Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted therapy in rare cancers—adopting the orphans

Abstract

Designation of a rare 'orphan' disease is usually conferred by a prevalence of one in 1,500 to 2,500 individuals. Increasingly, orphan diseases are also being defined by their molecular fingerprints. Rare diseases are uniquely challenging from a therapeutic standpoint; it is critical to modify clinical study design of treatments for orphan disorders as well as for the increasingly smaller molecular subsets within frequently occurring cancers. In spite of the immense challenges associated with developing a treatment for a rare disorder, some of the most groundbreaking therapeutic discoveries have been made in orphan malignancies. This situation may be because a limited number of driver molecular aberrations occur in rare disorders, which can be targeted by agents. Here, we describe drug-class examples of targeted therapies for orphan diseases, with particular emphasis on malignancies or tumour-prone nonmalignant conditions, as well as potential therapeutic strategies that can be adopted to treat these orphan conditions.

Key Points

  • The terms 'rare disorder' and 'orphan disease' are often used interchangeably

  • Dramatic success in treating some orphan cancers is owing to identifying a main driver of malignant transformation

  • By contrast, slow progress has been seen in drug development for the most-common tumours

  • Identification of molecular aberrations may turn common tumours into a collection of orphan diseases

  • The therapeutic paradigm is changing from 'one size fits all' to personalized targeted treatment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted therapy for orphan diseases.
Figure 2: Distribution of types of sarcoma in childhood.
Figure 3: Cancer in the molecular era.
Figure 4: The elusive equation of targeted therapy: 'the right patient, the right disease, the right drug' in a Venn diagram.
Figure 5

Similar content being viewed by others

References

  1. Stewart, D. J., Whitney, S. N. & Kurzrock, R. Equipoise lost: ethics, costs, and the regulation of cancer clinical research. J. Clin. Oncol. 28, 2925–2935 (2010).

    Article  PubMed  Google Scholar 

  2. Griggs, R. C. et al. Clinical research for rare disease: opportunities, challenges, and solutions. Mol. Genet. Metab. 96, 20–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Shah, R. R. in Fabry Disease: Perspectives from 5 Years of FOS ( eds Mehta, A., Beck, M. & Sunder-Plassmann, G. ) Ch. 11 (Oxford PharmaGenesis, Oxford, 2006).

  4. European Commission. Useful Information on Rare Diseases from an EU Perspective [online], (2012).

  5. Pentheroudakis, G. et al. Heterogeneity in cancer guidelines: should we eradicate or tolerate? Ann. Oncol. 19, 2067–2078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orphan Drug Act. No. 97–414 Pub. L (1983).

  7. Aymé, S. & Schmidtke, J. Networking for rare diseases: a necessity for Europe. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 50, 1477–1483 (2007).

    Article  PubMed  Google Scholar 

  8. Gatta, G. et al. Rare cancers are not so rare: the rare cancer burden in Europe. Eur. J. Cancer 47, 2493–2511 (2011).

    Article  PubMed  Google Scholar 

  9. Greenlee, R. T. et al. The occurrence of rare cancers in U. S. adults, 1995–2004. Public Health Rep. 125, 28–43 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Orphanet. Prevalence of rare diseases: Bibliographic data [online], (2012).

  11. van de Laar, F. A., Bor, H. & van de Lisdonk, E. H. Prevalence of zebras in general practice: data from the Continuous Morbidity Registration Nijmegen. Eur. J. Gen. Pract. 14 (Suppl, 1), 44–46 (2008).

    Article  PubMed  Google Scholar 

  12. Sledge, G. W. Jr. What is targeted therapy? J. Clin. Oncol. 23, 1614–1615 (2005).

    Article  PubMed  Google Scholar 

  13. Van Cutsem, E. et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial. J. Clin. Oncol. 30, 2119–2127 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burris, H. A. 3rd, Tibbitts, J., Holden, S. N. & Lewis Phillips, G. D. Trastuzumab emtansine (T-DM1): a novel agent for targeting HER2+ breast cancer. Clin. Breast Cancer 11, 275–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Braiteh, F. & Kurzrock, R. Uncommon tumors and exceptional therapies: paradox or paradigm? Mol. Cancer Ther. 6, 1175–1179 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Snuderl, M. et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20, 810–817 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Choi, Y. L. et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363, 1734–1739 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Moulder, S. et al. Responses to liposomal doxorubicin, bevacizumab, and temsirolimus in metaplastic carcinoma of the breast: biologic rationale and implications for stem-cell research in breast cancer. J. Clin. Oncol. 29, e572–e575 (2011).

    Article  PubMed  Google Scholar 

  22. Robak, T., Krykowski, E., Blasinska-Morawiec, M. & Urbanska-Rys, H. Treatment of patients with hairy cell leukemia with 2-chloro-2′-deoxyadenosine (2-CdA). Arch. Immunol. Ther. Exp. (Warsz) 42, 25–29 (1994).

    CAS  Google Scholar 

  23. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Giagounidis, A. A. et al. Prognosis of patients with del(5q) MDS and complex karyotype and the possible role of lenalidomide in this patient subgroup. Ann. Hematol. 84, 569–571 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ohno, R. et al. Leukaemia Study Group of the Ministry of Health and Welfare. Multi-institutional study of all-trans-retinoic acid as a differentiation therapy of refractory acute promyelocytic leukemia. Leukemia 7, 1722–1727 (1993).

    CAS  PubMed  Google Scholar 

  26. Hehlmann, R. How I treat CML blast crisis. Blood 120, 737–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, X., Cortes, J. & Kantarjian, H. Estimations of the increasing prevalence and plateau prevalence of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Cancer 118, 3123–3127 (2012).

    Article  PubMed  Google Scholar 

  28. Druker, B. J. et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038–1042 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Cornelison, A. M., Kantarjian, H., Cortes, J. & Jabbour, E. Outcome of treatment of chronic myeloid leukemia with second-generation tyrosine kinase inhibitors after imatinib failure. Clin. Lymphoma Myeloma Leuk. 11 (Suppl. 1), S101–S110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Razga, F. et al. Analysis of mutations in the BCR-ABL1 kinase domain, using direct sequencing: detection of the T315I mutation in bone marrow CD34+ cells of a patient with chronic myelogenous leukemia 6 months prior to its emergence in peripheral blood. Mol. Diagn. Ther. 16, 163–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Levinson, N. M. & Boxer, S. G. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain. PLoS ONE 7, e29828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Azam, M. et al. AP24163 inhibits the gatekeeper mutant of BCR-ABL and suppresses in vitro resistance. Chem. Biol. Drug Des. 75, 223–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Cassier, P. A. et al. Efficacy of imatinib mesylate for the treatment of locally advanced and/or metastatic tenosynovial giant cell tumor/pigmented villonodular synovitis. Cancer 118, 1649–1655 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Stacchiotti, S. et al. Dermatofibrosarcoma protuberans-derived fibrosarcoma: clinical history, biological profile and sensitivity to imatinib. Int. J. Cancer 129, 1761–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao. L. J. et al. Functional features of RUNX1 mutants in acute transformation of chronic myeloid leukemia and their contribution to inducing murine fullblown leukemia. Blood 119, 2873–2882 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Nacheva, E. P. et al. Deletions of immunoglobulin heavy chain and T cell receptor gene regions are uniquely associated with lymphoid blast transformation of chronic myeloid leukemia. BMC Genomics 11, 41 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Beekman, R. et al. Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia. Blood 119, 5071–5077 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Bink, K. et al. Primary extramedullary plasmacytoma: similarities with and differences from multiple myeloma revealed by interphase cytogenetics. Haematologica 93, 623–626 (2008).

    Article  PubMed  Google Scholar 

  39. Sheth, N., Yeung, J. & Chang, H. p53 nuclear accumulation is associated with extramedullary progression of multiple myeloma. Leuk. Res. 33, 1357–1360 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, S. G. et al. Preceding orbital granulocytic sarcoma in an adult patient with acute myelogenous leukemia with t(8;21): a case study and review of the literature. Cancer Genet. Cytogenet. 185, 51–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Ghobrial, I. M. Myeloma as a model for the process of metastasis: implications for therapy. Blood 120, 20–30 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Z. Y. & Chen, Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111, 2505–2515 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Kamimura, T., Miyamoto, T., Harada, M. & Akashi, K. Advances in therapies for acute promyelocytic leukemia. Cancer Sci. 102, 1929–1937 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Hu, J. et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 106, 3342–3347 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Castleman, B., Iverson, L. & Menendez, V. P. Localized mediastinal lymph node hyperplasia resembling thymoma. Cancer 9, 822–830 (1956).

    Article  CAS  PubMed  Google Scholar 

  46. Cronin, D. M. & Warnke, R. A. Castleman disease: an update on classification and the spectrum of associated lesions. Adv. Anat. Pathol. 16, 236–246 (2009).

    Article  PubMed  Google Scholar 

  47. Cesarman, E., Chang, Y., Moore, P. S. & Knowles, D. M. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332, 1186–1191 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Neipel, F. et al. Human herpesvirus 8 encodes a homolog of interleukin-6. J. Virol. 71, 839–842 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yabuhara, A. et al. Giant lymph node hyperplasia (Castleman's disease) with spontaneous production of high levels of B-cell differentiation factor activity. Cancer 63, 260–265 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Beck, J. T. et al. Brief report: alleviation of systemic manifestations of Castleman's disease by monoclonal anti-interleukin-6 antibody. N. Engl. J. Med. 330, 602–605 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Nishimoto, N. et al. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 112, 3959–3964 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Van Rhee, F. et al. Siltuximab, a novel anti--nterleukin-6 monoclonal antibody, for Castleman's disease. J. Clin. Oncol. 28, 3701–3708 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Ahmed, B. et al. Cutaneous castleman's disease responds to anti interleukin-6 treatment. Mol. Cancer Ther. 6, 2386–2390 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. El-Osta, H., Janku, F. & Kurzrock, R. Successful treatment of Castleman's disease with interleukin-1 receptor antagonist (Anakinra). Mol. Cancer Ther. 9, 1485–1488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. El-Osta, H. E. & Kurzrock, R. Castleman's disease: from basic mechanisms to molecular therapeutics. Oncologist 16, 497–511 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cripe, T. P. Ewing sarcoma: an eponym window to history. Sarcoma 2011, 457532 (2011).

    Article  PubMed  Google Scholar 

  57. Slater, O. & Shipley, J. Clinical relevance of molecular genetics to paediatric sarcomas. J. Clin. Pathol. 60, 1187–1194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. National Cancer Institute. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995 [online], (1999).

  59. Stiller, C. A., Allen, M. B. & Eatock, E. M. Childhood Cancer in Britain: The National Registry of Childhood Tumours and Incidence Rates 1978–1987. Eur. J. Cancer 31A, 2028–2034 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Paulino, A. C., Mai, W. Y. & The, B. S. Radiotherapy in metastatic Ewing sarcoma. Am. J. Clin. Oncol. http://dx.doi.org/10.1097/COC.0b013e3182467ede.

  61. Huang, H. J. et al. R1507, an anti-insulin-like growth factor-1 receptor (IGF-1R) antibody, and EWS/FLI-1 siRNA in Ewing's sarcoma: convergence at the IGF/IGFR/Akt axis. PLoS ONE 6, e26060 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kurzrock, R. et al. A phase I study of weekly R1507, a human monoclonal antibody insulin-like growth factor-I receptor antagonist, in patients with advanced solid tumors. Clin. Cancer Res. 16, 2458–2465 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Tolcher, A. W. et al. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J. Clin. Oncol. 27, 5800–5807 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Naing, A. et al. Phase I trial of cixutumumab combined with temsirolimus in patients with advanced cancer. Clin. Cancer Res. 17, 6052–6060 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Subbiah, V. et al. Targeted morphoproteomic profiling of Ewing's sarcoma treated with insulin-like growth factor 1 receptor (IGF1R) inhibitors: response/resistance signatures. PLoS ONE 6, e18424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Suh, S. & Kim, K. W. Diabetes and cancer: is diabetes causally related to cancer? Diabetes Metab. J. 35, 193–198 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ksienski, D. Imatinib mesylate: past successes and future challenges in the treatment of gastrointestinal stromal tumors. Clin. Med. Insights Oncol. 5, 365–379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, D. et al. Phase II trial of neoadjuvant/adjuvant imatinib mesylate for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumors: long-term follow-up results of Radiation Therapy Oncology Group 0132. Ann. Surg. Oncol. 19, 1074–1080 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Joensuu, H. et al. One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial. JAMA 307, 1265–1272 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Miranda, C. et al. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors (GIST). Clin. Cancer Res. 18, 1769–1776 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Hostein, I. et al. BRAF mutation status in gastrointestinal stromal tumors. Am. J. Clin. Pathol. 133, 141–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Croom, K. F. & Perry, C. M. Imatinib mesylate: in the treatment of gastrointestinal stromal tumours. Drugs 63, 513–522 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Blay, J. Y. A decade of tyrosine kinase inhibitor therapy: historical and current perspectives on targeted therapy for GIST. Cancer Treat. Rev. 37, 373–384 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Flaherty, K. T., Yasothan, U. & Kirkpatrick, P. Vemurafenib. Nat. Rev. Drug Discov. 10, 811–812 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang, P. & Marais, R. Cancer: Melanoma troops massed. Nature 459, 336–337 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Luke, J. J. & Hodi, F. S. Vemurafenib and BRAF inhibition: a new class of treatment for metastatic melanoma. Clin. Cancer Res. 18, 9–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Curtin, J. A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135–2147 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Bhaijee, F. & Nikiforov, Y. E. Molecular analysis of thyroid tumors. Endocr. Pathol. 22, 126–133 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Spindler, K. L., Pallisgaard, N., Vogelius, I. & Jakobsen, A. Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin. Cancer Res. 18, 1177–1185 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Tiacci, E. et al. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 364, 2305–2315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Dietrich, S. et al. BRAF inhibition in refractory hairy-cell leukemia. N. Engl. J. Med. 366, 2038–2040 (2012).

    Article  PubMed  Google Scholar 

  84. Younes, A. CD30-targeted antibody therapy. Curr. Opin. Oncol. 23, 587–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Pro, B. et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190–2196 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Foyil, K. V. & Bartlett, N. L. Brentuximab vedotin for the treatment of CD30+ lymphomas. Immunotherapy 3, 475–485 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Younes, A., Yasothan, U. & Kirkpatrick, P. Brentuximab vedotin. Nat. Rev. Drug Discov. 11, 19–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Kris, M. G. et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290, 2149–2158 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Thatcher, N. et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366, 1527–1537 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Han, S. W. et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J. Clin. Oncol. 23, 2493–2501 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. ASCO. ASCO's Blueprint for Transforming Clinical and Translational Cancer Research. Cancer in the Molecular Era: Identifying the Drivers of Lung Cancer [online], (2012).

  93. Tiseo, M. et al. Anaplastic lymphoma kinase as a new target for the treatment of non-small-cell lung cancer. Expert Rev. Anticancer Ther. 11, 1677–1687 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Gandhi, L. & Jänne, P. A. Crizotinib for ALK-rearranged non-small cell lung cancer: a new targeted therapy for a new target. Clin. Cancer Res. 18, 3737–3742 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Kantarjian, H. et al. The heterogeneous prognosis of patients with myelodysplastic syndrome and chromosome 5 abnormalities: how does it relate to the original lenalidomide experience in MDS? Cancer 115, 5202–5209 (2009).

    Article  PubMed  Google Scholar 

  96. Garcia-Manero, G. Myelodysplastic syndromes: update on diagnosis, risk-stratification, and management. Am. J. Hematol. 86, 490–498 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Komrokji, R. S., Lancet, J. E. & List, A. F. Lenalidomide in myelodysplastic syndromes: an erythropoiesis-stimulating agent or more? Curr. Hematol. Malig. Rep. 5, 9–14 (2010).

    Article  PubMed  Google Scholar 

  98. Heise, C., Carter, T., Schafer, P. & Chopra, R. Pleiotropic mechanisms of action of lenalidomide efficacy in del(5q) myelodysplastic syndromes. Expert Rev. Anticancer Ther. 10, 1663–1672 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Fenaux, P. et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with low-/intermediate-1-risk myelodysplastic syndromes with del5q. Blood 118, 3765–3776 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Biesecker, L. The challenges of Proteus syndrome: diagnosis and management. Eur. J. Hum. Genet. 14, 1151–1157 (2006).

    Article  PubMed  Google Scholar 

  101. Lindhurst, M. J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 365, 611–619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Piha-Paul, S. A., Hong, D. S. & Kurzrock, R. Response of lymphangioleiomyomatosis to a mammalian target of rapamycin inhibitor (temsirolimus) -based treatment. J. Clin. Oncol. 29, e333–e335 (2011).

    Article  PubMed  Google Scholar 

  103. Orphanet. The portal for rare diseases and orphan drugs [online], (2012).

  104. Wells, S. A. Jr et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Kurzrock, R. et al. Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J. Clin. Oncol. 29, 2660–2666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. López, M. F., Dupuy, J. F. & Gonzalez, C. V. Effectiveness of adaptive designs for phase II cancer trials. Contemp. Clin. Trials 33, 223–227 (2012).

    Article  PubMed  Google Scholar 

  107. de Jong, D. et al. Anaplastic large-cell lymphoma in women with breast implants. JAMA 300, 2030–2035 (2008).

    Article  PubMed  Google Scholar 

  108. Gambacorti-Passerini, C., Messa, C. & Pogliani, E. M. Crizotinib in anaplastic large-cell lymphoma. N. Engl. J. Med. 364, 775–776 (2011).

    Article  PubMed  Google Scholar 

  109. Dégot, T., Métivier, A. C., Casnedi, S., Chenard, M. P. & Kessler, R. Thoracic manifestations of Castleman's disease [French]. Rev. Pneumol. Clin. 65, 101–107 (2009).

    Article  PubMed  Google Scholar 

  110. Squarize, C. H., Castilho, R. M. & Gutkind, J. S. Chemoprevention and treatment of experimental Cowden's disease by mTOR inhibition with rapamycin. Cancer Res. 68, 7066–7072 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Llombart, B. et al. Dermatofibrosarcoma protuberans: a clinicopathological, immunohistochemical, genetic (COL1A1-PDGFB), and therapeutic study of low-grade versus high-grade (fibrosarcomatous) tumors. J. Am. Acad. Dermatol. 65, 564–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Risberg, K., Fodstad, O. & Andersson, Y. Immunotoxins: a promising treatment modality for metastatic melanoma? Ochsner J. 10, 193–199 (2010).

    PubMed  PubMed Central  Google Scholar 

  113. Chan, K. H. et al. Gastrointestinal stromal tumors in a cohort of Chinese patients in Hong Kong. World J. Gastroenterol. 12, 2223–2228 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dahlgren, J., Klein, J. & Takhar, H. Cluster of Hodgkin's lymphoma in residents near a nonoperational petroleum refinery. Toxicol. Ind. Health 24, 683–692 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Helbig, G. et al. Durable remission after treatment with very low doses of imatinib for FIP1L1-PDGFRα-positive chronic eosinophilic leukaemia. Cancer Chemother. Pharmacol. 67, 967–969 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Deshpande, H., Marler, V. & Sosa, J. A. Clinical utility of vandetanib in the treatment of patients with advanced medullary thyroid cancer. Onco. Targets Ther. 4, 209–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stein, B. L., Crispino, J. D. & Moliterno, A. R. Janus kinase inhibitors: an update on the progress and promise of targeted therapy in the myeloproliferative neoplasms. Curr. Opin. Oncol. 23, 609–616 (2011).

    CAS  PubMed  Google Scholar 

  118. Vidal, M., Wells, S., Ryan, A. & Cagan, R. ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res. 65, 3538–3541 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Salvi, A. et al. Germline and somatic c-met mutations in multifocal/bilateral and sporadic papillary renal carcinomas of selected patients. Int. J. Oncol. 33, 271–276 (2008).

    CAS  PubMed  Google Scholar 

  120. Shah, N. P. et al. Dasatinib (BMS-354825) inhibits KITD816V, an imatinib resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 108, 286–291 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Soignet, S., Fleischauer, A., Polyak, T., Heller, G. & Warrell, R. P. Jr. All-trans retinoic acid significantly increases 5-year survival in patients with acute promyelocytic leukemia: long-term follow-up of the New York study. Cancer Chemother. Pharmacol. 40 (Suppl.), S25–S29 (1997).

    Article  PubMed  Google Scholar 

  122. Adamson, P. C. All-trans-retinoic acid pharmacology and its impact on the treatment of acute promyelocytic leukemia. Oncologist 1, 305–314 (1996).

    CAS  PubMed  Google Scholar 

  123. Ascierto, P. A. et al. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 10, 85 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Blay, J. Y., Le Cesne, A., Cassier, P. A. & Ray-Coquard, I. L. Gastrointestinal stromal tumors (GIST): a rare entity, a tumor model for personalized therapy, and yet ten different molecular subtypes. Discov. Med. 13, 357–367 (2012).

    PubMed  Google Scholar 

  125. Younes, A. et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J. Clin. Oncol. 30, 2183–2189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Foyil, K. V. & Bartlett, N. L. Anti-CD30 antibodies for Hodgkin lymphoma. Curr. Hematol. Malig. Rep. 5, 140–147 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Joann Aaron, a medical editor funded by our department, for her editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

J. Munoz researched data for the article. Both authors made a substantial contribution to the discussion of the content, to writing the manuscript and to editing prior to submission.

Corresponding author

Correspondence to Javier Munoz.

Ethics declarations

Competing interests

R. Kurzrock has received research funding or honoraria from AstraZeneca, Centocor, Genetics, Genentech, Hoffman LaRoche, Novartis, Pfizer, and Wyeth. J. Munoz declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munoz, J., Kurzrock, R. Targeted therapy in rare cancers—adopting the orphans. Nat Rev Clin Oncol 9, 631–642 (2012). https://doi.org/10.1038/nrclinonc.2012.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.160

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer