Leeuwen, F. E. et al. Roles of radiotherapy and smoking in lung cancer following Hodgkin's disease. J. Natl Cancer Inst. 87, 1530–1537 (1995).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Swerdlow, A. J. et al. Second cancer risk after chemotherapy for Hodgkin's lymphoma: a collaborative British cohort study. J. Clin. Oncol. 29, 4096–4104 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Andre, M. et al. Second cancers and late toxicities after treatment of aggressive non-Hodgkin lymphoma with the ACVBP regimen: a GELA cohort study on 2837 patients. Blood 103, 1222–1228 (2004).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Mudie, N. Y. et al. Risk of second malignancy after non-Hodgkin's lymphoma: a British cohort study. J. Clin. Oncol. 24, 1568–1574 (2006).

    PubMed  Article  Google Scholar 

  78. 78

    Nottage, K. et al. Secondary colorectal carcinoma after childhood cancer. J. Clin. Oncol. 30, 2552–2558 (2012).

    PubMed  Article  Google Scholar 

  79. 79

    Henderson, T. O. et al. Secondary gastrointestinal cancer in childhood cancer survivors: a cohort study. Ann. Intern. Med. 156, 757–766 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Travis, L. B. et al. Bladder and kidney cancer following cyclophosphamide therapy for non-Hodgkin's lymphoma. J. Natl Cancer Inst. 87, 524–530 (1995).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Bermejo, J. L., Sundquist, J. & Hemminki, K. Bladder cancer in cancer patients: population-based estimates from a large Swedish study. Br. J. Cancer 101, 1091–1099 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Veiga, L. H. et al. Chemotherapy and thyroid cancer risk: a report from the childhood cancer survivor study. Cancer Epidemiol. Biomarkers Prev. 21, 92–101 (2012).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Early Breast Cancer Trialists' Collaborative Group (EBCTCG) et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378, 771–784 (2011).

  84. 84

    Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl Cancer Inst. 90, 1371–1388 (1998).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Cuzick, J. et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol. 11, 1135–1141 (2010).

    CAS  Article  PubMed  Google Scholar 

  86. 86

    Burstein, H. J. et al. American Society of Clinical Oncology clinical practice guideline: update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J. Clin. Oncol. 28, 3784–3796 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Witherspoon, R. P. et al. Secondary cancers after bone marrow transplantation for leukemia or aplastic anemia. N. Engl. J. Med. 321, 784–789 (1989).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Milligan, D. W. et al. Secondary leukaemia and myelodysplasia after autografting for lymphoma: results from the EBMT. EBMT Lymphoma and Late Effects Working Parties. European Group for Blood and Marrow Transplantation. Br. J. Haematol. 106, 1020–1026 (1999).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Brown, J. R. et al. Increasing incidence of late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin's lymphoma. J. Clin. Oncol. 23, 2208–2214 (2005).

    CAS  Article  PubMed  Google Scholar 

  90. 90

    Bhatia, S. et al. Malignant neoplasms following bone marrow transplantation. Blood 87, 3633–3639 (1996).

    CAS  PubMed  Google Scholar 

  91. 91

    Rizzo, J. D. et al. Solid cancers after allogeneic hematopoietic cell transplantation. Blood 113, 1175–1183 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92

    Curtis, R. E. et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood 94, 2208–2216 (1999).

    CAS  PubMed  Google Scholar 

  93. 93

    Curtis, R. E. et al. Solid cancers after bone marrow transplantation. N. Engl. J. Med. 336, 897–904 (1997).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Krishnan, A. et al. Predictors of therapy-related leukemia and myelodysplasia following autologous transplantation for lymphoma: an assessment of risk factors. Blood 95, 1588–1593 (2000).

    CAS  PubMed  Google Scholar 

  95. 95

    Socie, G., Baker, K. S. & Bhatia, S. Subsequent malignant neoplasms after hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 18 (Suppl.), S139–S150 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Landgren, O. et al. Risk factors for lymphoproliferative disorders after allogeneic hematopoietic cell transplantation. Blood 113, 4992–5001 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97

    Jagadeesh, D., Woda, B. A., Draper, J. & Evens, A. M. Post transplant lymphoproliferative disorders: risk, classification, and therapeutic recommendations. Curr. Treat. Options Oncol. 13, 122–136 (2012).

    PubMed  Article  Google Scholar 

  98. 98

    Friedman, D. L. et al. Increased risk of breast cancer among survivors of allogeneic hematopoietic cell transplantation: a report from the FHCRC and the EBMT-Late Effect Working Party. Blood 111, 939–944 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99

    Bhatia, S. et al. Solid cancers after bone marrow transplantation. J. Clin. Oncol. 19, 464–471 (2001).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Gallagher, G. & Forrest, D. L. Second solid cancers after allogeneic hematopoietic stem cell transplantation. Cancer 109, 84–92 (2007).

    PubMed  Article  Google Scholar 

  101. 101

    Majhail, N. S. et al. Secondary solid cancers after allogeneic hematopoietic cell transplantation using busulfan-cyclophosphamide conditioning. Blood 117, 316–322 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102

    Leisenring, W., Friedman, D. L., Flowers, M. E., Schwartz, J. L. & Deeg, H. J. Nonmelanoma skin and mucosal cancers after hematopoietic cell transplantation. J. Clin. Oncol. 24, 1119–1126 (2006).

    PubMed  Article  Google Scholar 

  103. 103

    King, M. C., Marks, J. H., Mandell, J. B. & New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302, 643–646 (2003).

    CAS  Article  Google Scholar 

  104. 104

    Stoffel, E. et al. Calculation of risk of colorectal and endometrial cancer among patients with Lynch syndrome. Gastroenterology 137, 1621–1627 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105

    Bonadona, V. et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 305, 2304–2310 (2011).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Metcalfe, K. A. et al. The risk of ovarian cancer after breast cancer in BRCA1 and BRCA2 carriers. Gynecol. Oncol. 96, 222–226 (2005).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Levi, F., Te, V. C., Randimbison, L. & La Vecchia, C. Cancer risk in women with previous breast cancer. Ann. Oncol. 14, 71–73 (2003).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Rhiem, K. et al. The risk of contralateral breast cancer in patients from BRCA1/2 negative high risk families as compared to patients from BRCA1 or BRCA2 positive families: a retrospective cohort study. Breast Cancer Res. 14, R156 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109

    Reiner, A. S. et al. Risk of asynchronous contralateral breast cancer in noncarriers of BRCA1 and BRCA2 mutations with a family history of breast cancer: a report from the women's environmental cancer and radiation epidemiology study. J. Clin. Oncol. 31, 433–439 (2013).

    PubMed  Article  Google Scholar 

  110. 110

    Domchek, S. M. et al. Risk of metachronous breast cancer after BRCA mutation-associated ovarian cancer. Cancer http://dx.doi.org/10.1002/cncr.27842.

  111. 111

    Win, A. K. et al. Risks of primary extracolonic cancers following colorectal cancer in Lynch syndrome. J. Natl Cancer Inst. 104, 1363–1372 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112

    Parry, S. et al. Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery. Gut 60, 950–957 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113

    Kastan, M. B. DNA damage responses: mechanisms and roles in human disease: 2007 G. H. A. Clowes Memorial Award Lecture. Mol. Cancer Res. 6, 517–524 (2008).

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Nutting, C. et al. A patient with 17 primary tumours and a germ line mutation in TP53: tumour induction by adjuvant therapy? Clin. Oncol. (R. Coll. Radiol) 12, 300–304 (2000).

    CAS  Google Scholar 

  115. 115

    Limacher, J. M., Frebourg, T., Natarajan-Ame, S. & Bergerat, J. P. Two metachronous tumors in the radiotherapy fields of a patient with Li-Fraumeni syndrome. Int. J. Cancer 96, 238–242 (2001).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Birch, J. M. et al. Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene 20, 4621–4628 (2001).

    CAS  Article  Google Scholar 

  117. 117

    Talwalkar, S. S. et al. Myelodysplastic syndromes arising in patients with germline TP53 mutation and Li-Fraumeni syndrome. Arch. Pathol. Lab. Med. 134, 1010–1015 (2010).

    PubMed  Google Scholar 

  118. 118

    Link, D. C. et al. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA 305, 1568–1576 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119

    Kleinerman, R. A. et al. Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: an extended follow-up. J. Clin. Oncol. 23, 2272–2279 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  120. 120

    Draper, G. J., Sanders, B. M. & Kingston, J. E. Second primary neoplasms in patients with retinoblastoma. Br. J. Cancer 53, 661–671 (1986).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121

    Sharif, S. et al. Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J. Clin. Oncol. 24, 2570–2575 (2006).

    PubMed  Article  Google Scholar 

  122. 122

    Evans, D. G., Farndon, P. A., Burnell, L. D., Gattamaneni, H. R. & Birch, J. M. The incidence of Gorlin syndrome in 173 consecutive cases of medulloblastoma. Br. J. Cancer 64, 959–961 (1991).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123

    Goldstein, A. M., Yuen, J. & Tucker, M. A. Second cancers after medulloblastoma: population-based results from the United States and Sweden. Cancer Causes Control 8, 865–871 (1997).

    CAS  PubMed  Article  Google Scholar 

  124. 124

    Breslow, N. E. et al. Secondary malignant neoplasms after Wilms tumor: an international collaborative study. Int. J. Cancer 127, 657–666 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125

    Bernstein, J. L. et al. Radiation exposure, the ATM gene, and contralateral breast cancer in the women's environmental cancer and radiation epidemiology study. J. Natl Cancer Inst. 102, 475–483 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126

    Kleinerman, R. A. Radiation-sensitive genetically susceptible pediatric sub-populations. Pediatr. Radiol. 39 (Suppl. 1), S27–S31 (2009).

    PubMed  Article  Google Scholar 

  127. 127

    Allan, J. M. Genetic susceptibility to radiogenic cancer in humans. Health Phys. 95, 677–686 (2008).

    CAS  PubMed  Article  Google Scholar 

  128. 128

    Pharoah, P. D. et al. Polygenic susceptibility to breast cancer and implications for prevention. Nat. Genet. 31, 33–36 (2002).

    CAS  Article  PubMed  Google Scholar 

  129. 129

    Peto, J. Breast cancer susceptibility-a new look at an old model. Cancer Cell 1, 411–412 (2002).

    CAS  PubMed  Article  Google Scholar 

  130. 130

    Berwick, M. et al. The prevalence of CDKN2A germ-line mutations and relative risk for cutaneous malignant melanoma: an international population-based study. Cancer Epidemiol. Biomarkers Prev. 15, 1520–1525 (2006).

    CAS  PubMed  Article  Google Scholar 

  131. 131

    Berwick, M. et al. Interaction of CDKN2A and sun exposure in the etiology of melanoma in the general population. J. Invest. Dermatol. 131, 2500–2503 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132

    Bishop, D. T. et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J. Natl Cancer Inst. 9, 894–903 (2002).

    Article  Google Scholar 

  133. 133

    Di Bernardo, M. C. et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat. Genet. 40, 1204–1210 (2008).

    CAS  PubMed  Article  Google Scholar 

  134. 134

    Broderick, P. et al. IRF4 polymorphism rs872071 and risk of Hodgkin lymphoma. Br. J. Haematol. 148, 413–415 (2010).

    CAS  PubMed  Article  Google Scholar 

  135. 135

    Duffy, D. L. et al. IRF4 variants have age-specific effects on nevus count and predispose to melanoma. Am. J. Hum. Genet. 87, 6–16 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136

    Li, S. et al. GWAS identifies novel susceptibility loci on 6p21.32 and 21q21.3 for hepatocellular carcinoma in chronic hepatitis B virus carriers. PLoS Genet. 8, e1002791 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137

    de Martel, C. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13, 607–615 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  138. 138

    Wood, M. E. et al. Second malignant neoplasms: assessment and strategies for risk reduction. J. Clin. Oncol. 30, 3734–3745 (2012).

    PubMed  Article  Google Scholar 

  139. 139

    Bhatia, S. Role of genetic susceptibility in development of treatment-related adverse outcomes in cancer survivors. Cancer Epidemiol. Biomarkers Prev. 20, 2048–2067 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  140. 140

    Allan, J. M. et al. Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy. Blood 104, 3872–3877 (2004).

    CAS  PubMed  Article  Google Scholar 

  141. 141

    Hernandez-Boluda, J. C. et al. A polymorphism in the XPD gene predisposes to leukemic transformation and new nonmyeloid malignancies in essential thrombocythemia and polycythemia vera. Blood 119, 5221–5228 (2012).

    CAS  PubMed  Article  Google Scholar 

  142. 142

    Best, T. et al. Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin's lymphoma. Nat. Med. 17, 941–943 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143

    Castigliano, S. G. Influence of continued smoking on the incidence of second primary cancers involving mouth, pharynx, and larynx. J. Am. Dent. Assoc. 77, 580–585 (1968).

    CAS  PubMed  Article  Google Scholar 

  144. 144

    Parsons, A., Daley, A., Begh, R. & Aveyard, P. Influence of smoking cessation after diagnosis of early stage lung cancer on prognosis: systematic review of observational studies with meta-analysis. BMJ 340, b5569 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145

    Lin, K. et al. Second primary malignancy of the aerodigestive tract in patients treated for cancer of the oral cavity and larynx. Head Neck 27, 1042–1048 (2005).

    PubMed  Article  Google Scholar 

  146. 146

    Do, K. A. et al. Second primary tumors in patients with upper aerodigestive tract cancers: joint effects of smoking and alcohol (United States). Cancer Causes Control 14, 131–138 (2003).

    Article  PubMed  Google Scholar 

  147. 147

    Gillison, M. L. et al. Tobacco smoking and increased risk of death and progression for patients with p16-positive and p16-negative oropharyngeal cancer. J. Clin. Oncol. 30, 2102–2111 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148

    Leon, X. et al. Influence of the persistence of tobacco and alcohol use in the appearance of second neoplasm in patients with a head and neck cancer. A case-control study. Cancer Causes Control 20, 645–652 (2009).

    PubMed  Article  Google Scholar 

  149. 149

    Knight, J. A. et al. Alcohol intake and cigarette smoking and risk of a contralateral breast cancer: the women's environmental cancer and radiation epidemiology study. Am. J. Epidemiol. 169, 962–968 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  150. 150

    Li, C. I., Daling, J. R., Porter, P. L., Tang, M. T. & Malone, K. E. Relationship between potentially modifiable lifestyle factors and risk of second primary contralateral breast cancer among women diagnosed with estrogen receptor-positive invasive breast cancer. J. Clin. Oncol. 27, 5312–5318 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  151. 151

    Trentham-Dietz, A., Newcomb, P. A., Nichols, H. B. & Hampton, J. M. Breast cancer risk factors and second primary malignancies among women with breast cancer. Breast Cancer Res. Treat. 105, 195–207 (2007).

    PubMed  Article  Google Scholar 

  152. 152

    Levi, F., Randimbison, L., La Vecchia, C., Erler, G. & Te, V. C. Incidence of invasive cancers following squamous cell skin cancer. Am. J. Epidemiol. 146, 734–739 (1997).

    CAS  PubMed  Article  Google Scholar 

  153. 153

    Titus-Ernstoff, L. et al. Multiple primary melanoma: two-year results from a population-based study. Arch. Dermatol. 142, 433–438 (2006).

    PubMed  Article  Google Scholar 

  154. 154

    Rigel, D. S., Friedman, R. J. & Kopf, A. W. The incidence of malignant melanoma in the United States: issues as we approach the 21st century. J. Am. Acad. Dermatol. 34, 839–847 (1996).

    CAS  PubMed  Article  Google Scholar 

  155. 155

    Majed, B., Dozol, A., Ribassin-Majed. L., Senouci, K. & Asselain, B. Increased risk of contralateral breast cancers among overweight and obese women: a time-dependent association. Breast Cancer Res. Treat. 126, 729–738 (2011).

    PubMed  Article  Google Scholar 

  156. 156

    Sanchez, L. et al. Risk factors for second primary tumours in breast cancer survivors. Eur. J. Cancer Prev. 17, 406–413 (2008).

    PubMed  Article  Google Scholar 

  157. 157

    Rock, C. L. et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J. Clin. 62, 243–274 (2012).

    PubMed  Article  Google Scholar 

  158. 158

    Mayne, S. T. et al. Randomized trial of supplemental beta-carotene to prevent second head and neck cancer. Cancer Res. 61, 1457–1463 (2001).

    CAS  PubMed  Google Scholar 

  159. 159

    Bairati, I. et al. Antioxidant vitamins supplementation and mortality: a randomized trial in head and neck cancer patients. Int. J. Cancer 119, 2221–2224 (2006).

    CAS  PubMed  Article  Google Scholar 

  160. 160

    World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective [online], (2007).

  161. 161

    Smith, R. A. et al. Cancer screening in the United States, a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J. Clin. 61, 8–30 (2011).

    PubMed  Article  Google Scholar 

  162. 162

    Hewitt, M. & Ganz, P. A. (Eds) From Cancer Patient to Cancer Survivor, Lost in Transition: An American Society of Clinical Oncology and Institute of Medicine Symposium (The National Academies Press, 2006).

    Google Scholar 

  163. 163

    Saslow, D. et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J. Clin. 57, 75–89 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  164. 164

    Warner, E. et al. Prospective study of breast cancer incidence in women with a BRCA1 or BRCA2 mutation under surveillance with and without magnetic resonance imaging. J. Clin. Oncol. 29, 1664–1669 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  165. 165

    Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  166. 166

    Howell, A. et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years' adjuvant treatment for breast cancer. Lancet 365, 60–62 (2005).

    CAS  Article  PubMed  Google Scholar 

  167. 167

    Coates, A. S. et al. Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1–98 J. Clin. Oncol. 25, 486–492 (2007).

    CAS  PubMed  Article  Google Scholar 

  168. 168

    BIG 1–98 Collaborative Group. et al. Letrozole therapy alone or in sequence with tamoxifen in women with breast cancer. N. Engl. J. Med. 361, 766–776 (2009).

  169. 169

    Arimidex, Tamoxifen, Alone or in Combination (ATAC) Trialists' Group. et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol. 9, 45–53 (2008).

  170. 170

    Cuzick, J. et al. Long-term results of tamoxifen prophylaxis for breast cancer--96-month follow-up of the randomized IBIS-I trial. J. Natl Cancer Inst. 99, 272–282 (2007).

    CAS  PubMed  Article  Google Scholar 

  171. 171

    Goss, P. E. et al. Exemestane for breast-cancer prevention in postmenopausal women. N. Engl. J. Med. 364, 2381–2391 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172

    Fisher, B. et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J. Natl Cancer Inst. 97, 1652–1662 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. 173

    Vogel, V. G. et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295, 2727–2741 (2006).

    CAS  Article  Google Scholar 

  174. 174

    Cuzick, J. et al. Preventive therapy for breast cancer: a consensus statement. Lancet Oncol. 12, 496–503 (2011).

    CAS  PubMed  Article  Google Scholar 

  175. 175

    Pierce, J. P. et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women's Healthy Eating and Living (WHEL) randomized trial. JAMA 298, 289–298 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176

    Chlebowski, R. T. et al. Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women's Intervention Nutrition Study. J. Natl Cancer Inst. 98, 1767–1776 (2006).

    PubMed  Article  Google Scholar 

  177. 177

    Friedenreich, C. M., Neilson, H. K. & Lynch, B. M. State of the epidemiological evidence on physical activity and cancer prevention. Eur. J. Cancer 46, 2593–2604 (2010).

    PubMed  Article  Google Scholar 

  178. 178

    Moyer, V. A. & U.S. Preventive Services Task Force. Screening for ovarian cancer: U.S. Preventive Services Task Force reaffirmation recommendation statement. Ann. Intern. Med. 18, 900–904 (2012).

    Article  Google Scholar 

  179. 179

    Burke, W. et al. Recommendations for follow-up care of individuals with an inherited predisposition to cancer. I. Hereditary nonpolyposis colon cancer. Cancer Genetics Studies Consortium. JAMA 277, 915–919 (1997).

    CAS  PubMed  Article  Google Scholar 

  180. 180

    Burke, W. et al. Recommendations for follow-up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium. JAMA 277, 997–1003 (1997).

    CAS  Article  PubMed  Google Scholar 

  181. 181

    Lindor, N. M. et al. Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome: a systematic review. JAMA 296, 1507–1517 (2006).

    CAS  PubMed  Article  Google Scholar 

  182. 182

    Rosenthal, A. & Jacobs, I. Familial ovarian cancer screening. Best Pract. Res. Clin. Obstet. Gynaecol. 20, 321–338 (2006).

    PubMed  Article  Google Scholar 

  183. 183

    Collaborative Group on Epidemiological Studies of Ovarian Cancer et al. Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet 371, 303–314 (2008).

  184. 184

    Grimbizis, G. F. & Tarlatzis, B. C. The use of hormonal contraception and its protective role against endometrial and ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 24, 29–38 (2010).

    PubMed  Article  Google Scholar 

  185. 185

    Hannaford, P. C. et al. Cancer risk among users of oral contraceptives: cohort data from the Royal College of General Practitioner's oral contraception study. BMJ 335, 651 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  186. 186

    Hampel, H., Sweet, K., Westman, J. A., Offit, K. & Eng, C. Referral for cancer genetics consultation: a review and compilation of risk assessment criteria. J. Med. Genet. 41, 81–91 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  187. 187

    Thiis-Evensen, E. et al. Population-based surveillance by colonoscopy: effect on the incidence of colorectal cancer. Telemark Polyp Study, I. Scand. J. Gastroenterol. 34, 414–420 (1999).

    CAS  PubMed  Article  Google Scholar 

  188. 188

    Rothwell, P. M. et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376, 1741–1750 (2010).

    CAS  Article  Google Scholar 

  189. 189

    Chan, A. T. et al. Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prev. Res. (Phila) 5, 164–178 (2012).

    CAS  Article  Google Scholar 

  190. 190

    Mauch, P. et al. Report from the Rockefellar Foundation Sponsored International Workshop on reducing mortality and improving quality of life in long-term survivors of Hodgkin's disease: July 9–16, Bellagio, Italy. Eur. J. Haematol. Suppl. 66, 68–76 (2005).

    Article  Google Scholar 

  191. 191

    Aberle, D. R. et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  192. 192

    Liede, A., Karlan, B. Y. & Narod, S. A. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J. Clin. Oncol. 22, 735–742 (2004).

    CAS  PubMed  Article  Google Scholar 

  193. 193

    Wolf, A. M. et al. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J. Clin. 60, 70–98 (2010).

    PubMed  Article  Google Scholar 

  194. 194

    Bishop, J. N., Harland, M., Randerson-Moor, J. & Bishop, D. T. Management of familial melanoma. Lancet Oncol. 8, 46–54 (2007).

    CAS  PubMed  Article  Google Scholar 

  195. 195

    Berwick, M., Begg, C. B., Fine, J. A., Roush, G. C. & Barnhill, R. L. Screening for cutaneous melanoma by skin self-examination. J. Natl Cancer Inst. 88, 17–23 (1996).

    CAS  PubMed  Article  Google Scholar 

  196. 196

    Travis, L. B. Outcomes in cancer survivors who develop second malignant neoplasms. J. Clin. Oncol. Podcast Archive [online], (2013).

  197. 197

    Elena, J. W. et al. Leveraging epidemiology and clinical studies of cancer outcomes: recommendations and opportunities for translational research. J. Natl Cancer Inst. 105, 85–94 (2013).

    PubMed  Article  Google Scholar 

  198. 198

    Wheeler, H. E., Maitland, M. L., Dolan, M. E., Cox, N. J. & Ratain, M. J. Cancer pharmacogenomics: strategies and challenges. Nat. Rev. Genet. 14, 23–34 (2013).

    CAS  PubMed  Article  Google Scholar 

  199. 199

    Freedman, A. N. et al. Cancer pharmacogenomics and pharmacoepidemiology: setting a research agenda to accelerate translation. J. Natl Cancer Inst. 102, 1698–1705 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  200. 200

    National Institutes of Health, National Cancer Institute, and the LIVESTRONG Young Adult Alliance. Closing the gap: research and cancer care imperatives for adolescents and young adults with cancer [online], (2006).

  201. 201

    Travis, L. B. et al. Testicular cancer survivorship: research strategies and recommendations. J. Natl Cancer Inst. 102, 1114–1130 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  202. 202

    Choi, G. et al. Genetically mediated Nf1 loss in mice promotes diverse radiation-induced tumors modeling second malignant neoplasms. Cancer Res. 72, 6425–6434 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  203. 203

    Freedman, A. N. et al. Cancer risk prediction models: a workshop on development, evaluation, and application. J. Natl Cancer Inst. 97, 715–723 (2005).

    PubMed  Article  Google Scholar 

  204. 204

    National Childhood Cancer Foundation. Cure Search for Children's Cancer [online], (2013).

  205. 205

    Landier, W. et al. Yield of screening for long-term complications using the children's oncology group long-term follow-up guidelines. J. Clin. Oncol. 30, 4401–4408 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  206. 206

    Armstrong, G. T. et al. Occurrence of multiple subsequent neoplasms in long-term survivors of childhood cancer: a report from the childhood cancer survivor study. J. Clin. Oncol. 29, 3056–3064 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  207. 207

    Milano, M. T., Li, H., Gail, M. H., Constine, L. S. & Travis, L. B. Long-term survival among patients with Hodgkin's lymphoma who developed breast cancer: a population-based study. J. Clin. Oncol. 28, 5088–5096 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank Ms Laura Finger (Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester, Rochester, NY) for expert editorial assistance.

Author information

Affiliations

Authors

Contributions

All the authors researched data for the article, made a substantial contribution to the discussion of the content, and wrote and edited the manuscript prior to submission.

Corresponding author

Correspondence to Lois B. Travis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Travis, L., Wahnefried, W., Allan, J. et al. Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nat Rev Clin Oncol 10, 289–301 (2013). https://doi.org/10.1038/nrclinonc.2013.41

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing