Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Is there still a role for SPECT–CT in oncology in the PET–CT era?

Abstract

For the evaluation of biological processes using radioisotopes, there are two competing technologies: single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Both are tomographic techniques that enable 3D localization and can be combined with CT for hybrid imaging. PET–CT has clear technical superiority including superior resolution, speed and quantitative capability. SPECT–CT currently has greater accessibility, lower cost and availability of a wider range of approved radiotracers. However, the past decade has seen dramatic growth in PET–CT with decreasing costs and development of an increasing array of PET tracers that can substitute existing SPECT applications. PET–CT is also changing the paradigm of imaging from lesion measurement to lesion characterization and target quantification, supporting a new era of personalized cancer therapy. The efficiency and cost savings associated with improved diagnosis and clinical decision-making provided by PET–CT make a cogent argument for it becoming the dominant molecular technique in oncology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The physics principles of SPECT and PET.
Figure 2: Brain imaging with 201Tl, FDG and FET.
Figure 3: Bone imaging with 18F-fluoride and 99mTc-MDP.

References

  1. 1

    De Hevesy, G. Nobel lecture: Some applications of isotopic indicators [online], (1944).

    Google Scholar 

  2. 2

    Hevesy, G. V. & Paneth, F. Die löslichkeit des bleisulfids und bleichromats [German]. Z. Anorg. Allg. Chem. 82, 323–328 (1913).

    Article  Google Scholar 

  3. 3

    Blahd, W. H. Ben Cassen and the development of the rectilinear scanner. Semin. Nucl. Med. 26, 165–170 (1996).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Seidlin, S. M., Oshry, E. & Yalow, A. A. Twelve cases of metastatic thyroid carcinoma studied with radioactive iodine. J. Clin. Endocrinol. Metab. 7, 467 (1947).

    CAS  PubMed  Google Scholar 

  5. 5

    Tapscott, E. Nuclear medicine pioneer: Hal O. Anger. First scintillation camera is foundation for modern imaging systems. J. Nucl. Med. 39, 15N, 19N, 26N–27N (1998).

    CAS  PubMed  Google Scholar 

  6. 6

    Hounsfield, G. N. Nobel lecture: Computed medical imaging [online], (1979).

    Google Scholar 

  7. 7

    Kuhl, D. E. & Edwards, R. Q. Cylindrical and section radioisotope scanning of the liver and brain. Radiology 83, 926–936 (1964).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Kuhl, D. E. & Edwards, R. Q. The Mark 3 Scanner: a compact device for multiple-view and section scanning of the brain. Radiology 96, 563–570 (1970).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Brownell, G. L. & Sweet, W. H. Scanning of positron-emitting isotopes in diagnosis of intracranial and other lesions. Acta Radiol. 46, 425–434 (1956).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Beyer, T. et al. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41, 1369–1379 (2000).

    CAS  PubMed  Google Scholar 

  11. 11

    Hasegawa, B. H. et al. Dual-modality imaging of cancer with SPECT/CT. Technol. Cancer Res. Treat. 1, 449–458 (2002).

    PubMed  Article  Google Scholar 

  12. 12

    Keidar, Z., Israel, O. & Krausz, Y. SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin. Nucl. Med. 33, 205–218 (2003).

    PubMed  Article  Google Scholar 

  13. 13

    Mariani, G. et al. A review on the clinical uses of SPECT/CT. Eur. J. Nucl. Med. Mol. Imaging 37, 1959–1985 (2010).

    PubMed  Article  Google Scholar 

  14. 14

    Chuck, A. et al. Marginal cost of operating a positron emission tomography center in a regulatory environment. Int. J. Technol. Assess. Health Care 21, 442–451 (2005).

    PubMed  Article  Google Scholar 

  15. 15

    Richards, P., Tucker, W. D. & Srivastava, S. C. Technetium-99m: an historical perspective. Int. J. Appl. Radiat. Isot. 33, 793–799 (1982).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Perrier, C. & Segrè, E. Technetium: the element of atomic number 43. Nature 159, 24 (1947).

    CAS  Article  Google Scholar 

  17. 17

    Allen, J. F. An improved technetium-99m generator for medical applications. Int. J. Appl. Radiat. Isot. 16, 332–334 (1965).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    International Atomic Energy Agency. Technetium-99m Radiopharmaceuticals: Status and Trends [online], (2010).

  19. 19

    International Atomic Energy Agency. Technetium-99m Radiopharmaceuticals Manufacture of Kits [online], (2008).

  20. 20

    Huberty, J. P., Hattner, R. S. & Powell, M. R. A 99mTc-pyrophosphate kit: a convenient, economical, and high-quality skeletal-imaging agent. J. Nucl. Med. 15, 124–126 (1974).

    CAS  PubMed  Google Scholar 

  21. 21

    Gould, P. Medical isotope shortage reaches crisis level. Nature 460, 312–313 (2009).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    European Nuclear Society High Scientific Council. The medical isotope crisis [online], (2009).

  23. 23

    Kaminski, M. S. et al. Pivotal study of iodine I131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin's lymphomas. J. Clin. Oncol. 19, 3918–3928 (2001).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Hicks, R. J. Use of molecular targeted agents for the diagnosis, staging and therapy of neuroendocrine malignancy. Cancer Imaging 10, S83–S91 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Datz, F. L. Indium-111-labeled leukocytes for the detection of infection: current status. Semin. Nucl. Med. 24, 92–109 (1994).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Milder, M. S., Frankel, R. S., Bulkley, G. B., Ketcham, A. S. & Johnston, G. S. Gallium-67 scintigraphy in malignant melanoma. Cancer 32, 1350–1356 (1973).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Johnston, G. S. et al. The gallium-67 scan in clinical assessment of cancer. J. Surg. Oncol. 5, 529–538 (1973).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Even-Sapir, E. & Israel, O. Gallium-67 scintigraphy: a cornerstone in functional imaging of lymphoma. Eur. J. Nucl. Med. Mol. Imaging 30 (Suppl. 1), 65–81 (2003).

    Article  CAS  Google Scholar 

  29. 29

    Tu, Z. & Mach, R. H. C-11 radiochemistry in cancer imaging applications. Curr. Top. Med. Chem. 10, 1060–1095 (2010).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Multimodality imaging in Europe: a survey by the European Society of Radiology (ESR) and the European Association of Nuclear Medicine (EANM). Insights Imaging 1, 30–34 (2010).

  31. 31

    Moses, W. W. Fundamental limits of spatial resolution in PET. Nucl. Instrum. Methods Phys. Res. Sect. A 648 (Suppl. 1), 236–240 (2011).

    Article  CAS  Google Scholar 

  32. 32

    Champion, C. & Le Loirec, C. Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET. Phys. Med. Biol. 52, 6605–6625 (2007).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Phelps, M. E., Hoffman, E. J., Huang, S. C. & Ter-Pogossian, M. M. Effect of positron range on spatial resolution. J. Nucl. Med. 16, 649–652 (1975).

    CAS  PubMed  Google Scholar 

  34. 34

    Kemerink, G. J. et al. Effect of the positron range of 18F, 68Ga and 124I on PET/CT in lung-equivalent materials. Eur. J. Nucl. Med. Mol. Imaging 38, 940–948 (2011).

    PubMed  Article  Google Scholar 

  35. 35

    Pichler, B. J., Wehrl, H. F. & Judenhofer, M. S. Latest advances in molecular imaging instrumentation. J. Nucl. Med. 49 (Suppl. 2), 5–23 (2008).

    Article  Google Scholar 

  36. 36

    Mullani, N. A., Markham, J. & Ter-Pogossian, M. M. Feasibility of time-of-flight reconstruction in positron emission tomography. J. Nucl. Med. 21, 1095–1097 (1980).

    CAS  PubMed  Google Scholar 

  37. 37

    Jakoby, B. W. et al. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys. Med. Biol. 56, 2375–2389 (2011).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Keppler, J. S. & Conti, P. S. A cost analysis of positron emission tomography. AJR Am. J. Roentgenol. 177, 31–40 (2001).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Sullivan, R. et al. Delivering affordable cancer care in high-income countries. Lancet Oncol. 12, 933–980 (2011).

    Article  PubMed  Google Scholar 

  40. 40

    Trevena, I. Investing in the future: MDS Nordion's Maple Medical Isotope Reactor Project. J. Nucl. Med. 39, 19N (1998).

    CAS  PubMed  Google Scholar 

  41. 41

    Ruth, T. Accelerating production of medical isotopes. Nature 457, 536–537 (2009).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Roesch, F. Maturation of a key resource—the germanium-68/gallium-68 generator: development and new insights. Curr. Radiopharm. 5, 202–211 (2012).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Yano, Y. & Anger, H. O. A gallium-68 positron cow for medical use. J. Nucl. Med. 5, 484–487 (1964).

    CAS  PubMed  Google Scholar 

  44. 44

    Schaer, L. R., Anger, H. O. & Gottschalk, A. Gallium edetate 68Ga experiences in brain-lesion detection with the positron camera. JAMA 198, 811–813 (1966).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Hofmann, M. et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur. J. Nucl. Med. 28, 1751–1757 (2001).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Hofman, M. S. et al. High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours. J. Med. Imaging Radiat. Oncol. 56, 40–47 (2012).

    PubMed  Article  Google Scholar 

  47. 47

    Fani, M., André, J. P. & Maecke, H. R. 68Ga–PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol. Imaging 3, 67–77 (2008).

    PubMed  Article  CAS  Google Scholar 

  48. 48

    Breeman, W. A. et al. (68)Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin. Nucl. Med. 41, 314–321 (2011).

    PubMed  Article  Google Scholar 

  49. 49

    Keppler, J. S., Thornberg, C. F. & Conti, P. S. Regulation of positron emission tomography: a case study. AJR Am. J. Roentgenol. 171, 1187–1192 (1998).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Di Chiro, G. et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32, 1323–1329 (1982).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Gambhir, S. S. et al. A tabulated summary of the FDG PET literature. J. Nucl. Med. 42 (Suppl. 5), 1–93 (2001).

    Google Scholar 

  52. 52

    Czernin, J., Allen-Auerbach, M. & Schelbert, H. R. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J. Nucl. Med. 48 (Suppl. 1), 78–88 (2007).

    Google Scholar 

  53. 53

    Kalff, V. et al. Evaluation of high-risk melanoma: comparison of [18F]FDG PET and high-dose 67Ga SPET. Eur. J. Nucl. Med. Mol. Imaging 29, 506–515 (2002).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    MacManus, M. P. et al. Imaging with F-18 FDG PET is superior to Tl-201 SPECT in the staging of non-small cell lung cancer for radical radiation therapy. Australas. Radiol. 45, 483–490 (2001).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Pauleit, D. et al. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodo-alpha-methyl-L-tyrosine SPECT in brain tumors. J. Nucl. Med. 45, 374–381 (2004).

    CAS  PubMed  Google Scholar 

  56. 56

    Galldiks, N. et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J. Nucl. Med. 53, 1367–1374 (2012).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Beauregard, J. M., Williams, S. G., Degrado, T. R., Roselt, P. & Hicks, R. J. Pilot comparison of F-fluorocholine and F-fluorodeoxyglucose PET/CT with conventional imaging in prostate cancer. J. Med. Imaging Radiat. Oncol. 54, 325–332 (2010).

    PubMed  Article  Google Scholar 

  58. 58

    Langsteger, W., Heinisch, M. & Fogelman, I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin. Nucl. Med. 36, 73–92 (2006).

    PubMed  Article  Google Scholar 

  59. 59

    Shields, A. F. PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J. Nucl. Med. 44, 1432–1434 (2003).

    CAS  PubMed  Google Scholar 

  60. 60

    Krenning, E. P. et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1, 242–244 (1989).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Sisson, J. C. et al. Scintigraphic localization of pheochromocytoma. N. Engl. J. Med. 305, 12–17 (1981).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Eschmann, S. M. et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur. J. Nucl. Med. Mol. Imaging 29, 760–767 (2002).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Mariani, G., Bruselli, L. & Duatti, A. Is PET always an advantage versus planar and SPECT imaging? Eur. J. Nucl. Med. Mol. Imaging 35, 1560–1565 (2008).

    PubMed  Article  Google Scholar 

  64. 64

    Ikotun, O. F. & Lapi, S. E. The rise of metal radionuclides in medical imaging: copper-64, zirconium-89 and yttrium-86. Future Med. Chem. 3, 599–621 (2011).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Verel, I. et al. Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET. Cancer Biother. Radiopharm. 18, 655–661 (2003).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Rizvi, S. N. et al. Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin's lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur. J. Nucl. Med. Mol. Imaging 39, 512–520 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Zhang, Y., Hong, H. & Cai, W. PET tracers based on zirconium-89. Curr. Radiopharm. 4, 131–139 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Yu, E. Y. & Mankoff, D. A. Positron emission tomography imaging as a cancer biomarker. Expert Rev. Mol. Diagn. 7, 659–672 (2007).

    PubMed  Article  Google Scholar 

  69. 69

    Hofman, M. S. & Hicks, R. J. Changing paradigms with molecular imaging of neuroendocrine tumors. Discov. Med. 14, 71–81 (2012).

    PubMed  Google Scholar 

  70. 70

    Linden, H. M. et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J. Clin. Oncol. 24, 2793–2799 (2006).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Dijkers, E. C. et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther. 87, 586–592 (2010).

    CAS  Article  Google Scholar 

  72. 72

    Oude Munnink, T. H. et al. Trastuzumab pharmacokinetics influenced by extent human epidermal growth factor receptor 2-positive tumor load. J. Clin. Oncol. 28, e355–357 (2010).

    PubMed  Article  Google Scholar 

  73. 73

    Beauregard, J. M., Hofman, M. S., Kong, G. & Hicks, R. J. The tumour sink effect on the biodistribution of 68Ga-DOTA-octreotate: implications for peptide receptor radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 39, 50–56 (2012).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Gnanasegaran, G., Cook, G., Adamson, K. & Fogelman, I. Patterns, variants, artifacts, and pitfalls in conventional radionuclide bone imaging and SPECT/CT. Semin. Nucl. Med. 39, 380–395 (2009).

    PubMed  Article  Google Scholar 

  75. 75

    Schiepers, C. et al. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J. Nucl. Med. 38, 1970–1976 (1997).

    CAS  PubMed  Google Scholar 

  76. 76

    Even-Sapir, E. et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J. Nucl. Med. 45, 272–278 (2004).

    PubMed  Google Scholar 

  77. 77

    Segall, G. et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J. Nucl. Med. 51, 1813–1820 (2010).

    PubMed  Article  Google Scholar 

  78. 78

    Hofman, M. S. et al. 68Ga PET/CT ventilation-perfusion imaging for pulmonary embolism: a pilot study with comparison to conventional scintigraphy. J. Nucl. Med. 52, 1513–1519 (2011).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Mori, I., Takayama, T. & Motomura, N. The CdTe detector module and its imaging performance. Ann. Nucl. Med. 15, 487–494 (2001).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Fiechter, M. et al. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography. Eur. J. Nucl. Med. Mol. Imaging 38, 2025–2030 (2011).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Nagai, H. et al. Evaluation of brain tumors by simultaneous dual isotope SPECT with 201Tl-chloride and 99mTc-MIBI [Japanese], No Shinkei Geka 32, 1029–1037 (2004).

    PubMed  Google Scholar 

  82. 82

    Myronakis, M. E. & Darambara, D. G. Monte Carlo investigation of charge-transport effects on energy resolution and detection efficiency of pixelated CZT detectors for SPECT/PET applications. Medical Phys. 38, 455–467 (2011).

    Article  Google Scholar 

  83. 83

    Rahmim, A. & Zaidi, H. PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29, 193–207 (2008).

    PubMed  Article  Google Scholar 

  84. 84

    Bailey, D. L., Townsend, D. W., Valk, P. E. & Maisey, M. N. (Eds) Positron Emission Tomography: Basic Sciences (Springer, New York, 2005).

    Book  Google Scholar 

  85. 85

    Van Nostrand, D. et al. (124)I positron emission tomography versus (131)I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid 20, 879–883 (2010).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Virgolini, I. et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging 37, 2004–2010 (2010).

    PubMed  Article  Google Scholar 

  87. 87

    Hartung-Knemeyer, V. et al. Malignant pheochromocytoma imaging with [124I]mIBG PET/MR. J. Clin. Endocrinol. Metab. doi:10.1210/jc.2012-1958

  88. 88

    Ott, R. J., Tait, D., Flower, M. A., Babich, J. W. & Lambrecht, R. M. Treatment planning for 131I-mIBG radiotherapy of neural crest tumours using 124I-mIBG positron emission tomography. Br. J. Radiol. 65, 787–791 (1992).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Hoegerle, S. et al. Pheochromocytomas: detection with 18F DOPA whole body PET–initial results. Radiology 222, 507–512 (2002).

    PubMed  Article  Google Scholar 

  90. 90

    Fellner, M. et al. PET/CT imaging of osteoblastic bone metastases with (68)Ga-bisphosphonates: first human study. Eur. J. Nucl. Med. Mol. Imaging 37, 834 (2010).

    PubMed  Article  Google Scholar 

  91. 91

    Yamashita, M. et al. Quantitative measurement of renal function using Ga-68-EDTA. Tohoku J. Exp. Med. 155, 207–208 (1988).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Saatchi, K. et al. Long-circulating non-toxic blood pool imaging agent based on hyperbranched polyglycerols. Int. J. Pharm. 422, 418–427 (2012).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Kotzerke, J., Andreeff, M., Wunderlich, G., Wiggermann, P. & Zöphel, K. Ventilation-perfusion-lungscintigraphy using PET and 68Ga-labeled radiopharmaceuticals [German]. Nuklearmedizin 49, 203–208 (2010).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Schuhmacher, J., Matys, R., Hauser, H., Clorius, J. H. & Maier-Borst, W. A Ga-68-labeled tetrabromophthalein (Ga-68 BP-IDA) for positron imaging of hepatobiliary function: concise communication. J. Nucl. Med. 24, 593–602 (1983).

    CAS  PubMed  Google Scholar 

  95. 95

    Pellegrino, D. et al. Inflammation and infection: imaging properties of 18F-FDG-labeled white blood cells versus 18F-FDG. J. Nucl. Med. 46, 1522–1530 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Both authors researched the data for the article, discussed its content, wrote the manuscript and edited it before submission.

Corresponding author

Correspondence to Rodney J. Hicks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hicks, R., Hofman, M. Is there still a role for SPECT–CT in oncology in the PET–CT era?. Nat Rev Clin Oncol 9, 712–720 (2012). https://doi.org/10.1038/nrclinonc.2012.188

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing